Tag Archives: heritage

The ‘Queen’s Head” in Yehliu Geopark (Taiwan) and nanotechnology

http://focustaiwan.tw/news/asoc/201505250028.aspx

http://focustaiwan.tw/news/asoc/201505250028.aspx

As you can see, the Queen’s Head rests on a thin (and getting thinner) neck. This thinning is cause for consternation in Taiwan as a May 25, 2015 news item on the focustaiwan.tv website notes,

The “Queen’s Head,” the most famous rock formation in Yehliu Geopark, faces an uncertain fate despite an all-out effort to prevent its thinning neck from snapping, the North Coast & Guanyinshan National Scenic Area said Monday.

Kuo Chen-ling (郭振陵), the secretary-general of the scenic area administration, said Monday that experiments done on four mushroom rocks near the Queen’s Head have found that nanotechnology can prevent erosion, but it still has some drawbacks that have yet to be overcome.

In the experiments done over the past nine months, nanotechnology has proven that it could reinforce the queen’s neck and delay the weathering process, Kuo said.

But it has also caused the rocks to whiten and slivers of the rocks’ surfaces to break off amid the dramatic changes in temperature, moisture and sunshine on the North Coast, he said.

An August 29, 2014 news item on the China Post website gives a description of the attempted remedy,

The Tourism Bureau began preparations Thursday for repairs on the iconic Queen’s Head rock formation at Yehliu Geopark in New Taipei, in a bid to protect the popular tourist attraction from further erosion.

Capitalizing on the sunny weather, which is essential to an experiment on how best to preserve the rock, a group of specialists led by Hsieh Kuo huang, a professor at National Taiwan University’s Institute of Polymer Science and Engineering, injected various nano-sealants into four less-popular rock formations with a similar structure to the Queen’s Head.

The team has coded the rocks A, B, C and D and applied different treatments to them to compare the results.

Comprised of nano-sealant mixed with gravel, the remedy can help resist winds up to 250 kilometers per hour and magnitude-7.0 earthquakes, according to the Tourism Bureau.

I’m sorry the first tests were not more successful and I hope they will be able to find a solution in time.

This project reminded me of a European Union (EU) project where they too were attempting to save important stone structures, from my Oct. 21, 2014 posting,

… an Oct. 20, 2014 news item on Nanowerk,

Castles and cathedrals, statues and spires… Europe’s built environment would not be the same without these witnesses of centuries past. But, eventually, even the hardest stone will crumble. EU-funded researchers have developed innovative nanomaterials to improve the preservation of our architectural heritage.

“Our objective,” says Professor Gerald Ziegenbalg of IBZ Salzchemie, “was to find new possibilities to consolidate stone and mortar, especially in historical buildings.” The products available at the time, he adds, didn’t meet the full range of requirements, and some could actually damage the artefacts they were meant to preserve. Alternatives compatible with the original materials were needed.

For those interested in more, there are details about the EU project the product, CaLoSil, that the scientists devised, and links to more resources in my post.

Heart of stone

Researchers in Europe do not want to find out what Europe would* look like without its stone castles, Stonehenge, Coliseum, cathedrals, and other monumental stone structures, and have found a possible solution to the problem of deterioration according to an Oct. 20, 2014 news item on Nanowerk,

Castles and cathedrals, statues and spires… Europe’s built environment would not be the same without these witnesses of centuries past. But, eventually, even the hardest stone will crumble. EU-funded researchers have developed innovative nanomaterials to improve the preservation of our architectural heritage.

“Our objective,” says Professor Gerald Ziegenbalg of IBZ Salzchemie, “was to find new possibilities to consolidate stone and mortar, especially in historical buildings.” The products available at the time, he adds, didn’t meet the full range of requirements, and some could actually damage the artefacts they were meant to preserve. Alternatives compatible with the original materials were needed.

