Tag Archives: Hui Cao

Neuromorphic (brainlike) computing inspired by sea slugs

The sea slug has taught neuroscientists the intelligence features that any creature in the animal kingdom needs to survive. Now, the sea slug is teaching artificial intelligence how to use those strategies. Pictured: Aplysia californica. (Image by NOAA Monterey Bay National Marine Sanctuary/Chad King.)

I don’t think I’ve ever seen a picture of a sea slug before. Its appearance reminds me of its terrestrial cousin.

As for some of the latest news on brainlike computing, a December 7, 2021 news item on Nanowerk makes an announcement from the Argonne National Laboratory (a US Department of Energy laboratory; Note: Links have been removed),

A team of scientists has discovered a new material that points the way toward more efficient artificial intelligence hardware for everything from self-driving cars to surgical robots.

For artificial intelligence (AI) to get any smarter, it needs first to be as intelligent as one of the simplest creatures in the animal kingdom: the sea slug.

A new study has found that a material can mimic the sea slug’s most essential intelligence features. The discovery is a step toward building hardware that could help make AI more efficient and reliable for technology ranging from self-driving cars and surgical robots to social media algorithms.

The study, published in the Proceedings of the National Academy of Sciences [PNAS] (“Neuromorphic learning with Mott insulator NiO”), was conducted by a team of researchers from Purdue University, Rutgers University, the University of Georgia and the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The team used the resources of the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne.

A December 6, 2021 Argonne National Laboratory news release (also on EurekAlert) by Kayla Wiles and Andre Salles, which originated the news item, provides more detail,

“Through studying sea slugs, neuroscientists discovered the hallmarks of intelligence that are fundamental to any organism’s survival,” said Shriram Ramanathan, a Purdue professor of Materials Engineering. ​“We want to take advantage of that mature intelligence in animals to accelerate the development of AI.”

Two main signs of intelligence that neuroscientists have learned from sea slugs are habituation and sensitization. Habituation is getting used to a stimulus over time, such as tuning out noises when driving the same route to work every day. Sensitization is the opposite — it’s reacting strongly to a new stimulus, like avoiding bad food from a restaurant.

AI has a really hard time learning and storing new information without overwriting information it has already learned and stored, a problem that researchers studying brain-inspired computing call the ​“stability-plasticity dilemma.” Habituation would allow AI to ​“forget” unneeded information (achieving more stability) while sensitization could help with retaining new and important information (enabling plasticity).

In this study, the researchers found a way to demonstrate both habituation and sensitization in nickel oxide, a quantum material. Quantum materials are engineered to take advantage of features available only at nature’s smallest scales, and useful for information processing. If a quantum material could reliably mimic these forms of learning, then it may be possible to build AI directly into hardware. And if AI could operate both through hardware and software, it might be able to perform more complex tasks using less energy.

“We basically emulated experiments done on sea slugs in quantum materials toward understanding how these materials can be of interest for AI,” Ramanathan said.

Neuroscience studies have shown that the sea slug demonstrates habituation when it stops withdrawing its gill as much in response to tapping. But an electric shock to its tail causes its gill to withdraw much more dramatically, showing sensitization.

For nickel oxide, the equivalent of a ​“gill withdrawal” is an increased change in electrical resistance. The researchers found that repeatedly exposing the material to hydrogen gas causes nickel oxide’s change in electrical resistance to decrease over time, but introducing a new stimulus like ozone greatly increases the change in electrical resistance.

Ramanathan and his colleagues used two experimental stations at the APS to test this theory, using X-ray absorption spectroscopy. A sample of nickel oxide was exposed to hydrogen and oxygen, and the ultrabright X-rays of the APS were used to see changes in the material at the atomic level over time.

“Nickel oxide is a relatively simple material,” said Argonne physicist Hua Zhou, a co-author on the paper who worked with the team at beamline 33-ID. ​“The goal was to use something easy to manufacture, and see if it would mimic this behavior. We looked at whether the material gained or lost a single electron after exposure to the gas.”

The research team also conducted scans at beamline 29-ID, which uses softer X-rays to probe different energy ranges. While the harder X-rays of 33-ID are more sensitive to the ​“core” electrons, those closer to the nucleus of the nickel oxide’s atoms, the softer X-rays can more readily observe the electrons on the outer shell. These are the electrons that define whether a material is conductive or resistive to electricity.

“We’re very sensitive to the change of resistivity in these samples,” said Argonne physicist Fanny Rodolakis, a co-author on the paper who led the work at beamline 29-ID. ​“We can directly probe how the electronic states of oxygen and nickel evolve under different treatments.”

