Tag Archives: Hebrew University of Jerusalem

Talking about brains in Vancouver, Canada

I have two items, one featuring past events and one featuring an upcoming January 2019 event.

Brain Talks

The Brain Talks series folks featuring a bunch of Dept. of Psychiatry types and their ilk at the School of Medicine at the University of British Columbia sent me a December 21, 2018 announcement (via email) about videos featuring past talks,

Haven’t been able to make one of the last severals BrainTalks? Luckily,
we’ve been filming!


Luckily, we’ve been filming the recent talks and several are now
accessible! Follow our Facebook page @UBCBraintalks to stay up-to-date
with the most recent videos. Our October series on Epigenetics and Early
Life Experiences is now live.

Otherwise, video content will be uploaded to our website at
braintalks.ubc.ca as made available, under the ‘past events’ tab.

Event announcements for 2019 coming soon!

Before leaping off to the video of past events (A Christmas Carol, anyone?), here’s more about Brain Talks from their homepage,

BrainTalks is a series of talks inviting you to contemplate emerging research about the brain. Researchers studying the brain, from various disciplines including psychiatry, neuroscience, neuroimaging, and neurology, gather to discuss current leading edge topics on the mind.

As an audience member, you join the discussion at the end of the talk, both in the presence of the entire audience, and with an opportunity afterwards to talk with the speaker more informally in a catered networking session. The talks also serve as a connecting place for those interested in similar topics, potentially launching new endeavours or simply connecting people in discussions on how to approach their research, their knowledge, or their clinical practice.

For the general public, these talks serve as a channel where by knowledge usually sequestered in inaccessible journals or university classrooms, is now available, potentially allowing people to better understand their brains and minds, how they work, and how to optimize brain health.

Here’s a partial list of what you’ll find on the past events video page,

Trauma Recovery and the Nervous System
… Leslie Wilkin, MSW – The Importance of Engaging Social-Relational Systems in Trauma Treatment Edward Dangerfield – Trauma and Subconscious Breathing Patterns November 27, 2018 Speakers: Dr. Lynn Alden // Current Treatment Perspectives of PTSD PTSD has been described as a […

How to Prevent Burnout
… Dr. Maia Love – Preventing Burnout Dr. Marlon Danilewitz – Burnout in Health Care Professionals Speakers: Dr. Maia Love – Burnout prevention Dr. Marlon Danilewitz – Burnout in Health Care Professionals Tuesday, April 24th at 6pm at Paetzold Auditorium, VGH

Epigenetics and Early Life Experiences
… Dr. Michael Kobor – Epigenetic Consequences for Chronic Disease and Mental Health Dr. Liisa Galea – Maternal Adversity: different effects on sons and daughters Dr. Adele Diamond – Adverse Childhood Experiences and the Brain October 22, 2018 Speakers: Dr. Michael […

Pain: The Mind Body Connection
Mar 24, 2016 @ 6pm Speakers: Dr Tim Oberlander, Dr Theresa Newlove, Dr Elizabeth Stanford, & Dr Murat Aydede

Enjoy these videos and more here

Shaping the brain

Israeli research Amir Amedi is coming to town for a Wednesday, January 16, 2019 talk according to a poster on the Congregation Schara Tzedeck website,

I found a little more information about Amedi on his Hebrew University of Jerusalem profile page,

Short bio sketch:

Amir is an internationally acclaimed brain scientist with 15 years of experience in the field of brain plasticity and multisensory integration. He has a particular interest in visual rehabilitation. He is an Associate Professor at the Department of Medical Neurobiology at the Hebrew University and the ELSC brain center, He is an Adjoint research Professor in the Sorbonne Universités UPMC Univ Paris 06, Institut de la Vision. He holds a PhD in Computational Neuroscience (ICNC, Hebrew University) and Postdoctoral and Instructor of Neurology (Harvard Medical School). He won several international awards and fellowships such as The Krill Prize for Excellence in Scientific Research, the Wolf Foundation (2011), The international Human Frontiers Science Program Organization Post docatoral fellowship and later a Career Development award (2004, 2009), the JSMF Scholar Award in Understanding Human Cognition (2011),  and was recently selected as a European Research Council (ERC) fellow (2013).