A July 9, 2014 European Commission press release, which originated the news item, provides more details about this project (Note: A link has been removed),

 Ziegenbalg was the coordinator of the Stonecore project, which rose to this monumental challenge within a mere three years. It developed and commercialised a new type of material that penetrates right into the stone, protecting it without any risk of damage or harmful residues. The team also invented new ways to assess damage to stone and refined a number of existing techniques.

The concept behind the new material developed by the Stonecore partners is ingenious. It involves lime nanoparticles suspended in alcohol, a substance that evaporates completely upon exposure to air. The nanoparticles then react with carbon dioxide in the atmosphere to form limestone.

This innovation is on the market under the brand name CaLoSil. It is available in various consistencies – liquids and pastes – and in a number of formulations based on different types of alcohol, as well as with added filler materials such as marble. The product is applied by dipping, spraying or injection into the stone.

Beyond its use as a consolidant, CaLoSil can also be used to clean stone and mortar, as it helps to treat fungus and algae. The dehydrating effect of the alcohol and the acidity of the lime destroy the cells, and the growth can then be washed off. This method, says Ziegenbalg, is more effective than conventional chemical or mechanical approaches, and it does not damage the stone.

Limestone face-lifts

The partners tested their new product in a number of locations across Europe, on a wide variety of materials exposed to very different conditions. Together, they rejuvenated statues and sculptures, saved features in cathedrals and citadels, and treated materials as diverse as sandstone, marble and tuff.

The opportunity to access such a wide variety of sites, says Ziegenbalg, was one of the many advantages of working with partners from several countries. It pre-empted the risk of developing a product that was too narrowly focused on a specific application.

Inside the heart of stone

A number of techniques enable conservation teams to assess the state of the objects in their care. To obtain a clearer picture of deeper damage, Stonecore improved existing approaches involving ultrasound, developing a new device. The project also pioneered a new technique based on ground-penetrating radar, which one partner is now offering as a commercial service.

The team also developed an innovative micro-drilling tool and refined an existing technique for measuring the water uptake of stone.

A further innovation is a new technique to measure surface degradation. For this so-called “peeling test”, a length of adhesive tape is affixed to the object. The weight of the particles that come off with the tape when it is removed indicate how likely the stone is to degrade.

Carving out solutions

The partners’ achievements have not gone unnoticed. In 2013, Stonecore was shortlisted along with 10 other projects for the annual EuroNanoForum’s Best Project Award.

Ziegenbalg attributes the team’s success mainly to the partners’ wide range of complementary expertise, and to their dedication. “The participating small and medium-sized enterprises were extremely active,” he says. “They were highly motivated to handle the more practical work, while the universities supported them with the necessary research input.”

While it’s not clear from this press release or the Stonecore website, it appears this project has run its course as part of European Union’s Framework Programme 7.

*Aug. 7, 2019: A grammatical correction was made: in the first sentence and ‘what would Europe’ was changed to ‘what Europe would*’.

I know something about your mummy or an ion beam microscope analyses a sarcophagus scrap

“Bearded Man, 170-180 A.D.” from the Walters Art Museum collection, object #32.6

“Bearded Man, 170-180 A.D.” from the Walters Art Museum collection, object #32.6

An Aug. 14, 2014 news item on Azonano describing this image sparks the imagination,

He looks almost Byzantine or Greek, gazing doe-eyed over the viewer’s left shoulder, his mouth forming a slight pout, like a star-struck lover or perhaps a fan of the races witnessing his favorite charioteer losing control of his horses.

In reality, he’s the “Bearded Man, 170-180 A.D.,” a Roman-Egyptian whose portrait adorned the sarcophagus sheltering his mummified remains. But the details of who he was and what he was thinking have been lost to time.

But perhaps not for much longer. A microscopic sliver of painted wood could hold the keys to unraveling the first part of this centuries-old mystery. Figuring out what kind of pigment was used (whether it was a natural matter or a synthetic pigment mixed to custom specifications), and the exact materials used to create it, could help scientists unlock his identity.