Physicist Zhan Zhang and postdoctoral researcher Hui Cao, both of Argonne, contributed to the work, and are listed as co-authors on the paper. Zhang said the APS is well suited for research like this, due to its bright beam that can be tuned over different energy ranges.

For practical use of quantum materials as AI hardware, researchers will need to figure out how to apply habituation and sensitization in large-scale systems. They also would have to determine how a material could respond to stimuli while integrated into a computer chip.

This study is a starting place for guiding those next steps, the researchers said. Meanwhile, the APS is undergoing a massive upgrade that will not only increase the brightness of its beams by up to 500 times, but will allow for those beams to be focused much smaller than they are today. And this, Zhou said, will prove useful once this technology does find its way into electronic devices.

“If we want to test the properties of microelectronics,” he said, ​“the smaller beam that the upgraded APS will give us will be essential.”

In addition to the experiments performed at Purdue and Argonne, a team at Rutgers University performed detailed theory calculations to understand what was happening within nickel oxide at a microscopic level to mimic the sea slug’s intelligence features. The University of Georgia measured conductivity to further analyze the material’s behavior.

A version of this story was originally published by Purdue University

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

You can find the September 24, 2021 Purdue University story, Taking lessons from a sea slug, study points to better hardware for artificial intelligence here.

Here’s a link to and a citation for the paper,

Neuromorphic learning with Mott insulator NiO by Zhen Zhang, Sandip Mondal, Subhasish Mandal, Jason M. Allred, Neda Alsadat Aghamiri, Alireza Fali, Zhan Zhang, Hua Zhou, Hui Cao, Fanny Rodolakis, Jessica L. McChesney, Qi Wang, Yifei Sun, Yohannes Abate, Kaushik Roy, Karin M. Rabe, and Shriram Ramanathan. PNAS September 28, 2021 118 (39) e2017239118 DOI: https://doi.org/10.1073/pnas.2017239118

This paper is behind a paywall.

A butterfly kind of day: changing structural colour in six generations and developing fluidic devices

I have two items concerning butterflies. The first is a bioengineering project at Yale University where they changed the colour of a butterfly’s wings from brown to violet (from an Aug. 5, 2014 news item on ScienceDaily),

Yale University scientists have chosen the most fleeting of mediums for their groundbreaking work on biomimicry: They’ve changed the color of butterfly wings.

In so doing, they produced the first structural color change in an animal by influencing evolution. The discovery may have implications for physicists and engineers trying to use evolutionary principles in the design of new materials and devices.

An Aug.5, 2014 Yale University news release (also on EurekAlert), which originated the news item,

“What we did was to imagine a new target color for the wings of a butterfly, without any knowledge of whether this color was achievable, and selected for it gradually using populations of live butterflies,” said Antónia Monteiro, a former professor of ecology and evolutionary biology at Yale, now at the National University of Singapore.

In this case, Monteiro and her team changed the wing color of the butterfly Bicyclus anynana from brown to violet. They needed only six generations of selection.

The news release goes on to explain the interest in structural colour,

Little is known about how structural colors in nature evolved, although researchers have studied such mechanisms extensively in recent years. Most attempts at biomimicry involve finding a desirable outcome in nature and simply trying to copy it in the laboratory.

“Today, materials engineers are making complex materials to perform multiple functions. The parameter space for the design of such materials is huge, so it is not easy to search for the optimal design,” said Hui Cao, chair of Yale’s Department of Applied Physics, who also worked on the study. “This is why we can learn from nature, which has obtained the optimal solutions in many cases via natural evolution over millions of years.”

Indeed, the scientists explained, natural selection algorithms can select for multiple characteristics simultaneously — which is standard operating procedure in the natural world.

A bit of technical information is also included in the news release,

The desired color for the butterfly wings was achieved by changing the relative thickness of the wing scales — specifically, those of the lower lamina. It took less than a year of selective breeding to produce the color change from brown to violet.

One reason Bicyclus anynana was chosen for the experiment, Monteiro said, was because it has cousin species that have evolved violet colors on their wings twice independently. By reproducing such a change in the lab, the Yale team showed that butterfly populations harbor high levels of genetic variation regulating scale thickness that lets them react quickly to new selective conditions.

“We just thought if natural selection has been able to modify wing colors in members of this genus of butterfly, perhaps so can we,” Monteiro said.

