Tag Archives: Harvard University

Constructing a liver

Chinese researchers have taken a step closer to constructing complex (lifelike) liver tissue according to a Jan. 27, 2016 American Chemical Society (ACS) news release (also on EurekAlert),

Engineered liver tissue could have a range of important uses, from transplants in patients suffering from the organ’s failure to pharmaceutical testing [this usage is sometimes known as liver-on-a-chip]. Now scientists report in ACS’ journal Analytical Chemistry the development of such a tissue, which closely mimics the liver’s complicated microstructure and function more effectively than existing models.

The liver serves a critical role in digesting food and detoxifying the body. But due to a variety of factors, including viral infections, alcoholism and drug reactions, the organ can develop chronic or acute problems. When it doesn’t work well, a person can suffer abdominal pain, swelling, nausea and other symptoms. Complete liver failure can be life-threatening and can require a transplant, a procedure that currently depends on human donors. To curtail this reliance and provide an improved model for predicting drugs’ side effects, scientists have been engineering liver tissue in the lab. But so far, they haven’t achieved the complex architecture of the real thing. Jinyi Wang and colleagues came up with a new approach.

Wang’s team built a microfluidics-based tissue that copies the liver’s complex lobules, the organ’s tiny structures that resemble wheels with spokes. They did this with human cells from a liver and an aorta, the body’s main artery. In the lab, the engineered tissue had a metabolic rate that was closer to real-life levels than other liver models, and it successfully simulated how a real liver would react to various drug combinations. The researchers conclude their approach could lead to the development of functional liver tissue for clinical applications and screening drugs for side effects and potentially harmful interactions.

Here’s a link to and a citation for the paper,

On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay by Chao Ma, Lei Zhao, En-Min Zhou, Juan Xu, Shaofei Shen, and Jinyi Wang. Northwest A&F University, China Anal. Chem., Article ASAP DOI: 10.1021/acs.analchem.5b03869 Publication Date (Web): January 7, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

In a teleconference earlier this month (January 2016), I spoke to researchers at the University of Malaya, Universiti Teknologi Malaysia (UTM), and Harvard University about a joint lung and nanomedicine research project where I asked researcher Joseph Brain (Harvard) about using lung-on-a-chip testing in place of in vivo (animal) testing and he indicated more confidence in the ‘precision cut lung slices’ technique. (You can find out more about the Malaysian project in my Jan. 12, 2016 posting but there’s only a brief mention of Brain’s preferred alternative animal testing technique.)

Origami and our pop-up future

They should have declared Jan. 25, 2016 ‘L. Mahadevan Day’ at Harvard University. The researcher was listed as an author on two major papers. I covered the first piece of research, 4D printed hydrogels, in this Jan. 26, 2016 posting. Now for Mahadevan’s other work, from a Jan. 27, 2016 news item on Nanotechnology Now,

What if you could make any object out of a flat sheet of paper?

That future is on the horizon thanks to new research by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Organismic and Evolutionary Biology, and Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). He is also a core faculty member of the Wyss Institute for Biologically Inspired Engineering, and member of the Kavli Institute for Bionano Science and Technology, at Harvard University.

Mahadevan and his team have characterized a fundamental origami fold, or tessellation, that could be used as a building block to create almost any three-dimensional shape, from nanostructures to buildings. …

A Jan. 26, 2016 Harvard University news release by Leah Burrows, which originated the news item, provides more detail about the specific fold the team has been investigating,

The folding pattern, known as the Miura-ori, is a periodic way to tile the plane using the simplest mountain-valley fold in origami. It was used as a decorative item in clothing at least as long ago as the 15th century. A folded Miura can be packed into a flat, compact shape and unfolded in one continuous motion, making it ideal for packing rigid structures like solar panels.  It also occurs in nature in a variety of situations, such as in insect wings and certain leaves.

“Could this simple folding pattern serve as a template for more complicated shapes, such as saddles, spheres, cylinders, and helices?” asked Mahadevan.

“We found an incredible amount of flexibility hidden inside the geometry of the Miura-ori,” said Levi Dudte, graduate student in the Mahadevan lab and first author of the paper. “As it turns out, this fold is capable of creating many more shapes than we imagined.”

Think surgical stents that can be packed flat and pop-up into three-dimensional structures once inside the body or dining room tables that can lean flat against the wall until they are ready to be used.

“The collapsibility, transportability and deployability of Miura-ori folded objects makes it a potentially attractive design for everything from space-bound payloads to small-space living to laparoscopic surgery and soft robotics,” said Dudte.

Here’s a .gif demonstrating the fold,

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

The news release offers some details about the research,

To explore the potential of the tessellation, the team developed an algorithm that can create certain shapes using the Miura-ori fold, repeated with small variations. Given the specifications of the target shape, the program lays out the folds needed to create the design, which can then be laser printed for folding.

The program takes into account several factors, including the stiffness of the folded material and the trade-off between the accuracy of the pattern and the effort associated with creating finer folds – an important characterization because, as of now, these shapes are all folded by hand.

“Essentially, we would like to be able to tailor any shape by using an appropriate folding pattern,” said Mahadevan. “Starting with the basic mountain-valley fold, our algorithm determines how to vary it by gently tweaking it from one location to the other to make a vase, a hat, a saddle, or to stitch them together to make more and more complex structures.”

“This is a step in the direction of being able to solve the inverse problem – given a functional shape, how can we design the folds on a sheet to achieve it,” Dudte said.

“The really exciting thing about this fold is it is completely scalable,” said Mahadevan. “You can do this with graphene, which is one atom thick, or you can do it on the architectural scale.”

Co-authors on the study include Etienne Vouga, currently at the University of Texas at Austin, and Tomohiro Tachi from the University of Tokyo. …

Here’s a link to and a citation for the paper,

Programming curvature using origami tessellations by Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, & L. Mahadevan. Nature Materials (2016) doi:10.1038/nmat4540 Published online 25 January 2016

This paper is behind a paywall.

University of Malaya (Malaysia) and Harvard University (US) partner on nanomedicine/prevention projects

Unusually for a ‘nanomedicine’ project, the talk turned to prevention during a Jan. 10, 2016 teleconference featuring Dr. Noor Hayaty Abu Kasim of the University of Malaya and Dr. Wong Tin Wui of the Universiti Teknologi Malaysia and Dr. Joseph Brain of  Harvard University in a discussion about Malaysia’s major investment in nanomedicine treatment for lung diseases.

A Jan. 11, 2016 Malaysian Industry-Government Group for High Technology (MIGHT) news release on EurekAlert announces both the lung project (University of Malaya/Harvard University) and others under Malaysia’s NanoMITe (Malaysia Institute for Innovative Nanotechnology) banner,

Malaysian scientists are joining forces with Harvard University experts to help revolutionize the treatment of lung diseases — the delivery of nanomedicine deep into places otherwise impossible to reach.

