Tag Archives: Hubert Rauscher

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

Nano workshop with the International Federation of Societies of Cosmetic Chemists and ‘in-cosmetics’ on March 1, 2014

The International Federation of Societies of Cosmetic Chemists (IFSCC) is presenting a March 31, 2014 nanotechnology workshop prior to the ‘in-cosmetics exhibition’ due to be held April 1-2, 2014 in Hamburg in partnership with the in-cosmetics organizers.  From a Feb. 17, 2014 IFSCC news release,

The IFSCC has organised a Recent Perspectives in Nanotechnology workshop in association with in-cosmetics which will be held immediately before the show (1-3 April) on 31 March 2014 in Hamburg.

Moderated by IFSCC Vice President and President of the French Society Claudie Willemin, the workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Topics and speakers include:

Nanotechnology in Cosmetics – Current status in EU and Other Countries

Dr Florian Schellauf, Technical Regulatory Affairs – Cosmetics Europe

Characterisation Methods for Nanomaterials for Regulatory Purposes

Dr Hubert Rauscher, European Commission – Joint Research Centre – Nanobiosciences Unit

Nanomaterials’ Safety:  A Summary of the Latest Studies

Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – Berlin

Nanomaterial’s Evaluation Tests

Dr Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASF

Click here for full programme details and to register.

The focus is primarily on the European Union’s efforts according to the workshop programme webpage,

This IFSCC Workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Organised by the IFSCC, a federation dedicated to international cooperation in cosmetic science and technology, this workshop demonstrates its aims.

Moderator: Claudie Willemin

  • 14:00-14:30: Welcome and Introduction
    IFSCC – What does this Acronym mean?
    > Claudie Willemin, Vice President of  the International Federation of the Societies of Cosmetic Chemists and President of La Société Française de Cosmétologie – SFC
  • 14:30-15:15: Nanotechnology in Cosmetics – Current status in EU and Other Countries
    > Dr. Florian Schellauf, Technical Regulatory Affairs- Cosmetics EuropeThe legislator introduced two requirements into the EU Regulation 1223/2009 related to nanomaterials in cosmetic products.The first requirement is the obligation to inform the consumer when nanomaterials are used in cosmetic products (“nano labelling”). The second requirement requires notification to the European Commission of cosmetic products containing certain nanomaterials. These requirements are based on the definition of a nanomaterial provided in the Regulation.

    The requirements come into application from 2013 and discussions have moved from legislation to practical implementation.

    This presentation will provide an overview over the use of nanomaterials in cosmetics, issues related to the implementation of the legal requirements and the interpretation of the cosmetic nanodefinition in relation to the Commission Recommendation of 18 October 2011.

    Also in the international arena, there have been harmonization attempts specifically for the cosmetic sector through the ICCR process (International Cooperation on Cosmetics Regulation). ICCR defined a set of criteria for determining whether or not a material should be considered as a nanomaterial for regulatory purposes. The presentation will also provide an insight into discussions occurring around nanomaterials in cosmetics in selected countries outside of the EU.

  • 15:15-15:50: Characterisation Methods for Nanomaterials for Regulatory Purposes
    > Dr. Hubert Rauscher, European Commission -Joint Research Centre – Nanobiosciences UnitNanomaterials are addressed in the European Regulation on Cosmetic Products (EC)1223/2009 as well as in several other sectors of national and international legislation and in various guidelines. This requires clear terminology, such as a definition of the term “nanomaterial” and implementation provisions. Such a definition for regulatory purposes and its individual elements needs to be legally clear and unambiguous, and enforceable through agreed measurement techniques and procedures. The presentation highlights the technical and scientific requirements for the characterisation of nanomaterials that need to be met for this purpose and reviews currently available techniques. The contribution also offers considerations on the way forward towards the development of new measurement techniques, the combination of experimental methods and the need for validation studies for the characterisation of nanomaterials for regulatory purposes.
  • 15:50-16:15: Coffee Break
  • 16:15-16:50: Nanomaterials’ Safety:  A Summary of the Latest Studies
    > Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – BerlinFor more than 20 years both academic institutions and industrial enterprises have been researching into the development of strategies for drug delivery through the human skin by means of nanoparticles. However, a commercial product based on that concept is still lacking as, obviously, nanoparticles of ≥30 nm do not penetrate the human skin barrier. Whether this applies also to smaller particles is currently a topic of intense research.First indications that nanoparticles might not penetrate the skin barrier resulted from investigations of sunscreens that contained TiO2 particles of approximately 100 nm in diameter. At the end of a 14 day test period, volunteers who had applied the sunscreen three times each day were measured for TiO2 penetration using the tape stripping method. In addition, biopsies were taken and histological sections were analyzed. The results clearly showed that the TiO2 nanoparticles were located upon the skin surface and in some of the hair follicles. The penetration profile also revealed low TiO2 concentrations near the boundary to the living epidermis.  However, in follow-up investigations these TiO2 concentrations turned out to be located in the hair follicles.