Kathleen Tuck’s Aug. 13 (?), 2014 Boise State University (Idaho, US) news release, which originated the news item, describes the nature of the research and the difficulties associated with it,

“Understanding the pigment means better understanding of the provenance of the individual” said Darryl Butt, a Boise State distinguished professor in the Department of Materials Science and Engineering and associate director of the Center for Advanced Energy Studies (CAES). “Where the pigment came from may connect it to a specific area and maybe even a family.”

For years, researchers were limited by the lack of samples large enough to be properly analyzed. But advances in the field of nanotechnology mean scientists now can work with fragments tinier than the eye can even register. Using a $1.5 million ion beam microscope at CAES, Butt — along with CAES colleagues Yaqaio Wu and Jatu Burns, and Boise State student researchers Gordon Alanko and Jennifer Watkins — is working with a sliver of the wood portrait smaller than a human hair.

The team transferred the fragment to a sample holder using a tiny deer hair called an “eyelash.” Their biggest challenge was to move it to the equipment without losing it.

So far they have extracted five needle-tip sized fragments 20 nanometers wide (a nanometer is a billionth of a meter), as well as two thin foils. From that, they have been able to analyze and map out the chemistry of the material in three dimensions.

Butt and his team are analyzing a speck of purple paint, which is significant because the blue used to blend the purple hue was a precious pigment back in the day, signaling a prominent individual.

This research is part of a larger project (from the news release),

Their data is being analyzed by researchers from the Detroit Museum of Art, where a companion to the “Bearded Man” mummy resides. It’s part of a project, titled APPEAR (Ancient Panel Paintings-Examination, Analysis, Research), a collaboration between 12 museums, including the British Museum in London and the Walters Art Museum in Baltimore, Maryland.

According to the news release there’s a personal aspect to Butt’s interest in this research, which may eventually have implications for Boise State University’s programmes,

“So far we’ve learned that the paint is a synthetic pigment,” said Butt, who as an artist in his own right often mixes his own pigments for his paintings. “These are very vibrant pigments, possibly heated in a lead crucible. People thought that process had been developed in the 1800s or so. This could prove it happened a lot earlier.

Butt got into solving art mysteries when he met Glenn Gates, a conservation scientist at the Walters Art Museum [Baltimore, Maryland] at a conference at Stanford University [California]. Both are officers of a new section of the American Ceramic Society — the Art, Archaeology and Conservation Science division.

“This research was a gamble that we [materials scientists] could do some really cool stuff,” Butt said, noting that he would love to branch out into analyzing pottery and other ancient artifacts.

While studying the provenance of Roman-Egyptian mummies is something new at Boise State, many researchers in the art, geology, history, anthropology and even English departments are involved in what Butt likes to call ‘reverse engineering’ of objects of cultural heritage.

“This particular problem, that is of understanding a particle of pigment from a 2,000-year-old sarcophagus, is a bit unique in that it highlights some of the amazing tools that we have at Boise State and at CAES that could shed new light on problems associated with understanding human history,” he said.

Butt hopes that these and similar transdisciplinary projects will open up external research opportunities for students, including creation of a “pipeline” of students who travel to various user facilities or museums to carry out interdisciplinary research.

“Envision, for example, art students studying works of art using synchrotron radiation and bright x-rays at a national laboratory, while science and engineering students use their technical skills to unravel mysteries of materials used by ancient societies in the field or held by museums,” he said.

The idea can sound far-fetched even for those who are participating in the research, although there is a certain, sound logic to transdisciplinary work between the arts and the sciences.

I was not able to find any reference to Butt’s art work online, find a published research paper or more information (website) featuring APPEAR ((Ancient Panel Paintings-Examination, Analysis, Research); admittedly, it was a brief search.

There are many techniques used to examine works of art and/or heritage. For a description of another technique, Raman spectroscopy, and its use in examining art pigments there’s my June 27, 2014 posting titled: Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 2 of 4). Should you be interested in the entire series, additional links can be found in that posting.