If you want to get a sense of what type of speaker he is, Amedi’s profile page also hosts his (circa 2012) TED X jerusalem talk. Enjoy!

Israeli cannabis-based nutraceutical to be sold in US

It seems the US company, Ananda Scientific [AS], is licensing a technology from Israeli company, Lyotropic Delivery Systems (LDS) Biotech, and they’ve [AS] contributed to developing  a new cannabinoid-based nutraceutical, which will be hitting US store shelves in the foreseeable future. Here’s more from a Dec. 5, 2016 article by

Sales based on Israeli startup Lyotropic Delivery Systems (LDS) Biotech‘s nanotechnology have started in the US. The commercial launch of its cannabis-derived compound, which aims to relieve inflammation and pain, was announced earlier this month by LDS and US based company Ananda Scientific at a marijuana business conference [Marijuana Business Conference & Expo] held in Las Vegas.

LDS’s new cannabis-based technology increases the amount of cannabidiol compound (CBD) absorbed into the bloodstream and is more effective than other available solutions, without a narcotic effect, the company said.

LDS and Ananda Scientific, a privately held Delaware corporation that produces and markets cannabis based products, entered into a licensing agreement in 2015. As part of the accord Ananda gained rights to LDS’s cannabinoid drug delivery nanotechnology for the development of cannabidiol (CBD)-based oral products. Ananda Scientific said it expects the sales of the new product to reach millions of dollars in the US alone within the first year.

The products will be sold over the counter in the US as they are marketed as a nutraceutical product — derived from food sources with extra health benefits — and not as a medication. They are based on a technology developed by Professor Nissim Garti from the Hebrew University of Jerusalem and licensed to LDS by Yissum, the technology transfer company of the Hebrew University.

CBD is a non-psychoactive antioxidant extracted from the cannabis plant that is rapidly gaining importance due to its numerous benefits to humans’ overall well-being. Unlike THC [tetrahydrocannabinol], which is the part of the cannabis leaf that makes you high, CBD is a nontoxic, anti-inflammatory substance that is very well tolerated by the body with few side effects, researchers say.

“We have developed nano-droplets that absorb on their interface only the CBD compound from the cannabis, and not the THC,” said Garti in a phone interview. “Unlike other CBD formulations that are available on the market and are dispersed in oil, our product is better and more quickly absorbed by the body. Our CBD formulation is also protected from being transformed, after it is ingested, into THC which is a risk factor in other existing products.”

The company said its nano-formulations can remain stable on shelves for long periods of time without release or decomposition of the bioactive material. The product is sold in a variety of liquid forms and can be dissolved into water or taken in drops under the tongue, Garti said.

Over-the-counter cannabis products are not yet permitted for sale in Israel.

Typically, when taken orally, the user does not generally benefit from the full effect of CBD: while in the gastrointestinal tract the compound transforms into THC, is destroyed during digestion, or fails to reach the bloodstream for other reasons. Thus, only a fraction of the ingested CBD yields any effect. In contrast, CBD coupled with LDS technology is not degraded in the gastrointestinal tract, and the nanotechnology enables swift absorption and greatly enhances the transport of CBD to the bloodstream and then to relevant sites in the body where it can take effect, Garti said.

For those interested in market sizes and other business details, I recommend reading Solomon’s article in its entirety.

You can find Lyotropic Delivery Systems (LDS) Biotech here and  Ananda Scientific here.

Nanotechnology delivery system for skin disease therapies

A Feb. 29, 2016 news item on ScienceDaily announces a new development concerning free radicals that may be helpful with skin diseases and pathologies,

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body’s natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders.

A Feb. 29, 2016 Hebrew University of Jerusalem press release on EurekAlert, which originated the news item, expands on the theme,

The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) – oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA.

In the skin – the largest organ of the body – an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress.

The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion – Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance – a gentle equilibrium between Reactive Oxygen Species and their detoxification.