Under a five-year memorandum of understanding between Harvard and the University of Malaya, Malaysian scientists will join a distinguished team seeking a safe, more effective way of tackling lung problems including chronic obstructive pulmonary disease (COPD), the progressive, irreversible obstruction of airways causing almost 1 in 10 deaths today.

Treatment of COPD and lung cancer commonly involves chemotherapeutics and corticosteroids misted into a fine spray and inhaled, enabling direct delivery to the lungs and quick medicinal effect. However, because the particles produced by today’s inhalers are large, most of the medicine is deposited in the upper respiratory tract.

The Harvard team, within the university’s T.H. Chan School of Public Health, is working on “smart” nanoparticles that deliver appropriate levels of diagnostic and therapeutic agents to the deepest, tiniest sacs of the lung, a process potentially assisted by the use of magnetic fields.

Malaysia’s role within the international collaboration: help ensure the safety and improve the effectiveness of nanomedicine, assessing how nanomedicine particles behave in the body, what attaches to them to form a coating, where the drug accumulates and how it interacts with target and non-target cells.

Led by Joseph Brain, the Cecil K. and Philip Drinker Professor of Environmental Physiology, the research draws on extensive expertise at Harvard in biokinetics — determining how to administer medicine to achieve the proper dosage to impact target cells and assessing the extent to which drug-loaded nanoparticles pass through biological barriers to different organs.

The studies also build on decades of experience studying the biology of macrophages — large, specialized cells that recognize, engulf and destroy target cells as part of the human immune system.

Manipulating immune cells represents an important strategy for treating lung diseases like COPD and lung cancer, as well as infectious diseases including tuberculosis and listeriosis.

Dr. Brain notes that every day humans breathe 20,000 litres of air loaded with bacteria and viruses, and that the world’s deadliest epidemic — an outbreak of airborne influenza in the 1920s — killed tens of millions.

Inhaled nanomedicine holds the promise of helping doctors prevent and treat such problems in future, reaching the target area more swiftly than if administered orally or even intravenously.

This is particularly true for lung cancer, says Dr. Brain. “Experiments have demonstrated that a drug dose administered directly to the respiratory tract achieves much higher local drug concentrations at the target site.”

COPD meanwhile affects over 235 million people worldwide and is on the rise, with 80% of cases caused by cigarette smoking. Exacerbated by poor air quality, COPD is expected to rise from 5th to 3rd place among humanity’s most lethal health problems by 2030.

“Nanotechnology is making a significant impact on healthcare by delivering improvements in disease diagnosis and monitoring, as well as enabling new approaches to regenerative medicine and drug delivery,” says Prof. Zakri Abdul Hamid, Science Advisor to the Prime Minister of Malaysia.

“Malaysia, through NanoMITe, is proud and excited to join the Harvard team and contribute to the creation of these life-giving innovations.”

While neither Dr. Abu Kasim nor Dr. Wong are included in the news release both are key members of the Malaysian team tasked to work on nanomedicines for lung disease. Dr. Abu Kasim is a professor of restorative dentistry at the University of Malaya and familiar with nanotechnology-enabled materials and nanoparticles through her work in that field. She is also the project lead for NanoMITe’s Project 4: Consequences of Smoking among the Malaysian Population. From the project webpage,

Smoking is a prevalent problem worldwide but especially so in Asia where nearly more than half of the world population reside. Smoking kills half of its users and despite the many documented harm to health is still a major problem. Globally six million lives are lost each year because of this addiction. This number is estimated to increase to ten million within the next two decades. Apart from the mortality, smokers are at increased risk of health morbidities of smoking which is a major risk factor for many non-communicable diseases (NCD) such as heart diseases, respiratory conditions and even mental health. Together, smoking reduces life expectancy 10-15 years compared to a non-smoker. Those with mental health lose double the years, 20 -25 years of their life as a result of their smoking. The current Malaysia death toll is at 10,000 lives per year due to smoking related health complications.

Although the health impact of smoking has been reported at length, this information is limited nationally. Lung cancer for example is closely linked to smoking, however, the study of the link between the two is lacking in Malaysia. Lung cancer particularly in Malaysia is also often diagnosed late, usually at stages 3 and 4. These stages of cancer are linked with a poorer prognosis. As a result to the harms to health either directly or indirectly, the World Health Organization (WHO) has introduced a legal treaty, the first, called the Framework Convention for Tobacco Control (FCTC). This treaty currently ratified by 174 countries was introduced in 2005 and consists of 38 FCTC Articles which are evidence based policies, known to assist member countries to reduce their smoking prevalence. Malaysia is an early signatory and early adopter of the MPOWER strategy which are major articles of the FCTC. Among them are education and information dissemination informing the dangers of smoking which can be done through awareness campaigns of advocacy using civil society groups. Most campaigns have focused on health harms with little mention non-health or environmental harm as a result of smoking. Therefore there is an opportunity to further develop this idea as a strong advocacy point towards a smoke-free generation in the near future

It is difficult impossible to recall any other nanomedicine initiative that has so thoroughly embedded prevention as part of its mandate. As Dr. Brain puts it, “Malaysia’s commitment to better health for everyone—sometimes, I’m jealous.”

Getting back to nanomedicine, it’s Dr. Wong, an associate professor in the school of pharmaceutics at Universiti Teknologi Malaysia (UTM), who is developing polymeric nanoparticles designed to carry medications into the lungs and Brain who will work on the best method of transport. From Dr. Brain’s webpage,

Dr. Brain’s research emphasizes responses to inhaled gases, particulates, and microbes. His studies extend from the deposition of inhaled particles in the respiratory tract to their clearance by respiratory defense mechanisms. Of particular interest is the role of lung macrophages; this resident cell keeps lung surfaces clean and sterile. Moreover, the lung macrophage is also a critical regulator of inflammatory and immune responses. The context of these studies on macrophages is the prevention and pathogenesis of environmental lung disease as well as respiratory infection.

His research has utilized magnetic particles in macrophages throughout the body as a non-invasive tool for measuring cell motility and the response of macrophages to various mediators and toxins. …

It was difficult to get any specifics about the proposed lung nanomedicine effort as it seems to be at a very early stage.

  • Malaysia through the Ministry of Higher Education with matching funds from the University of Malaya is funding this effort with 1M Ringgits ($300,00 USD) per year over five years for a total of 5M Ringgits ($1.5M USD)
  • A Malaysian researcher will be going to Harvard to collaborate directly with Dr. Brain and others on his team. The first will be Dr. Wong who will come to Harvard in June 2016 where he will work with his polymeric nanoparticles (vehicles for medications) and where Brain will examine transport strategies (aerosol, intrathecal administration, etc.) for those nanoparticle-bearing medications.
  • There will be a series of comparative studies of smoking in Malaysia and the US and other information efforts designed to support prevention strategies.

