Tag Archives: humanities

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,
ON)

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,
Netherlands)

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment
continue.

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

Emergence in Toronto and Ottawa and brains in Vancouver (Canada): three April 2018 events

April 2018 is shaping up to be quite the month where art/sci events are concerned. I just published a March 27, 2018 posting titled ‘Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)‘ and I’ve now received news about more happenings in Toronto and Ottawa.  Plus, there’s a science-themed meeting organized by ARPICO (Society of Italian Researchers &; Professionals in Western Canada) featuring brains and brain imaging in Vancouver.

Toronto’s and Ottawa’s Emergence

There’s an art/sci exhibit opening, from a March 27, 2018 Art/Sci Salon announcement (received via email),

You are invited!

FaceBook event:

The Oakwood Village Library and Arts Centre event:

341 Oakwood Avenue, Toronto, ON  M6E 2W1

I check the library webpage listed in the above and found this artist’s statement,

Artist / Scientist Statement [Stephen Morris]

I am interested in self-organized, emergent patterns and textures. I make images of patterns both from the natural world and of experiments in my laboratory in the Department of Physics at the University of Toronto. Patterns naturally attract casual attention but are also the subject of serious scientific research. Some things just evolve all by themselves into strikingly regular shapes and textures. Why? These shapes emerge spontaneously from a dynamic process of growing, folding, cracking, wrinkling, branching, flowing and other kinds of morphological development. My photos are informed by the scientific aesthetic of nonlinear physics, and celebrate the subtle interplay of order and complexity in emergent patterns. They are a kind of “Scientific Folk Art” of the science of Emergence.

While the official opening is April 5, 2018, the event itself runs from April 1 – 30, 2018.

Next, there’s another March 27, 2018 announcement (received via email) from the Art/Sci Salon but this one concerns a series of talks about ’emergence’, Note: Some of the event information was a little difficult to decipher so I’ve added a note to the relevant section).

What is Emergent Form?

Nature teems with self-organized forms that seem to spring spontaneously from the smooth background of things, by mechanisms that are not always apparent. Think of rippled sand on a beach or regular stripes in the clouds.  Plants, insects and animals exhibit spirals and spots and stripes in an exuberant riot of colours.  Fluid flows in amazingly regular swirls and eddies.  The emergence of form is ubiquitous, and presents a challenge and an inspiration to both artists and scientists. In mathematics, patterns appear as solutions of the nonlinear partial differential equations in the continuum limit of classical physics, chemistry and biology. In the arts and humanities, “emergent form” addresses the entangled ways in which humans, plants animals, microorganisms inevitably co-exist in the universe; the way that human intervention and natural transformation can generate new landscapes and new forms of life.

With Emergent Form, we want to question the idea of a fixed world.

For us, Emergent Form is not just a series of natural and human phenomena too complicated to understand, measure or predict, but also a concept to help us identify ways in which we can come to term with, and embrace their complexity as a source of inspiration.

Join us in Toronto and Ottawa for a series of interdisciplinary discussions, performances and exhibitions on Emergent Form on Apr 10, 11, 12 (Toronto) and Apr. 14 [2018] (Ottawa).

This series is the result of a collaboration among several parties. Each event of the series is different and has its dedicated RSVP 

Tue. Apr 10 The Fields Institute, 222 College Street

Emergent form: an interdisciplinary concept 6:00-8:00 pm Pier Luigi Capucci, Accademia di Belle Arti Urbino. Founder and director, Noemalab*, Charles Sowers, Independent artist and exhibit designer, the Exploratorium, Stephen Morris, Professor of of Physics University of Toronto, Ron Wild, smART Maps

CLICK HERE FOR MORE AND TO RSVP

Wed. Apr 11 The Fields Institute6:00-8:00 pm

Anatomy of an Interconnected SystemA Performative Lecture with Margherita Pevere, Aalto University, Helsinki

CLICK HERE FOR MORE AND TO RSVP

Thu. Apr 12 (Note: I believe that from 5 – 6 pm, you’re invited to see Pevere’s exhibit and then proceed to Luella Massey Studio Theatre for performances)

5:00 pm  Cabinets in the Koffler Student Centre [I believe this is at the University of Toronto] Anatomy of an Interconnected System An exhibition by Margherita Pevere

6:00 pm Luella Massey Studio Theatre, 4 Glen Morris Ave., Toronto biopoetriX – conFiGURing AI

6:00-8:00 pm Performance: 

6:00pm Performance “Corpus Nil. A Ritual of Birth for a Modified Body” conceived and performed by Marco Donnarumma

6.30pm LAB dance: Blitz media posters on labs in the arts, sciences and engineering