“The approach of using the body’s own defense system is very effective. We showed that activation of the body’s defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure,” said Hebrew University researcher Maya Ben-Yehuda Greenwald.

Ben-Yehuda Greenwald showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

“Currently, there are many scientific studies supporting the activation of the body’s defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so,” Ben-Yehuda Greenwald said.

Production of antioxidant enzymes in the body is signaled in the DNA by activation of Nrf2 – a powerful protein that exists in every cell in our body. This Nrf2 cellular-protective signaling pathway is a major intersection of many other signaling pathways affecting each other and determining cell functionality and fate. Nrf2 is capable of coordinating the cellular response to internal as well as external stressors by tight regulation of phase-II protective enzymes, such as the antioxidant enzymes.

Ben-Yehuda Greenwald has also discovered a new family of compounds capable of activating the Nrf2 pathway. Moreover, by incorporating them into the unique delivery system she has developed, she managed to efficiently stimulate the activation of the Nrf2 pathway and mimic the activity of the body’s’ natural way of coping with a variety of stress conditions.

“The formula we have created could be used in topical medication for treating skin conditions. Our formula could be used both as preventive means and for treatment of various skin conditions, such as infections, over-exposure to UV irradiation, inflammatory conditions, and also internal disease,” she said.

While the researchers focused on the skin, the formulation could prove to be effective in enhancing the body’s natural protection against the damaging effects of ROS in other parts of the body, such as inflammation in cardiovascular diseases, heart attack, cancer, multiple sclerosis and Alzheimer’s.

Here’s an image provided by Ben-Yehuda Greenwald illustrating the team’s work,

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Here’s a link to and a citation for the paper,

Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System by Maya Ben-Yehuda Greenwald, Shmuel Ben-Sasson, Havazelet Bianco-Peled, and Ron Kohen. Cosmetics 2016, 3(1), 1; doi:10.3390/cosmetics3010001 Published: 15 January 2016

This paper appears to be open access.

Blue Brain Project builds a digital piece of brain

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Here’s more *about this virtual brain slice* from an Oct. 8, 2015 Cell (magazine) news release on EurekAlert,

If you want to learn how something works, one strategy is to take it apart and put it back together again [also known as reverse engineering]. For 10 years, a global initiative called the Blue Brain Project–hosted at the Ecole Polytechnique Federale de Lausanne (EPFL)–has been attempting to do this digitally with a section of juvenile rat brain. The project presents a first draft of this reconstruction, which contains over 31,000 neurons, 55 layers of cells, and 207 different neuron subtypes, on October 8 [2015] in Cell.

Heroic efforts are currently being made to define all the different types of neurons in the brain, to measure their electrical firing properties, and to map out the circuits that connect them to one another. These painstaking efforts are giving us a glimpse into the building blocks and logic of brain wiring. However, getting a full, high-resolution picture of all the features and activity of the neurons within a brain region and the circuit-level behaviors of these neurons is a major challenge.

Henry Markram and colleagues have taken an engineering approach to this question by digitally reconstructing a slice of the neocortex, an area of the brain that has benefitted from extensive characterization. Using this wealth of data, they built a virtual brain slice representing the different neuron types present in this region and the key features controlling their firing and, most notably, modeling their connectivity, including nearly 40 million synapses and 2,000 connections between each brain cell type.

“The reconstruction required an enormous number of experiments,” says Markram, of the EPFL. “It paves the way for predicting the location, numbers, and even the amount of ion currents flowing through all 40 million synapses.”

Once the reconstruction was complete, the investigators used powerful supercomputers to simulate the behavior of neurons under different conditions. Remarkably, the researchers found that, by slightly adjusting just one parameter, the level of calcium ions, they could produce broader patterns of circuit-level activity that could not be predicted based on features of the individual neurons. For instance, slow synchronous waves of neuronal activity, which have been observed in the brain during sleep, were triggered in their simulations, suggesting that neural circuits may be able to switch into different “states” that could underlie important behaviors.