One last tidbit about research, Dr. Brain will be testing the nanoparticle-bearing medication once it has entered the lung using the ‘precision cut lung slices’ technique, as an alternative to some, if not all, in vivo testing.

Final comments

Nanomedicine is highly competitive and the Malaysians are interested in commercializing their efforts which according to Dr. Abu Kasim is one of the reasons they approached Harvard and Dr. Brain.

Should you find any errors please do let me know.

A bioinspired approach to self-healing materials

Scientists have been working to develop self-healing materials for a while now and a Jan. 8, 2016 news item on Nanowerk chronicles a relatively recent attempt,

Inspired by healing wounds in skin, a new approach protects and heals surfaces using a fluid secretion process. In response to damage, dispersed liquid-storage droplets are controllably secreted. The stored liquid replenishes the surface and completes the repair of the polymer in seconds to hours …

The fluid secretion approach to repair the material has also been demonstrated in fibers and microbeads. This bioinspired approach could be extended to create highly desired adaptive, resilient materials with possible uses in heat transfer, humidity control, slippery surfaces, and fluid delivery.

A December ??, 2015 US Department of Energy (DOE) news release, which originated the news item, expands on the theme,

A polymer that secretes stored liquid in response to damage has been designed and created to function as a self-healing material. While human-made material systems can trigger the release of stored contents, the ability to continuously self-adjust and monitor liquid supply in these compartments is a challenge. In contrast, biological systems manage complex protection and healing functions by having individual components work in concert to initiate and self-regulate a coordinated response. Inspired by biological wound-healing, this new process, developed by researchers at Harvard University, involves trapping and dispersing liquid-storage droplets within a reversibly crosslinked polymer gel network topped with a thin liquid overlayer. This novel approach allows storage of the liquid, yet is reconfigurable to induce finely controlled secretion in response to polymer damage. When the gel was damaged by slicing, the ruptured droplets in the immediate vicinity of the damage released oil and the gel network was squeezed. This squeezing allowed oil to be pushed out from neighboring droplets and the polymer network linkages to unzip and rezip rapidly, allowing just enough oil to flow to the damaged region. Healing occurred at ambient temperature within seconds to hours as fluid was secreted into the crack, severed polymer ends diffused across the gap, and new network linkages were created. Droplet-embedded polymers repaired faster or at lower temperatures than polymers without oil droplets. Also, the repaired droplet-embedded materials were much stronger than the repaired networks that did not contain the droplets. This dynamic liquid exchange to repair the material has also been demonstrated in other forms, showing the potential to extend this bioinspired approach for fabricating highly desired adaptive, resilient materials to a wide range of polymeric structures.

Here’s a link to and a citation for the paper,

Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing by Jiaxi Cui, Daniel Daniel, Alison Grinthal, Kaixiang Lin, & Joanna Aizenberg. Nature Materials 14,  790–795 (2015) doi:10.1038/nmat4325 Published online 22 June 2015

I’m not sure what occasioned a late push to promote this particular piece of research but if you are interested, the paper is behind a paywall.

Nanotechnology and cybersecurity risks

Gregory Carpenter has written a gripping (albeit somewhat exaggerated) piece for Signal, a publication of the  Armed Forces Communications and Electronics Association (AFCEA) about cybersecurity issues and  nanomedicine endeavours. From Carpenter’s Jan. 1, 2016 article titled, When Lifesaving Technology Can Kill; The Cyber Edge,

The exciting advent of nanotechnology that has inspired disruptive and lifesaving medical advances is plagued by cybersecurity issues that could result in the deaths of people that these very same breakthroughs seek to heal. Unfortunately, nanorobotic technology has suffered from the same security oversights that afflict most other research and development programs.

Nanorobots, or small machines [or nanobots[, are vulnerable to exploitation just like other devices.

At the moment, the issue of cybersecurity exploitation is secondary to making nanobots, or nanorobots, dependably functional. As far as I’m aware, there is no such nanobot. Even nanoparticles meant to function as packages for drug delivery have not been perfected (see one of the controversies with nanomedicine drug delivery described in my Nov. 26, 2015 posting).

That said, Carpenter’s point about cybersecurity is well taken since security features are often overlooked in new technology. For example, automated banking machines (ABMs) had woefully poor (inadequate, almost nonexistent) security when they were first introduced.

Carpenter outlines some of the problems that could occur, assuming some of the latest research could be reliably  brought to market,

The U.S. military has joined the fray of nanorobotic experimentation, embarking on revolutionary research that could lead to a range of discoveries, from unraveling the secrets of how brains function to figuring out how to permanently purge bad memories. Academia is making amazing advances as well. Harnessing progress by Harvard scientists to move nanorobots within humans, researchers at the University of Montreal, Polytechnique Montreal and Centre Hospitalier Universitaire Sainte-Justine are using mobile nanoparticles inside the human brain to open the blood-brain barrier, which protects the brain from toxins found in the circulatory system.

A different type of technology presents a risk similar to the nanoparticles scenario. A DARPA-funded program known as Restoring Active Memory (RAM) addresses post-traumatic stress disorder, attempting to overcome memory deficits by developing neuroprosthetics that bridge gaps in an injured brain. In short, scientists can wipe out a traumatic memory, and they hope to insert a new one—one the person has never actually experienced. Someone could relish the memory of a stroll along the French Riviera rather than a terrible firefight, even if he or she has never visited Europe.

As an individual receives a disruptive memory, a cyber criminal could manage to hack the controls. Breaches of the brain could become a reality, putting humans at risk of becoming zombie hosts [emphasis mine] for future virus deployments. …

At this point, the ‘zombie’ scenario Carpenter suggests seems a bit over-the-top but it does hearken to the roots of the zombie myth where the undead aren’t mindlessly searching for brains but are humans whose wills have been overcome. Mike Mariani in an Oct. 28, 2015 article for The Atlantic has presented a thought-provoking history of zombies,

… the zombie myth is far older and more rooted in history than the blinkered arc of American pop culture suggests. It first appeared in Haiti in the 17th and 18th centuries, when the country was known as Saint-Domingue and ruled by France, which hauled in African slaves to work on sugar plantations. Slavery in Saint-Domingue under the French was extremely brutal: Half of the slaves brought in from Africa were worked to death within a few years, which only led to the capture and import of more. In the hundreds of years since, the zombie myth has been widely appropriated by American pop culture in a way that whitewashes its origins—and turns the undead into a platform for escapist fantasy.

