Tag Archives: human organs

A cheaper way to make artificial organs

In the quest to develop artificial organs, the University of British Columbia (UBC) is the not the first research institution that comes to my mind. It seems I may need to reevaluate now that UBC (Okanagan) has announced some work on bio-inks and artificial organs in a Sept. 12, 2017 news  release (also on EurekAlert) by Patty Wellborn,,

A new bio-ink that may support a more efficient and inexpensive fabrication of human tissues and organs has been created by researchers at UBC’s Okanagan campus.

Keekyoung Kim, an assistant professor at UBC Okanagan’s School of Engineering, says this development can accelerate advances in regenerative medicine.

Using techniques like 3D printing, scientists are creating bio-material products that function alongside living cells. These products are made using a number of biomaterials including gelatin methacrylate (GelMA), a hydrogel that can serve as a building block in bio-printing. This type of bio-material—called bio-ink—are made of living cells, but can be printed and molded into specific organ or tissue shapes.

The UBC team analyzed the physical and biological properties of three different GelMA hydrogels—porcine skin, cold-water fish skin and cold-soluble gelatin. They found that hydrogel made from cold-soluble gelatin (gelatin which dissolves without heat) was by far the best performer and a strong candidate for future 3D organ printing.

“A big drawback of conventional hydrogel is its thermal instability. Even small changes in temperature cause significant changes in its viscosity or thickness,” says Kim. “This makes it problematic for many room temperature bio-fabrication systems, which are compatible with only a narrow range of hydrogel viscosities and which must generate products that are as uniform as possible if they are to function properly.”

Kim’s team created two new hydrogels—one from fish skin, and one from cold-soluble gelatin—and compared their properties to those of porcine skin GelMA. Although fish skin GelMA had some benefits, cold-soluble GelMA was the top overall performer. Not only could it form healthy tissue scaffolds, allowing cells to successfully grow and adhere to it, but it was also thermally stable at room temperature.

The UBC team also demonstrated that cold-soluble GelMA produces consistently uniform droplets at temperatures, thus making it an excellent choice for use in 3D bio-printing.

“We hope this new bio-ink will help researchers create improved artificial organs and lead to the development of better drugs, tissue engineering and regenerative therapies,” Kim says. “The next step is to investigate whether or not cold-soluble GelMA-based tissue scaffolds are can be used long-term both in the laboratory and in real-world transplants.”

Three times cheaper than porcine skin gelatin, cold-soluble gelatin is used primarily in culinary applications.

Here’s a link to and a citation for the paper,

Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications by Zongjie Wang, Zhenlin Tian, Fredric Menard, and Keekyoung Kim. Biofabrication, Volume 9, Number 4 Special issue on Bioinks https://doi.org/10.1088/1758-5090/aa83cf Published 21 August 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.

Predicting drug side effects with guts-on-a-chip

It’s been a while since I’ve featured a story about a technology that could drastically reduce (or even eliminate) animal testing. Researchers in the Netherlands have announced some guts-on-a-chip research that may do just that. From an Aug. 22, 2017 news item on ScienceDaily,

Research conducted at Leiden has established that guts-on-chips respond in the same way to aspirin as real human organs do. This is a sign that these model organs are good predictors of the effect of medical drugs on the human body.

A method to test medical drugs for efficacy and potential side-effects, but then much cheaper and using the fewest possible lab animals: this is likely to be possible in future thanks to organs-on-chips, miniature model organs on microchips. In these model organs, which are equipped with human organ cells and microfluidic channels, researchers and pharmacists can mimic the working of an organ.

An Aug. 17, 2017 University of Leiden (Universiteit Leiden) press release, which originated the news item, provides more detail,

Leiden researchers, their spin-off company Mimetas and pharmaceutical company Roche have now shown that one type of organ chip experiences the same side-effects from the drug aspirin as the same organ in the human body. This is good news, because it is a sign that these miniature model organs are good predictors of the effect of medical drugs in the human body.

Aspirin

The researchers exposed 357 guts-on-chips for a significant period to the substance acetylsalicylic acid, better known as the analgesic aspirin. It has been known for a long time already that this substance can lead to gastrointestinal perforation, a complication that can be fatal if untreated. ‘We saw exactly the same side-effects occur in our guts-on-chips,’ says Professor of Analytical Biosciences Thomas Hankemeier. ‘In our model guts the gut wall also became more permeable after the drug had been administered.’

Effectiveness of candidate drugs

According to Hankemeier, the research shows that organs-on-chips are suited to testing a medical drug for efficacy and side-effects. This is good news for pharmacists, because the model organs make it easier for them to evaluate whether candidate drugs are effective or harmful. Many substances would be excluded from futher research before a drug entered the lab animal phase. This would help reduce the cost of drug production and mean less animal testing.

Diagnosing diseases

Organs-on-chips have taken off in recent years. They will be increasingly important in the near future, not just in drug development but also in the diagnosis of disease. Leiden researchers are at the forefront of this development. Hankemeier and a number of other groups (Erasmus MC, VUmc, RU Groningen) have been awared a 1.5 million ZonMW grant to research the effect of the body’s micro-organisms in the gut on the development of dementia. Organ-on-a-chip technology will play an important role here. Mimetas is the first company in the world to produce and sell organ chips on a large scale.

Here’s a link to and a citation for the paper,

Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes by Sebastiaan J. Trietsch, Elena Naumovska, Dorota Kurek, Meily C. Setyawati, Marianne K. Vormann, Karlijn J. Wilschut, Henriëtte L. Lanz, Arnaud Nicolas, Chee Ping Ng, Jos Joore, Stefan Kustermann, Adrian Roth, Thomas Hankemeier, Annie Moisan, & Paul Vulto. Nature Communications 8, Article number: 262 (2017) doi:10.1038/s41467-017-00259-3 Published online: 15 August 2017

This paper is open access.

You can find Mimetas here.