“An analogy would be a computer processor that can reconfigure to focus on certain tasks,” Markram says. “The experiments suggest the existence of a spectrum of states, so this raises new types of questions, such as ‘what if you’re stuck in the wrong state?'” For instance, Markram suggests that the findings may open up new avenues for explaining how initiating the fight-or-flight response through the adrenocorticotropic hormone yields tunnel vision and aggression.

The Blue Brain Project researchers plan to continue exploring the state-dependent computational theory while improving the model they’ve built. All of the results to date are now freely available to the scientific community at https://bbp.epfl.ch/nmc-portal.

An Oct. 8, 2015 Hebrew University of Jerusalem press release on the Canadian Friends of the Hebrew University of Jerusalem website provides more detail,

Published by the renowned journal Cell, the paper is the result of a massive effort by 82 scientists and engineers at EPFL and at institutions in Israel, Spain, Hungary, USA, China, Sweden, and the UK. It represents the culmination of 20 years of biological experimentation that generated the core dataset, and 10 years of computational science work that developed the algorithms and built the software ecosystem required to digitally reconstruct and simulate the tissue.

The Hebrew University of Jerusalem’s Prof. Idan Segev, a senior author of the research paper, said: “With the Blue Brain Project, we are creating a digital reconstruction of the brain and using supercomputer simulations of its electrical behavior to reveal a variety of brain states. This allows us to examine brain phenomena within a purely digital environment and conduct experiments previously only possible using biological tissue. The insights we gather from these experiments will help us to understand normal and abnormal brain states, and in the future may have the potential to help us develop new avenues for treating brain disorders.”

Segev, a member of the Hebrew University’s Edmond and Lily Safra Center for Brain Sciences and director of the university’s Department of Neurobiology, sees the paper as building on the pioneering work of the Spanish anatomist Ramon y Cajal from more than 100 years ago: “Ramon y Cajal began drawing every type of neuron in the brain by hand. He even drew in arrows to describe how he thought the information was flowing from one neuron to the next. Today, we are doing what Cajal would be doing with the tools of the day: building a digital representation of the neurons and synapses, and simulating the flow of information between neurons on supercomputers. Furthermore, the digitization of the tissue is open to the community and allows the data and the models to be preserved and reused for future generations.”

While a long way from digitizing the whole brain, the study demonstrates that it is feasible to digitally reconstruct and simulate brain tissue, and most importantly, to reveal novel insights into the brain’s functioning. Simulating the emergent electrical behavior of this virtual tissue on supercomputers reproduced a range of previous observations made in experiments on the brain, validating its biological accuracy and providing new insights into the functioning of the neocortex. This is a first step and a significant contribution to Europe’s Human Brain Project, which Henry Markram founded, and where EPFL is the coordinating partner.

Cell has made a video abstract available (it can be found with the Hebrew University of Jerusalem press release)

Here’s a link to and a citation for the paper,

Reconstruction and Simulation of Neocortical Microcircuitry by Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann, Marwan Abdellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Guy Antoine Atenekeng Kahou, Thomas K. Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda, Giuseppe Chindemi, Jean-Denis Courcol, Fabien Delalondre, Vincent Delattre, Shaul Druckmann, Raphael Dumusc, James Dynes, Stefan Eilemann, Eyal Gal, Michael Emiel Gevaert, Jean-Pierre Ghobril, Albert Gidon, Joe W. Graham, Anirudh Gupta, Valentin Haenel, Etay Hay, Thomas Heinis, Juan B. Hernando, Michael Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges Khazen, Yihwa Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien Lasserre, Jean-Vincent Le Bé, Bruno R.C. Magalhães, Angel Merchán-Pérez, Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto Muñoz-Céspedes, Shruti Muralidhar, Keerthan Muthurasa, Daniel Nachbaur, Taylor H. Newton, Max Nolte, Aleksandr Ovcharenko, Juan Palacios, Luis Pastor, Rodrigo Perin, Rajnish Ranjan, Imad Riachi, José-Rodrigo Rodríguez, Juan Luis Riquelme, Christian Rössert, Konstantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit, Jafet Villafranca Díaz, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev, Felix Schürmann. Cell, Volume 163, Issue 2, p456–492, 8 October 2015 DOI: http://dx.doi.org/10.1016/j.cell.2015.09.029

This paper appears to be open access.