The original brains-eating fiend was a slave not to the flesh of others but to his own. The zombie archetype, as it appeared in Haiti and mirrored the inhumanity that existed there from 1625 to around 1800, was a projection of the African slaves’ relentless misery and subjugation. Haitian slaves believed that dying would release them back to lan guinée, literally Guinea, or Africa in general, a kind of afterlife where they could be free. Though suicide was common among slaves, those who took their own lives wouldn’t be allowed to return to lan guinée. Instead, they’d be condemned to skulk the Hispaniola plantations for eternity, an undead slave at once denied their own bodies and yet trapped inside them—a soulless zombie.

I recommend reading Mariani’s article although I do have one nit to pick. I can’t find a reference to brain-eating zombies until George Romero’s introduction of the concept in his movies. This Zombie Wikipedia entry seems to be in agreement with my understanding (if I’m wrong, please do let me know and, if possible, provide a link to the corrective text).

Getting back to Carpenter and cybersecurity with regard to nanomedicine, while his scenarios may seem a trifle extreme it’s precisely the kind of thinking you need when attempting to anticipate problems. I do wish he’d made clear that the technology still has a ways to go.

DARPA (US Defense Advanced Research Project Agency) ‘Atoms to Product’ program launched

It took over a year after announcing the ‘Atoms to Product’ program in 2014 for DARPA (US Defense Advanced Research Projects Agency) to select 10 proponents for three projects. Before moving onto the latest announcement, here’s a description of the ‘Atoms to Product’ program from its Aug. 27, 2014 announcement on Nanowerk,

Many common materials exhibit different and potentially useful characteristics when fabricated at extremely small scales—that is, at dimensions near the size of atoms, or a few ten-billionths of a meter. These “atomic scale” or “nanoscale” properties include quantized electrical characteristics, glueless adhesion, rapid temperature changes, and tunable light absorption and scattering that, if available in human-scale products and systems, could offer potentially revolutionary defense and commercial capabilities. Two as-yet insurmountable technical challenges, however, stand in the way: Lack of knowledge of how to retain nanoscale properties in materials at larger scales, and lack of assembly capabilities for items between nanoscale and 100 microns—slightly wider than a human hair.

DARPA has created the Atoms to Product (A2P) program to help overcome these challenges. The program seeks to develop enhanced technologies for assembling atomic-scale pieces. It also seeks to integrate these components into materials and systems from nanoscale up to product scale in ways that preserve and exploit distinctive nanoscale properties.

DARPA’s Atoms to Product (A2P) program seeks to develop enhanced technologies for assembling nanoscale items, and integrating these components into materials and systems from nanoscale up to product scale in ways that preserve and exploit distinctive nanoscale properties.

A Dec. 29, 2015 news item on Nanowerk features the latest about the project,

DARPA recently selected 10 performers to tackle this challenge: Zyvex Labs, Richardson, Texas; SRI, Menlo Park, California; Boston University, Boston, Massachusetts; University of Notre Dame, South Bend, Indiana; HRL Laboratories, Malibu, California; PARC, Palo Alto, California; Embody, Norfolk, Virginia; Voxtel, Beaverton, Oregon; Harvard University, Cambridge, Massachusetts; and Draper Laboratory, Cambridge, Massachusetts.

A Dec. 29, 2015 DARPA news release, which originated the news item, offers more information and an image illustrating the type of advances already made by one of the successful proponents,

DARPA recently launched its Atoms to Product (A2P) program, with the goal of developing technologies and processes to assemble nanometer-scale pieces—whose dimensions are near the size of atoms—into systems, components, or materials that are at least millimeter-scale in size. At the heart of that goal was a frustrating reality: Many common materials, when fabricated at nanometer-scale, exhibit unique and attractive “atomic-scale” behaviors including quantized current-voltage behavior, dramatically lower melting points and significantly higher specific heats—but they tend to lose these potentially beneficial traits when they are manufactured at larger “product-scale” dimensions, typically on the order of a few centimeters, for integration into devices and systems.

“The ability to assemble atomic-scale pieces into practical components and products is the key to unlocking the full potential of micromachines,” said John Main, DARPA program manager. “The DARPA Atoms to Product Program aims to bring the benefits of microelectronic-style miniaturization to systems and products that combine mechanical, electrical, and chemical processes.”

The program calls for closing the assembly gap in two steps: From atoms to microns and from microns to millimeters. Performers are tasked with addressing one or both of these steps and have been assigned to one of three working groups, each with a distinct focus area.

A2P

Image caption: Microscopic tools such as this nanoscale “atom writer” can be used to fabricate minuscule light-manipulating structures on surfaces. DARPA has selected 10 performers for its Atoms to Product (A2P) program whose goal is to develop technologies and processes to assemble nanometer-scale pieces—whose dimensions are near the size of atoms—into systems, components, or materials that are at least millimeter-scale in size. (Image credit: Boston University)

Here’s more about the projects and the performers (proponents) from the A2P performers page on the DARPA website,

Nanometer to Millimeter in a Single System – Embody, Draper and Voxtel

Current methods to treat ligament injuries in warfighters [also known as, soldiers]—which account for a significant portion of reported injuries—often fail to restore pre-injury performance, due to surgical complexities and an inadequate supply of donor tissue. Embody is developing reinforced collagen nanofibers that mimic natural ligaments and replicate the biological and biomechanical properties of native tissue. Embody aims to create a new standard of care and restore pre-injury performance for warfighters and sports injury patients at a 50% reduction compared to current costs.

Radio Frequency (RF) systems (e.g., cell phones, GPS) have performance limits due to alternating current loss. In lower frequency power systems this is addressed by braiding the wires, but this is not currently possibly in cell phones due to an inability to manufacture sufficiently small braided wires. Draper is developing submicron wires that can be braided using DNA self-assembly methods. If successful, portable RF systems will be more power efficient and able to send 10 times more information in a given channel.

For seamless control of structures, physics and surface chemistry—from the atomic-level to the meter-level—Voxtel Inc. and partner Oregon State University are developing an efficient, high-rate, fluid-based manufacturing process designed to imitate nature’s ability to manufacture complex multimaterial products across scales. Historically, challenges relating to the cost of atomic-level control, production speed, and printing capability have been effectively insurmountable. This team’s new process will combine synthesis and delivery of materials into a massively parallel inkjet operation that draws from nature to achieve a DNA-like mediated assembly. The goal is to assemble complex, 3-D multimaterial mixed organic and inorganic products quickly and cost-effectively—directly from atoms.

Optical Metamaterial Assembly – Boston University, University of Notre Dame, HRL and PARC.

Nanoscale devices have demonstrated nearly unlimited power and functionality, but there hasn’t been a general- purpose, high-volume, low-cost method for building them. Boston University is developing an atomic calligraphy technique that can spray paint atoms with nanometer precision to build tunable optical metamaterials for the photonic battlefield. If successful, this capability could enhance the survivability of a wide range of military platforms, providing advanced camouflage and other optical illusions in the visual range much as stealth technology has enabled in the radar range.