    Interestingly, only some of the hair follicles contained TiO2 particles. In a subsequent study it could be shown that the nanoparticles penetrated into the hair follicles only if the latter display sebum production or hair growth. This means that hair follicles are usually closed by a cover that must be opened from inside out by mass flow to permit the topically applied nanoparticles penetrating into the hair follicles.  Particles of 500-800 nm in diameter were found to penetrate into the hair follicles most efficiently; either in vivo or – in the case of porcine ear model skin – if the hairs are moved by a massage. Investigating the hair surface structure, it was found that the thickness of the cuticula on the hair amounts to 600-800 nm. Due to resonance effects and if the hairs are moving, nanoparticles within this diameter range obviously penetrate into the hair follicles where they can be stored for a period exceeding 10 days. Thereafter, they escape with the sebum onto the skin surface again. A penetration of particles through the intact skin barrier could not be detected.

    The problem of particulate structures, particularly of those exceeding 100 nm, is that they do not penetrate the intact skin barrier on the intercellular pathway. They remain on the skin surface and are removed by washing, textile contact and desquamation, so that scarcely any nanoparticles are detectable after 24 h. However, once the particles have been transported into the hair follicles part of them are stored there for more than 10 days and are then re-transferred to the skin surface with the sebum. In various papers nanoparticles were reported to pass the skin barrier. This is always correct if the skin barrier is disturbed. Such disturbance could have been caused by disease or mechanical manipulation, e.g., taking of biopsies, tape stripping or cyanoacrylate stripping. In such cases, nanoparticles could also be detected in the living skin. So far, no evidence has been provided to suggest that nanoparticles are capable of penetrating the intact skin. Therefore, a collaborative project was recently launched by the German Research Association (DFG) in which the excellent penetration properties of particles >100 mm shall be used to transport drugs, which would normally not penetrate into the hair follicles, efficiently to the target structures in the hair follicles where they can be released by an external trigger system.

  • 16:50-17:30: Nanomaterial’s Evaluation Tests
    > Dr. Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASFWarranting the safety of nanotechnological products is seen as a crucial element in ensuring that the benefits of the new technology can be fully exploited. One prominent trait of NM is the fact that, during the life-time of a given NM, humans can be exposed to different forms of the material, e.g. due to agglomeration or aggregation, corona formation or interaction with surrounding organic material, or dissolution. In order to remove the need to test each form of nanomaterial in all its uses with a pre-defined, fixed list of methods, a concern-driven approach is proposed. Such approaches should start out by determining concerns, i.e. specific information needs for a given NM based on realistic exposure scenarios. Recognized concerns can be addressed in a set of tiers using standardized protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g. structure activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognize groups of NM based upon similar modes-of-action. Grouping of substances in return should form an integral part of the IATA themselves.
  • 17:30-18:00: Q&A and Conclusion

You can go here to register for this workshop. If you are attending the exhibition only, you can register for free until March 31, 2014 but if you want to attend the nano workshop and others, an Early Bird rate starting at €280 +VAT is available until Feb. 28, 2014.

For anyone who doesn’t fully grasp what the ‘in-cosmetics’ exhibition is all about, here’s a video,