My most substantive description of the Blue Brain Project , previous to this, was in a Jan. 29, 2013 posting featuring the European Union’s (EU) Human Brain project and involvement from countries that are not members.

* I edited a redundant lede (That’s a virtual slice of a rat brain.), moved the second sentence to the lede while adding this:  *about this virtual brain slice* on Oct. 16, 2015 at 0955 hours PST.

Israeli start-up Melodea and its nanocrystalline cellulose (NCC) projects

Three European nanocrystalline cellulose-oriented(NCC) research project grants have been awarded to Israeli start-up company, Melodea according to an Oct. 31, 2013 news item on Azonano,

Israeli startup Melodea Ltd., a leading provider of bio based Nano technology to produce foams from renewable resources, was granted 3 European research grants for 3 groundbreaking projects. Melodea’s technology is based on Nano Crystalline Cellulose (NCC), a primary building block of all living plants that was discovered years ago and was shown to be a most promising raw material for the development of high quality, economically attractive bio-based alternatives to fossil oil polymers.

The Oct. 2013 (?) Melodea news release, which originated the news item, provides more details about the company and the projects,

Melodea Ltd. is developing an economic ally viable industrial process for the extraction of NCC from the sludge of the paper industry, a waste stream produced at millions of tons around the world. The core of the novel technology was developed by the lab of Professor Oded Shoseyov from the Hebrew University of Jerusalem and was licensed exclusively to Melodea.

Moreover, the company develops unique technologies to self-assemble the NCC into ecologically friendly foams for industrial applications.

Melodea Ltd. announced today that it has been awarded above 1,000,000 Euro in 3 projects of the European Union Seventh Framework Program (FP7).

The first project BRIMEE aims to develop insulating boards to attach to the exterior and interior of old buildings walls to improve insulation and reduce energy consumption.

Melodea’s ground breaking NCC foams will be the major constituent of such insulating boards.

The second project NCC-Foam aims to develop commercially-viable, lightweight, rigid foam core materials for sandwich structures for the composite industry.

Today, the common foams for composites are mostly manufactured from a variety of synthetic fossil-oil based polymers that have negative environmental effects compared to NCC based foam which is fully renewable produced from waste stream of the pulp and paper industry.

The third project FLHEA objective is to develop renewable and recyclable food packaging materials based on natural fibers such as flax and hemp. In FLHEA Melodea will produce flax based NCC that will be used as strengthening agent for the novel bio-based packaging materials.”

It is an outstanding achievement for Melodea to be awarded 3 European research grants with exciting European partners. These grants prove the EU commitment to support the development of Nano cellulose applications” said Melodea’s CEO Mr. Yoram Shkedi, “It will also allow Melodea to develop and to commercialize NanoCrystalline Cellulose (NCC) based applications for huge industries such as the construction, composites and food packaging industries”.

I notice they’re calling it nanocrystalline cellulose (NCC) not cellulose nanocrystals (CNC). I wish somebody would pick a name and stick with it as this extra keyboarding gets tiresome. Apparently, Canadians coined the term, NCC while the CNC term originated elsewhere (I don’t know where). Until now, it seemed CNC was becoming the preferred terminology.

If I’m interpreting this part of the news release correctly “… developing an economic ally viable industrial process for the extraction of NCC from the sludge of the paper industry”,, Melodea will either develop a production facility or be instrumental in its creation while working on projects that utilize NCC in industrial applications. All of which leads me to the Canadian stockpile of NCC. As of Aug. 2013, CelluForce, a Canadian NCC production facility, had ceased production due to its stockpile as noted in my Oct. 3, 2013 posting. Hopefully there will be news of some commercialization project(s) that require serious amounts of  NCC from CelluForce.