The University of Notre Dame is developing massively parallel nanomanufacturing strategies to overcome the requirement today that most optical metamaterials must be fabricated in “one-off” operations. The Notre Dame project aims to design and build optical metamaterials that can be reconfigured to rapidly provide on-demand, customized optical capabilities. The aim is to use holographic traps to produce optical “tiles” that can be assembled into a myriad of functional forms and further customized by single-atom electrochemistry. Integrating these materials on surfaces and within devices could provide both warfighters and platforms with transformational survivability.

HRL Laboratories is working on a fast, scalable and material-agnostic process for improving infrared (IR) reflectivity of materials. Current IR-reflective materials have limited use, because reflectivity is highly dependent on the specific angle at which light hits the material. HRL is developing a technique for allowing tailorable infrared reflectivity across a variety of materials. If successful, the process will enable manufacturable materials with up to 98% IR reflectivity at all incident angles.

PARC is working on building the first digital MicroAssembly Printer, where the “inks” are micrometer-size particles and the “image” outputs are centimeter-scale and larger assemblies. The goal is to print smart materials with the throughput and cost of laser printers, but with the precision and functionality of nanotechnology. If successful, the printer would enable the short-run production of large, engineered, customized microstructures, such as metamaterials with unique responses for secure communications, surveillance and electronic warfare.

Flexible, General Purpose Assembly – Zyvex, SRI, and Harvard.

Zyvex aims to create nano-functional micron-scale devices using customizable and scalable manufacturing that is top-down and atomically precise. These high-performance electronic, optical, and nano-mechanical components would be assembled by SRI micro-robots into fully-functional devices and sub-systems such as ultra-sensitive sensors for threat detection, quantum communication devices, and atomic clocks the size of a grain of sand.

SRI’s Levitated Microfactories will seek to combine the precision of MEMS [micro-electromechanical systems] flexures with the versatility and range of pick-and-place robots and the scalability of swarms [an idea Michael Crichton used in his 2002 novel Prey to induce horror] to assemble and electrically connect micron and millimeter components to build stronger materials, faster electronics, and better sensors.

Many high-impact, minimally invasive surgical techniques are currently performed only by elite surgeons due to the lack of tactile feedback at such small scales relative to what is experienced during conventional surgical procedures. Harvard is developing a new manufacturing paradigm for millimeter-scale surgical tools using low-cost 2D layer-by-layer processes and assembly by folding, resulting in arbitrarily complex meso-scale 3D devices. The goal is for these novel tools to restore the necessary tactile feedback and thereby nurture a new degree of dexterity to perform otherwise demanding micro- and minimally invasive surgeries, and thus expand the availability of life-saving procedures.

Sidebar

‘Sidebar’ is my way of indicating these comments have little to do with the matter at hand but could be interesting factoids for you.

First, Zyvex Labs was last mentioned here in a Sept. 10, 2014 posting titled: OCSiAL will not be acquiring Zyvex. Notice that this  announcement was made shortly after DARPA’s A2P program was announced and that OCSiAL is one of RUSNANO’s (a Russian funding agency focused on nanotechnology) portfolio companies (see my Oct. 23, 2015 posting for more).

HRL Laboratories, mentioned here in an April 19, 2012 posting mostly concerned with memristors (nanoscale devices that mimic neural or synaptic plasticity), has its roots in Howard Hughes’s research laboratories as noted in the posting. In 2012, HRL was involved in another DARPA project, SyNAPSE.

Finally and minimally, PARC also known as, Xerox PARC, was made famous by Steven Jobs and Steve Wozniak when they set up their own company (Apple) basing their products on innovations that PARC had rejected. There are other versions of the story and one by Malcolm Gladwell for the New Yorker May 16, 2011 issue which presents a more complicated and, at times, contradictory version of that particular ‘origins’ story.

Using scientific methods and technology to explore living systems as artistic subjects: bioart

There is a fascinating set of stories about bioart designed to whet your appetite for more (*) in a Nov. 23, 2015 Cell Press news release on EurekAlert (Note: A link has been removed),

Joe Davis is an artist who works not only with paints or pastels, but also with genes and bacteria. In 1986, he collaborated with geneticist Dan Boyd to encode a symbol for life and femininity into an E. coli bacterium. The piece, called Microvenus, was the first artwork to use the tools and techniques of molecular biology. Since then, bioart has become one of several contemporary art forms (including reclamation art and nanoart) that apply scientific methods and technology to explore living systems as artistic subjects. A review of the field, published November 23, can be found in Trends in Biotechnology.

Bioart ranges from bacterial manipulation to glowing rabbits, cellular sculptures, and–in the case of Australian-British artist Nina Sellars–documentation of an ear prosthetic that was implanted onto fellow artist Stelarc’s arm. In the pursuit of creating art, practitioners have generated tools and techniques that have aided researchers, while sometimes crossing into controversy, such as by releasing invasive species into the environment, blurring the lines between art and modern biology, raising philosophical, societal, and environmental issues that challenge scientific thinking.

“Most people don’t know that bioart exists, but it can enable scientists to produce new ideas and give us opportunities to look differently at problems,” says author Ali K. Yetisen, who works at Harvard Medical School and the Wellman Center for Photomedicine, Massachusetts General Hospital. “At the same time there’s been a lot of ethical and safety concerns happening around bioart and artists who wanted to get involved in the past have made mistakes.”

Here’s a sample of Joe Davis’s work,

 Caption This photograph shows polyptich paintings by Joe Davis of his 28-mer Microvenus DNA molecule (2006 Exhibition in Greece at Athens School of Fine Arts). Credit: Courtesy of Joe Davis

This photograph shows polyptich paintings by Joe Davis of his 28-mer Microvenus DNA molecule (2006 Exhibition in Greece at Athens School of Fine Arts). Credit: Courtesy of Joe Davis

The news release goes on to recount a brief history of bioart, which stretches back to 1928 and then further back into the 19th and 18th centuries,

In between experiments, Alexander Fleming would paint stick figures and landscapes on paper and in Petri dishes using bacteria. In 1928, after taking a brief hiatus from the lab, he noticed that portions of his “germ paintings,” had been killed. The culprit was a fungus, penicillin–a discovery that would revolutionize medicine for decades to come.

In 1938, photographer Edward Steichen used a chemical to genetically alter and produce interesting variations in flowering delphiniums. This chemical, colchicine, would later be used by horticulturalists to produce desirable mutations in crops and ornamental plants.

In the late 18th and early 19th centuries, the arts and sciences moved away from traditionally shared interests and formed secular divisions that persisted well into the 20th century. “Appearance of environmental art in the 1970s brought about renewed awareness of special relationships between art and the natural world,” Yetisen says.