Here’s a link to and a citation for the paper,

Artificial selection for structural color on butterfly wings and comparison with natural evolution by Bethany R. Wasik, Seng Fatt Liew, David A. Lilien, April J. Dinwiddie, Heeso Noh, Hui Cao, and Antónia Monteiro. PNAS doi: 10.1073/pnas.1402770111 Published online August 4, 2014

This seems to be an open access paper (I was able to access the six page paper, albeit in a small font, by clicking on an Adobe reader icon).

I have not been able to find an image of the newly violet-coloured Bicyclus anynana butterfly but Yale University has provided an image of the pre-bioengineered version,

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

One of my favourite pieces on structural colour was written for The Scientist and was featured here in a Feb. 7, 2013 posting. Interestingly, Yale University is mentioned in that posting too.

This second butterfly piece focuses on its feeding habits and possible medical applications. From an Aug. 5, 2014 news item on ScienceDaily,

New discoveries about how butterflies feed could help engineers develop tiny probes that siphon liquid out of single cells for a wide range of medical tests and treatments, according to Clemson University researchers.

The National Science Foundation recently awarded the project $696,514. It was the foundation’s third grant to the project, bringing the total since 2009 to more than $3 million.

The research has brought together Clemson’s materials scientists and biologists who have been focusing on the proboscis, the mouthpart that many insects used for feeding.

For materials scientists, the goal is to develop what they call “fiber-based fluidic devices,” among them probes that could eventually allow doctors to pluck a single defective gene out of a cell and replace it with a good one, said Konstantin Kornev, a Clemson materials physics professor. “If someone were programmed to have an illness, it would be eliminated,” he said.

An Aug. 5, 2014 Clemson University media release by Paul Alongi (also on EurekAlert), which originated the news item, explains that this latest research is one of the first steps in a long journey,

… Much remains unknown about how insects use tiny pores and channels in the proboscis to sample and handle fluid.

“It’s like the proverbial magic well,” said Clemson entomology professor Peter Adler. “The more we learn about the butterfly proboscis, the more it has for us to learn about it.”

Kornev said he was attracted to butterflies for their ability to draw various kinds of liquids.

“It can be very thick like nectar and honey or very thin like water,” he said. “They do that easily. That’s a challenge for engineers.”

Researchers want the probe to be able to take fluid out of a single cell, which is 10 times smaller than the diameter of a human hair, Kornev said. The probe also will need to differentiate between different types of fluids, he said.

The technology could be used for medical devices, nanobioreactors that make complex materials and flying “micro-air vehicles” the size of an insect.

“It opens up a huge number of applications,” Kornev said. “We are actively seeking collaboration with cell biologists, medical doctors and other professionals who might find this research exciting and helpful in their applications.”

The study also is breaking new ground in biology. While scientists had a fundamental idea of how butterflies feed, it was less complete than it is now, Adler said.

Scientists have long known that butterflies use the proboscis to suck up fluid, similar to how humans use a drinking straw, Adler said. But the study found that the butterfly proboscis also acts as a sponge, he said.

“It’s a dual mechanism,” Adler said. “As they move the proboscis around, it can help sponge up the liquid and then facilitate the delivery of the liquid so that it can then be sucked up.”

As part of the study, researchers observed butterflies on flowers at the Cherry Farm Insectary just south of the main campus on the shore of Hartwell Lake. Butterflies were raised in the lab and recorded on video as they fed.

Researchers are turning their attention to smaller insects, such as flies, moths and mosquitoes, but the focus will remain on the proboscis.

In the next phase of the study, researchers would like to understand how the proboscis forms.

Larvae enter the pupa without a proboscis and emerge as a butterfly with one. Understanding what happens in the pupa could help develop the probes, Adler said.

Another challenge is figuring out how to keep the probe from getting covered with organic material when it’s inserted into the body, he said.

That’s why researchers are beginning to turn their focus to an insect almost everyone else shoos away.

“It seems the flies are able to pierce an animal’s tissue, take up the blood and not get the proboscis gummed up and covered with bacteria,” Adler said.

Tanju Karanfil, associate dean of research and graduate studies in the College of Engineering and Science, said the study has underscored the importance of breaking down silos that separate researchers from different departments so they can work for the common good.

“The most interesting work happens at the intersection of disciplines,” he said. “In this case, biologists and engineers have come together with different perspectives to answer common questions.

I have a link (which takes you to a correction for the text) and a citation for the paper,

Paradox of the drinking-straw model of the butterfly proboscis by Chen-Chih Tsai, Daria Monaenkova, Charles Beard, Peter Adler, and Konstantin Kornev. J. Exp. Biol. 217, 2130-2138. Original article: doi: 10.1242/​jeb.097998 June 15, 2014 J Exp Biol 217, 2130-2138 Correction: doi: 10.1242/​jeb.109447 July 1, 2014

The article is behind a paywall but you can view the correction in its entirety.