For those who like to dig deeper, I found websites for the three projects, BRIMEE, NCC Foam, and FLHEA, mentioned in the Melodea news release.

Montréal Neuro and one of Europe’s biggest research enterprises, the Human Brain Project

Its official title is the Montréal Neurological Institute and Hospital (Montréal Neuro) which is and has been, for several decades, an international centre for cutting edge neurological research. From the Jan. 28, 2013 news release on EurekAlert,

The Neuro

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre.

Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit theneuro.com.

Nonetheless, it was a little surprising to see that ‘The Neuro’ is part one of the biggest research projects in history since it’s the European Union, which is bankrolling the project (see my posting about the Jan. 28, 2013 announcement of the winning FET Flagship Initatives). Here’s more information about the project, its lead researchers, and Canada’s role, from the news release,

The goal of the Human Brain Project is to pull together all our existing knowledge about the human brain and to reconstruct the brain, piece by piece, in supercomputer-based models and simulations. The models offer the prospect of a new understanding of the human brain and its diseases and of completely new computing and robotic technologies. On January 28 [2013], the European Commission supported this vision, announcing that it has selected the HBP as one of two projects to be funded through the new FET [Future and Emerging Technologies] Flagship Program.

Federating more than 80 European and international research institutions, the Human Brain Project is planned to last ten years (2013-2023). The cost is estimated at 1.19 billion euros. The project will also associate some important North American and Japanese partners. It will be coordinated at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, by neuroscientist Henry Markram with co-directors Karlheinz Meier of Heidelberg University, Germany, and Richard Frackowiak of Centre Hospitalier Universitaire Vaudois (CHUV) and the University of Lausanne (UNIL).

Canada’s role in this international project is through Dr. Alan Evans of the Montreal Neurological Institute (MNI) at McGill University. His group has developed a high-performance computational platform for neuroscience (CBRAIN) and multi-site databasing technologies that will be used to assemble brain imaging data across the HBP. He is also collaborating with European scientists on the creation of ultra high-resolution 3D brain maps. «This ambitious project will integrate data across all scales, from molecules to whole-brain organization. It will have profound implications for our understanding of brain development in children and normal brain function, as well as for combatting brain disorders such as Alzheimer’s Disease,» said Dr. Evans. “The MNI’s pioneering work on brain imaging technology has led to significant advances in our understanding of the brain and neurological disorders,” says Dr. Guy Rouleau, Director of the MNI. “I am proud that our expertise is a key contributor to this international program focused on improving quality of life worldwide.”

“The Canadian Institutes of Health Research (CIHR) is delighted to acknowledge the outstanding contributions of Dr. Evans and his team. Their work on the CBRAIN infrastructure and this leading-edge HBP will allow the integration of Canadian neuroscientists into an eventual global brain project,” said Dr. Anthony Phillips, Scientific Director for the CIHR Institute of Neurosciences, Mental Health and Addiction. “Congratulations to the Canadian and European researchers who will be working collaboratively towards the same goal which is to provide insights into neuroscience that will ultimately improve people’s health.”

“From mapping the sensory and motor cortices of the brain to pioneering work on the mechanisms of memory, McGill University has long been synonymous with world-class neuroscience research,” says Dr. Rose Goldstein, Vice-Principal (Research and International Relations). “The research of Dr. Evans and his team marks an exciting new chapter in our collective pursuit to unlock the potential of the human brain and the entire nervous system – a critical step that would not be possible without the generous support of the European Commission and the FET Flagship Program.”

Canada is not the only non-European Union country making an announcement about its role in this extraordinary project. There’s a Jan. 28, 2013 news release on EurekAlert touting Israel’s role,

The European Commission has chosen the Human Brain Project, in which the Hebrew University of Jerusalem is participating, as one of two Future and Emerging Technologies Flagship topics. The enterprise will receive funding of 1.19 billion euros over the next decade.

The project will bring together top scientists from around the world who will work on one of the great challenges of modern science: understanding the human brain. Participating from Israel will a team of eight scientists, led by Prof. Idan Segev of the Edmond and Lily Safra Center for Brain Sciences (ELSC) at the Hebrew University, Prof. Yadin Dudai of the Weizmann Institute of Science, and Dr. Mira Marcus-Kalish of Tel Aviv University.