To demonstrate how we change landscapes, American sculptor Robert Smithsonian paved a hillside with asphalt, while Bulgarian artist Christo Javacheffa (of Christo and Jeanne-Claude) surrounded resurfaced barrier islands with bright pink plastic.

These pieces could sometimes be destructive, however, such as in Ten Turtles Set Free by German-born Hans Haacke. To draw attention to the excesses of the pet trade, he released what he thought were endangered tortoises back to their natural habitat in France, but he inadvertently released the wrong subspecies, thus compromising the genetic lineages of the endangered tortoises as the two varieties began to mate.

By the late 1900s, technological advances began to draw artists’ attention to biology, and by the 2000s, it began to take shape as an artistic identity. Following Joe Davis’ transgenic Microvenus came a miniaturized leather jacket made of skin cells, part of the Tissue Culture & Art Project (initiated in 1996) by duo Oran Catts and Ionat Zurr. Other examples of bioart include: the use of mutant cacti to simulate appearance of human hair in the place of cactus spines by Laura Cinti of University College London’s C-Lab; modification of butterfly wings for artistic purposes by Marta de Menezes of Portugal; and photographs of amphibian deformation by American Brandon Ballengée.

“Bioart encourages discussions about societal, philosophical, and environmental issues and can help enhance public understanding of advances in biotechnology and genetic engineering,” says co-author Ahmet F. Coskun, who works in the Division of Chemistry and Chemical Engineering at California Institute of Technology.

Life as a Bioartist

Today, Joe Davis is a research affiliate at MIT Biology and “Artist-Scientist” at the George Church Laboratory at Harvard–a place that fosters creativity and technological development around genetic engineering and synthetic biology. “It’s Oz, pure and simple,” Davis says. “The total amount of resources in this environment and the minds that are accessible, it’s like I come to the city of Oz every day.”

But it’s not a one-way street. “My particular lab depends on thinking outside the box and not dismissing things because they sound like science fiction,” says [George M.] Church, who is also part of the Wyss Institute for Biologically Inspired Engineering. “Joe is terrific at keeping us flexible and nimble in that regard.”

For example, Davis is working with several members of the Church lab to perform metagenomics analyses of the dust that accumulates at the bottom of money-counting machines. Another project involves genetically engineering silk worms to spin metallic gold–an homage to the fairy tale of Rumpelstiltskin.

“I collaborate with many colleagues on projects that don’t necessarily have direct scientific results, but they’re excited to pursue these avenues of inquiry that they might not or would not look into ordinarily–they might try to hide it, but a lot of scientists have poetic souls,” Davis says. “Art, like science, has to describe the whole word and you can’t describe something you’re basically clueless about. The most exciting part of these activities is satiating overwhelming curiosity about everything around you.”

The number of bioartists is still small, Davis says, partly because of a lack of federal funding of the arts in general. Accessibility to the types of equipment bioartists want to experiment with can also be an issue. While Davis has partnered with labs over the past few decades, other artists affiliate themselves with community access laboratories that are run by do-it-yourself biologists. One way that universities can help is to create departmental-wide positions for bioartists to collaborate with scientists.

“In the past, there have been artists affiliated with departments in a very utilitarian way to produce figures or illustrations,” Church says. “Having someone like Joe stimulates our lab to come together in new ways and if we had more bioartists, I think thinking out of the box would be a more common thing.”

“In the era of genetic engineering, bioart will gain new meanings and annotations in social and scientific contexts,” says Yetisen. “Bioartists will surely take up new roles in science laboratories, but this will be subject to ethical criticism and controversy as a matter of course.”

Here’s a link to and a citation for the paper,

Bioart by Ali K. Yetisen, Joe Davis, Ahmet F. Coskun, George M. Church, Seok Hyun. Trends in Biotechnology,  DOI: http://dx.doi.org/10.1016/j.tibtech.2015.09.011 Published Online: November 23, 2015

This paper appears to be open access.

*Removed the word ‘featured’ on Dec. 1, 2015 at 1030 hours PDT.

North Carolina universities go beyond organ-on-a-chip

The researchers in the North Carolina universities involved in this project have high hopes according to an Oct. 9, 2015 news item on Nanowerk,

A team of researchers from the University of North Carolina at Chapel Hill and NC State University has received a $5.3 million, five-year Transformative Research (R01) Award from the National Institutes of Health (NIH) to create fully functioning versions of the human gut that fit on a chip the size of a dime.

Such “organs-on-a-chip” have become vital for biomedical research, as researchers seek alternatives to animal models for drug discovery and testing. The new grant will fund a technology that represents a major step forward for the field, overcoming limitations that have mired other efforts.

The technology will use primary cells derived directly from human biopsies, which are known to provide more relevant results than the immortalized cell lines used in current approaches. In addition, the device will sculpt these cells into the sophisticated architecture of the gut, rather than the disorganized ball of cells that are created in other miniature organ systems.

“We are building a device that goes far beyond the organ-on-a-chip,” said Nancy L. Allbritton, MD, PhD, professor and chair of the UNC-NC State joint department of biomedical engineering and one of four principle investigators on the NIH grant. “We call it a ‘simulacrum,’ [emphasis mine] a term used in science fiction to describe a duplicate. The idea is to create something that is indistinguishable from your own gut.”

I’ve come across the term ‘simulacrum’ in relation to philosophy so it’s a bit of a surprise to find it in a news release about an organ-on-a-chip where it seems to have been redefined somewhat. Here’s more from the Simulacrum entry on Wikipedia (Note: Links have been removed),

A simulacrum (plural: simulacra from Latin: simulacrum, which means “likeness, similarity”), is a representation or imitation of a person or thing.[1] The word was first recorded in the English language in the late 16th century, used to describe a representation, such as a statue or a painting, especially of a god. By the late 19th century, it had gathered a secondary association of inferiority: an image without the substance or qualities of the original.[2] Philosopher Fredric Jameson offers photorealism as an example of artistic simulacrum, where a painting is sometimes created by copying a photograph that is itself a copy of the real.[3] Other art forms that play with simulacra include trompe-l’œil,[4] pop art, Italian neorealism, and French New Wave.[3]

Philosophy

The simulacrum has long been of interest to philosophers. In his Sophist, Plato speaks of two kinds of image making. The first is a faithful reproduction, attempted to copy precisely the original. The second is intentionally distorted in order to make the copy appear correct to viewers. He gives the example of Greek statuary, which was crafted larger on the top than on the bottom so that viewers on the ground would see it correctly. If they could view it in scale, they would realize it was malformed. This example from the visual arts serves as a metaphor for the philosophical arts and the tendency of some philosophers to distort truth so that it appears accurate unless viewed from the proper angle.[5] Nietzsche addresses the concept of simulacrum (but does not use the term) in the Twilight of the Idols, suggesting that most philosophers, by ignoring the reliable input of their senses and resorting to the constructs of language and reason, arrive at a distorted copy of reality.[6]