It’s a bird. It’s a plane. No, it’s a laser!

I couldn’t resist the Superman reference although it really should have been a Morpho butterfly or a jewel beetle reference since these are two other animals/insects that also display unusual optical properties courtesy of nanoscale structures.

Top: Male eastern bluebird (Sialia sialis, Turdidae). Credit: Ken Thomas (image in public domain). Published in Soft Matter, 2009, 5, 1792-1795. E.R. Dufresne et al., “Self-assembly of amorphous biophotonic nanostructures by phase separation.” Royal Society of Chemistry. http://dx.doi.org/10.1039/B902775K

According to the Oct. 12, 2011 news item on Nanowerk,

Researchers at Yale University are studying how two types of nanoscale structures on the feathers of birds produce brilliant and distinctive colors. The researchers are hoping that by borrowing these nanoscale tricks from nature they will be able to produce new types of lasers—ones that can assemble themselves by natural processes. The team will present their findings at the Optical Society’s (OSA) Annual Meeting, Frontiers in Optics (FiO) 2011, taking place in San Jose, Calif. next week. [It starts Sunday, Oct. 16, 2011.]

Devin Powell, in a May 13, 2011 article for Science News provides some additional detail,

The barbs of these feathers [from bluebirds, blue jays, and parrots] contain tiny pockets of air. Light striking the tightly packed air bubbles scatters, bringing out deep shades of blues and ultraviolet (which birds can see but humans can’t).

“Birds use these structures to create colors that they can’t make in other ways,” says Richard Prum, an  ornithologist at Yale University who discovered the mechanism behind this color.

To make a two-dimensional imitation of a bird feather, Yale physicist Hui Cao and her colleagues punched holes into a thin slice of gallium arsenide semiconductor. The holes were arranged like people in a crowd — somewhat haphazardly but with small-scale patterns that dictate roughly how far each hole is from its neighbor.

“The lesson we learned from nature is that we don’t need something perfect to get control,” says Cao, whose team describes their laser in the May 6 [2011] Physical Review Letters.

The latest work being presented is described this way in an Oct. 2011 news release (why aren’t people putting dates on their news releases????) from the Optical Society of America,

Inspired by feathers, the Yale physicists created two lasers that use this short-range order to control light. One model is based on feathers with tiny spherical air cavities packed in a protein called beta-keratin. The laser based on this model consists of a semiconductor membrane full of tiny air holes that trap light at certain frequencies. Quantum dots embedded between the holes amplify the light and produce the coherent beam that is the hallmark of a laser. The researchers also built a network laser using a series of interconnecting nano-channels, based on their observations of feathers whose beta-keratin takes the form of interconnecting channels in “tortuous and twisting forms.” The network laser produces its emission by blocking certain colors of light while allowing others to propagate. In both cases, researchers can manipulate the lasers’ colors by changing the width of the nano-channels or the spacing between the nano-holes.

What makes these short-range-ordered, bio-inspired structures different from traditional lasers is that, in principle, they can self-assemble, through natural processes similar to the formation of gas bubbles in a liquid. This means that engineers would not have to worry about the nanofabrication of the large-scale structure of the materials they design, resulting in cheaper, faster, and easier production of lasers and light-emitting devices.

Here’s an image of a ‘feather-based laser’,

Top: A laser based on feathers with the sphere-type nanostructure. This laser consists of tiny air holes (black) in a semiconductor membrane; each hole is about 77 nanometers across. (Scale bar = 5 micrometers.) Credit: Hui Cao Research Laboratory / Yale University.

As for the Morpho butterfly and jewel beetle, I last posted about gaining inspiration from these insects (biomimicry) in my May 20, 2011 posting in the context of some anti-counterfeiting strategies.

I first came across some of this work on the optical properties of nanostructures in nature in a notice about a 2008 conference on iridescence at Arizona State University. Here’s the stated purpose for the conference (from the conference page),

A unique, integrative 4–day conference on iridescent colors in nature, Iridescence: More than Meets the Eye is a graduate student proposed and organized conference supported by the Frontiers in Life Sciences program in Arizona State University’s School of Life Sciences. This conference intends to connect diverse groups of researchers to catalyze synthetic cross–disciplinary discussions regarding iridescent coloration in nature, identify new avenues of research, and explore the potential for these stunning natural phenomena to provide novel insights in fields as divergent as materials science, sexual selection and primary science education.