More than 80 universities and research institutions in Europe and the world will be involved in the ten-year Human Brain Project, which will commence later this year and operate until the year 2023. The project will be centered at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, headed by Prof. Henry Markram, a former Israeli who was recruited ten years ago to the EPFL.

The participation of the Israeli scientists testifies to the leading role that Israeli brain research occupies in the world, said Israeli President Shimon Peres. “Israel has put brain research at the heart of its efforts for the coming decade, and our country is already spearheading the global effort towards the betterment of our understanding of mankind. I am confident that the forthcoming discoveries will benefit a wide range of domains, from health to industry, as well as our society as a whole,” Peres said.

“The human brain is the most complex and amazing structure in the universe, yet we are very far from understanding it. In a way, we are strangers to ourselves. Unraveling the mysteries of the brain will help us understand our functioning, our choices, and ultimately ourselves. I congratulate the European Commission for its vision in selecting the Human Brain Project as a Flagship Mission for the forthcoming decade,” said Peres.

What’s amusing is that as various officials and interested parties (such as myself) wax lyrical about these projects, most of the rest of the world is serenely oblivious to it all.

More on quantum dots: a toxicity study; Merck action in Israel

I have two items on quantum dots today. The first concerns a toxicity study performed on primates at the University of Buffalo (NY, USA). From the May 22, 2012 news item by Will Soutter for Azonano,

A multi-institute toxicity study on quantum dots in primates has discovered that these nanocrystals are safe for a period of one year.

This finding is encouraging for researchers and physicians looking for novel techniques to treat diseases such as cancer using nanomedicine. The organizations involved in the study included the University at Buffalo, Nanyang Technological University, ChangChun University of Science and Technology, and the Chinese PLA General Hospital.

On digging a little further, I found this information on the University of Buffalo website, from their May 21, 2012 news release,

— Tiny luminescent crystals called quantum dots hold great promise as tools for treating and detecting diseases like cancer.

— A pioneering study to gauge the toxicity of quantum dots in primates has found cadmium-selenide quantum dots to be safe over intervals of time ranging from three months to a year. The study is likely the first to test the safety of quantum dots in primates.

— The authors say more research is needed to determine quantum dots’ long-term effect on health; elevated levels of cadmium from the quantum dots were found in the primates even after 90 days.

The research, which appeared on May 20 in Nature Nanotechnology online , is likely the first to test the safety of quantum dots in primates.

In the study, scientists found that four rhesus monkeys injected with cadmium-selenide quantum dots remained in normal health over 90 days. Blood and biochemical markers stayed in typical ranges, and major organs developed no abnormalities. The animals didn’t lose weight.

Two monkeys observed for an additional year also showed no signs of illness.

The first  results are hopeful but there are some concerns,

The new toxicity study — completed by the University at Buffalo, the Chinese PLA General Hospital, China’s ChangChun University of Science and Technology, and Singapore’s Nanyang Technological University — begins to address the concern of health professionals who worry that quantum dots may be dangerous to humans.

The authors caution, however, that more research is needed to determine the nanocrystals’ long-term effects in primates; most of the potentially toxic cadmium from the quantum dots stayed in the liver, spleen and kidneys of the animals studied over the 90-day period.

The cadmium build-up, in particular, is a serious concern that warrants further investigation, said Ken-Tye Yong, a Nanyang Technological University assistant professor who began working with Prasad [Paras N. Prasad] on the study as a postdoctoral researcher at UB.