Postmodernist French social theorist Jean Baudrillard argues that a simulacrum is not a copy of the real, but becomes truth in its own right: the hyperreal. Where Plato saw two types of representation—faithful and intentionally distorted (simulacrum)—Baudrillard sees four: (1) basic reflection of reality; (2) perversion of reality; (3) pretence of reality (where there is no model); and (4) simulacrum, which “bears no relation to any reality whatsoever”.[7] In Baudrillard’s concept, like Nietzsche’s, simulacra are perceived as negative, but another modern philosopher who addressed the topic, Gilles Deleuze, takes a different view, seeing simulacra as the avenue by which an accepted ideal or “privileged position” could be “challenged and overturned”.[8] Deleuze defines simulacra as “those systems in which different relates to different by means of difference itself. What is essential is that we find in these systems no prior identity, no internal resemblance”.[9]

Getting back to the proposed research, an Oct. (?), 2015 University of North Carolina news release, which originated the news item, describes the proposed work in more detail,

Allbritton is an expert at microfabrication and microengineering. Also on the team are intestinal stem cell expert Scott T. Magness, associate professor of medicine, biomedical engineering, and cell and molecular physiology in the UNC School of Medicine; microbiome expert Scott Bultman, associate professor of genetics in the UNC School of Medicine; and bioinformatics expert Shawn Gomez, associate professor of biomedical engineering in UNC’s College of Arts and Sciences and NC State.

The impetus for the “organ-on-chip” movement comes largely from the failings of the pharmaceutical industry. For just a single drug to go through the discovery, testing, and approval process can take as many as 15 years and as much as $5 billion dollars. Animal models are expensive to work with and often don’t respond to drugs and diseases the same way humans do. Human cells grown in flat sheets on Petri dishes are also a poor proxy. Three-dimensional “organoids” are an improvement, but these hollow balls are made of a mishmash of cells that doesn’t accurately mimic the structure and function of the real organ.

Basically, the human gut is a 30-foot long hollow tube made up of a continuous single-layer of specialized cells. Regenerative stem cells reside deep inside millions of small pits or “crypts” along the tube, and mature differentiated cells are linked to the pits and live further out toward the surface. The gut also contains trillions of microbes, which are estimated to outnumber human cells by ten to one. These diverse microbial communities – collectively known as the microbiota – process toxins and pharmaceuticals, stimulate immunity, and even release hormones to impact behavior.

To create a dime-sized version of this complex microenvironment, the UNC-NC State team borrowed fabrication technologies from the electronics and microfluidics world. The device is composed of a polymer base containing an array of imprinted or shaped “hydrogels,” a mesh of molecules that can absorb water like a sponge. These hydrogels are specifically engineered to provide the structural support and biochemical cues for growing cells from the gut. Plugged into the device will be various kinds of plumbing that bring in chemicals, fluids, and gases to provide cues that tell the cells how and where to differentiate and grow. For example, the researchers will engineer a steep oxygen gradient into the device that will enable oxygen-loving human cells and anaerobic microbes to coexist in close proximity.

“The underlying concept – to simply grow a piece of human tissue in a dish – doesn’t seem that groundbreaking,” said Magness. “We have been doing that for a long time with cancer cells, but those efforts do not replicate human physiology. Using native stem cells from the small intestine or colon, we can now develop gut tissue layers in a dish that contains stem cells and all the differentiated cells of the gut. That is the thing stem cell biologists and engineers have been shooting for, to make real tissue behave properly in a dish to create better models for drug screening and cell-based therapies. With this work, we made a big leap toward that goal.”

Right now, the team has a working prototype that can physically and chemically guide mouse intestinal stem cells into the appropriate structure and function of the gut. For several years, Magness has been isolating and banking human stem cells from samples from patients undergoing routine colonoscopies at UNC Hospitals.

As part of the grant, he will work with the rest of the team to apply these stem cells to the new device and create “simulacra” that are representative of each patient’s individual gut. The approach will enable researchers to explore in a personalized way how both the human and microbial cells of the gut behave during healthy and diseased states.

“Having a system like this will advance microbiota research tremendously,” said Bultman. “Right now microbiota studies involve taking samples, doing sequencing, and then compiling an inventory of all the microbes in the disease cases and healthy controls. These studies just draw associations, so it is difficult to glean cause and effect. This device will enable us to probe the microbiota, and gain a better understanding of whether changes in these microbial communities are the cause or the consequence of disease.”

I wish them good luck with their work and to end on another interesting note, the concept of organs-on-a-chip won a design award. From a June 22, 2015 article by Oliver Wainwright for the Guardian (Note: Links have been removed),

Meet the Lung-on-a-chip, a simulation of the biological processes inside the human lung, developed by the Wyss Institute for Biologically Inspired Engineering at Harvard University – and now crowned Design of the Year by London’s Design Museum.

Lined with living human cells, the “organs-on-chips” mimic the tissue structures and mechanical motions of human organs, promising to accelerate drug discovery, decrease development costs and potentially usher in a future of personalised medicine.

“This is the epitome of design innovation,” says Paola Antonelli, design curator at New York’s Museum of Modern Art [MOMA], who nominated the project for the award and recently acquired organs-on-chips for MoMA’s permanent collection. “Removing some of the pitfalls of human and animal testing means, theoretically, that drug trials could be conducted faster and their viable results disseminated more quickly.”

Whodathunkit? (Tor those unfamiliar with slang written in this form: Who would have thought it?)

A fatigue-free stretchable conductor for foldable electronics

There’s been a lot of talk about foldable, stretchable, and/or bendable electronics, which is exciting in itself but I find this work on developing a fatigue-free conductor particularly intriguing. After all, who hasn’t purchased something that stretches, folds, etc. only to find that it becomes ‘fatigued’ and is now ‘stretched out’.

A Sept. 23, 2015 news item on Azonano describes the new conductors,

Researchers have discovered a new stretchable, transparent conductor that can be folded or stretched and released, resulting in a large curvature or a significant strain, at least 10,000 times without showing signs of fatigue.

This is a crucial step in creating a new generation of foldable electronics – think a flat-screen television that can be rolled up for easy portability – and implantable medical devices. The work, published Monday [Sept. 21, 2015] in the Proceedings of the National Academy of Sciences, pairs gold nanomesh with a stretchable substrate made with polydimethylsiloxane, or PDMS.

The research is the result of an international collaboration including the University of Houston (US), Harvard University (US), Methodist Research Institute (US), Zhengzhou University (China), Lawrence Berkeley National Laboratory (LBNL; US).

A Sept. 22, 2015 University of Houston news release by Jeannie Kever, which originated the news item, describes this -fatigue-free material in more detail,

The substrate is stretched before the gold nanomesh is placed on it – a process known as “prestretching” – and the material showed no sign of fatigue when cyclically stretched to a strain of more than 50 percent.

The gold nanomesh also proved conducive to cell growth, indicating it is a good material for implantable medical devices.

Fatigue is a common problem for researchers trying to develop a flexible, transparent conductor, making many materials that have good electrical conductivity, flexibility and transparency – all three are needed for foldable electronics – wear out too quickly to be practical, said Zhifeng Ren, a physicist at the University of Houston and principal investigator at the Texas Center for Superconductivity, who was the lead author for the paper.

The new material, produced by grain boundary lithography, solves that problem, he said.

In addition to Ren, other researchers on the project included Chuan Fei Guo and Ching-Wu “Paul” Chu, both from UH; Zhigang Suo, Qihan Liu and Yecheng Wang, all from Harvard University, and Guohui Wang and Zhengzheng Shi, both from the Houston Methodist Research Institute.

In materials science, “fatigue” is used to describe the structural damage to a material caused by repeated movement or pressure, known as “strain cycling.” Bend a material enough times, and it becomes damaged or breaks.    That means the materials aren’t durable enough for consumer electronics or biomedical devices.

“Metallic materials often exhibit high cycle fatigue, and fatigue has been a deadly disease for metals,” the researchers wrote.

“We weaken the constraint of the substrate by making the interface between the Au (gold) nanomesh and PDMS slippery, and expect the Au nanomesh to achieve superstretchability and high fatigue resistance,” they wrote in the paper. “Free of fatigue here means that both the structure and the resistance do not change or have little change after many strain cycles.”

As a result, they reported, “the Au nanomesh does not exhibit strain fatigue when it is stretched to 50 percent for 10,000 cycles.”

Many applications require a less dramatic stretch – and many materials break with far less stretching – so the combination of a sufficiently large range for stretching and the ability to avoid fatigue over thousands of cycles indicates a material that would remain productive over a long period of time, Ren said.

The grain boundary lithography involved a bilayer lift-off metallization process, which included an indium oxide mask layer and a silicon oxide sacrificial layer and offers good control over the dimensions of the mesh structure.

The researchers used mouse embryonic fibroblast cells to determine biocompatibility; that, along with the fact that the stretchability of gold nanomesh on a slippery substrate resembles the bioenvironment of tissue or organ surfaces, suggest the nanomesh “might be implanted in the body as a pacemaker electrode, a connection to nerve endings or the central nervous system, a beating heart, and so on,” they wrote.

Here’s a link to and citation for the paper,

Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes by Chuan Fei Guo, Qihan Liu, Guohui Wang, Yecheng Wang, Zhengzheng Shi, Zhigang Suo, Ching-Wu Chu, and Zhifeng Ren. PNAS (Proceedings of the National Academy of Sciences)  doi: 10.1073/pnas.1516873112 Published online Sept. 21, 2015

This paper appears to be open access.

$81M for US National Nanotechnology Coordinated Infrastructure (NNCI)

Academics, small business, and industry researchers are the big winners in a US National Science Foundation bonanza according to a Sept. 16, 2015 news item on Nanowerk,

To advance research in nanoscale science, engineering and technology, the National Science Foundation (NSF) will provide a total of $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI sites will provide researchers from academia, government, and companies large and small with access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering and technology.

A Sept. 16, 2015 NSF news release provides a brief history of US nanotechnology infrastructures and describes this latest effort in slightly more detail (Note: Links have been removed),

The NNCI framework builds on the National Nanotechnology Infrastructure Network (NNIN), which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

“NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said Pramod Khargonekar, assistant director for engineering. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

The awards are up to five years and range from $500,000 to $1.6 million each per year. Nine of the sites have at least one regional partner institution. These 16 sites are located in 15 states and involve 27 universities across the nation.

Through a fiscal year 2016 competition, one of the newly awarded sites will be chosen to coordinate the facilities. This coordinating office will enhance the sites’ impact as a national nanotechnology infrastructure and establish a web portal to link the individual facilities’ websites to provide a unified entry point to the user community of overall capabilities, tools and instrumentation. The office will also help to coordinate and disseminate best practices for national-level education and outreach programs across sites.

New NNCI awards:

Mid-Atlantic Nanotechnology Hub for Research, Education and Innovation, University of Pennsylvania with partner Community College of Philadelphia, principal investigator (PI): Mark Allen
Texas Nanofabrication Facility, University of Texas at Austin, PI: Sanjay Banerjee

Northwest Nanotechnology Infrastructure, University of Washington with partner Oregon State University, PI: Karl Bohringer

Southeastern Nanotechnology Infrastructure Corridor, Georgia Institute of Technology with partners North Carolina A&T State University and University of North Carolina-Greensboro, PI: Oliver Brand

Midwest Nano Infrastructure Corridor, University of  Minnesota Twin Cities with partner North Dakota State University, PI: Stephen Campbell

Montana Nanotechnology Facility, Montana State University with partner Carlton College, PI: David Dickensheets
Soft and Hybrid Nanotechnology Experimental Resource,

Northwestern University with partner University of Chicago, PI: Vinayak Dravid

The Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Polytechnic Institute and State University, PI: Michael Hochella

North Carolina Research Triangle Nanotechnology Network, North Carolina State University with partners Duke University and University of North Carolina-Chapel Hill, PI: Jacob Jones

San Diego Nanotechnology Infrastructure, University of California, San Diego, PI: Yu-Hwa Lo

Stanford Site, Stanford University, PI: Kathryn Moler

Cornell Nanoscale Science and Technology Facility, Cornell University, PI: Daniel Ralph

Nebraska Nanoscale Facility, University of Nebraska-Lincoln, PI: David Sellmyer

Nanotechnology Collaborative Infrastructure Southwest, Arizona State University with partners Maricopa County Community College District and Science Foundation Arizona, PI: Trevor Thornton

The Kentucky Multi-scale Manufacturing and Nano Integration Node, University of Louisville with partner University of Kentucky, PI: Kevin Walsh

The Center for Nanoscale Systems at Harvard University, Harvard University, PI: Robert Westervelt

The universities are trumpeting this latest nanotechnology funding,

NSF-funded network set to help businesses, educators pursue nanotechnology innovation (North Carolina State University, Duke University, and University of North Carolina at Chapel Hill)

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network

ASU [Arizona State University] chosen to lead national nanotechnology site

UChicago, Northwestern awarded $5 million nanotechnology infrastructure grant

That is a lot of excitement.