Unusually, this article seems to be open access at Nature Nanotechnology,

A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots

Ling Ye, Ken-Tye Yong, Liwei Liu, Indrajit Roy, Rui Hu, Jing Zhu, Hongxing Cai, Wing-Cheung Law, Jianwei Liu, Kai Wang, Jing Liu, Yaqian Liu, Yazhuo Hu, Xihe Zhang, Mark T. Swihart, and Paras N. Prasad

Nature Nanotechnology (2012) doi:10.1038/nnano.2012.74

The acquisition of an Israeli quantum dot company by Merck is my second bit of quantum dot news, from the May 22, 2012 news item on Nanowerk,

Merck announced today that within the scope of a capital increase by the Israeli start-up company QLight Nanotech, it is acquiring an interest in the Jerusalem-based company. QLight Nanotech is a spin-off subsidiary of Yissum, the technology transfer company of the Hebrew University of Jerusalem. QLight Nanotech develops products for use in displays and energy-efficient light sources based on semiconductor nanoparticles known as quantum dots.

I understood that Merck was a pharmaceutical company so I was bit surprised to see this (from the May 22, 2012 news item on the Solid State Technology website)

“I am excited that our basic science discoveries on semiconductor nanocrystals are now being realized in innovative technological applications. The partnership with Merck, a world leader in materials for display applications, is a synergistic one allowing us at Qlight Nanotech to implement advanced chemicals manufacturing and applications’ know-how,” said the scientific founder of  QLight Nanotech, Professor Uri Banin of the Hebrew University of Jerusalem, who will continue to support the company as a shareholder and advisor alongside of Yissum.

In fact, Merck bills itself as a pharmaceuticals and a s chemicals company.

Cell biology journal conceptualizes science papers’ content with multimedia for a combined print and online experience

Strictly speaking this isn’t visualizing data and scientific information (which I’ve mentioned before)  so much as it is augmenting it. The biology journal Cell  is now including online multimedia components that can be accessed only by a QR code in the journal’s  hardcopy version. From the May 26, 2011 news item on physorg.com,

On May 27th the top cell biology journal, Cell, will publish its latest issue with multimedia components directly attached to the print version. The issue uses QR code technology to connect readers to the journal’s multimedia formats online thereby improving the conceptualization of a paper’s scientific content and enhancing the reader’s overall experience.

Readers of the hardcopy issue who take advantage of the code will experience an author-narrated walk through a paper’s figures. In all, the issue will use QR codes to include seventeen “hidden treasures” for readers to discover. Readers can simply scan the QR codes with a smart phone or tablet to uncover animated figures, interviews, videos, and more. The multimedia formats offered by Cell include: Podcasts, Paperclips, PaperFlicks, and Enhanced Snapshots. Even the journal’s cover shows a simple QR code which allows readers of the hardcopy issue to see an animated cover.

Here’s the animated cover, which is titled, Malaria Channels Host Nutrients,

I find this development interesting in light of moves to provide information via graphical abstracts and/or video abstracts. For example, the publisher Elsevier offers authors of papers for their various science journals instructions on preparing graphical abstracts (from Elsevier’s authors’ graphical abstracts webpage),

A Graphical Abstract should allow readers to quickly gain an understanding of the main take-home message of the paper and is intended to encourage browsing, promote interdisciplinary scholarship, and help readers identify more quickly which papers are most relevant to their research interests.

Authors must provide an image that clearly represents the work described in the paper. A key figure from the original paper, summarising the content can also be submitted as a graphical abstract.

Elsevier provides examples of good graphical abstracts such as this one,

Journal of Controlled Release, Volume 140, Issue 3, 16 December 2009, Pages 210-217. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. G. Saravanakumar, Kyung Hyun Min, et.al., doi:10.1016/j.jconrel.2009.06.015

For an example of a video abstract, I’m going back to Cell which offers this one from Hebrew University of Jerusalem researchers discussing their work on octopus arm movements and visual control,


I have a suspicion that the trend to presenting science to the general public and other experts using graphical and video abstracts and other primarily ‘visual’ media could  have quite an impact on the sciences and how they are practiced. I haven’t quite figured out what any of those impacts might be but if someone would like to  comment on that, I’d be more than happy to hear from you.

Meanwhile, it seems to be a Cell kind of day so I’ve decided to embed the Lady Gaga Bad Project parody by the Hui Zheng Laboratory at Baylor Medical College in Texas for a second time,

Happy Weekend!