7.10pm Panel: Performing AI, hybrid media and humans in/as technologyMarco Donnarumma, Doug van Nort (Dispersion Lab, York U.), Jane Tingley (Stratford User Research & Gameful Experiences Lab –SURGE-, U of Waterloo), Angela Schoellig (Dynamic Systems Lab, U of T)

Panel animators: Antje Budde (Digital Dramaturgy Lab) and Roberta Buiani (ArtSci Salon)

8.15pm Reception at the Italian Cultural Institute, 496 Huron St, Toronto

CLICK HERE FOR MORE AND TO RSVP

Ottawa. Sat. Apr. 14 National Arts Centre, 1 Elgin Street11:00 am-1:00 pm

Emergent Form and complex phenomenaA creative panel discussion and surprise demonstrationsWith Pier Luigi Capucci, Margherita Pevere, Marco Donnarumma, Stephen Morris

CLICK HERE FOR MORE AND TO RSVP

This event would not be possible without the support of The Fields Institute for Research in Mathematical Science, The Italian Embassy, the Centre for Drama, Theatre and Performance Studies at the University of Toronto, the Digital Dramaturgy Lab, and the Istituto Italiano di Cultura. Many thanks to our community partner BYOR (Bring your own Robot)

I wonder if some of the funding from Italy is in support of Italian Research in World Day. This is the inaugural year for the event, which will be held annually on April 15.

Vancouver’s brains

The Society of Italian Researchers and Professionals in Western Canada (ARPICO) is hosting an event in Vancouver (from a March 22, 2018 ARICO announcement received via email),

Our second speaking event of the year, in collaboration with the Consulate General of Italy in Vancouver, has been scheduled for Wednesday, April 11th, 2018 at the Roundhouse Community Centre. Professor Vesna Sossi’s talk will be examining how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. You can read a summary of Prof. Sossi’s lecture as well as her short professional biography at the bottom of this message.

This event is organized in collaboration with the Consulate General of Italy in Vancouver to celebrate the newly instituted Italian Research in the World Day, as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. You can read more on our website event page.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

  • 6:45 pm – Doors Open
  • 7:00 pm – Lecture by Prof. Vesna Sossi
  • ~8:00 pm – Q & A Period
  • Mingling & Refreshments until about 9:30 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.


Imaging: A Window into the Brain

Brain illness, comprising neurological disorders, mental illness and addiction, is considered the major health challenge in the 21st century with a socio-economic cost greater than cancer and cardiovascular disease combined. There are at least three unique challenges hampering brain disease management: relative inaccessibility, disease onset often preceding the onset of clinical symptoms by many years and overlap between clinical and pathological symptoms that makes accurate disease identification often difficult. This talk will give examples of how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. Emphasis will be placed on the interplay between scientific discoveries and instrumentation and data analysis development as exemplified by the current understanding of the brain function as comprised by interactions between connectivity networks and neurochemistry and advancement in multi-modal imaging such as simultaneous PET and magnetic resonance imaging (MRI).

Vesna Sossi is a Professor in the University of British Columbia (UBC) Physics and Astronomy Department and at the UBC Djavad Mowafaghian Center for Brain Health. She directs the UBC Positron Emission Tomography (PET) imaging centre, which is known for its use of imaging as applied to neurodegeneration with emphasis on Parkinson’s disease. Her main areas of interest comprise development of imaging methods to enhance the investigation of neurochemical mechanisms that lead to an increased risk of Parkinson’s disease (PD) and mechanisms that contribute to treatment-related complications. She uses PET imaging to explore how alterations of the different neurotransmitter systems contribute to different trajectories of disease progression. Her other areas of interest are PET image analysis, instrumentation and multi-modal, multi-parameter data analysis. She published more than 180 peer review papers, is funded by several granting agencies, including the Michael J Fox Foundation, and sits on several national and international review panels.


WHEN: Wednesday, April 11th, 2018 at 7:00pm (doors open at 6:45pm)
WHERE: Roundhouse Community Centre, Room B – 181 Roundhouse Mews, Vancouver, BC, V6Z 2W3
RSVP: Please RSVP at EventBrite (https://imaging-a-window-into-the-brain.eventbrite.ca) or email info@arpico.ca


Tickets are Needed

  • Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.
  • All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

You can find directions for the Roundhouse Community Centre here

I have one idle question. What’s going to happen these groups if Canadians change their use of  Facebook or abandon the platform as they are threatening to do in the face of Cambridge Analytica’s use of their data? A March 25, 2018 article on huffingtonpost.ca outlines the latest about Canadians’ reaction to the Cambridge Analytical news according to an Angus Reid poll,

A survey by Angus Reid Institute suggests 73 per cent of Canadian Facebook users say they will make changes, while 27 per cent say it will be “business as usual.”

Nearly a quarter (23 per cent) said they would use Facebook less in the future, and 41 per cent of users said they would check and/or change their privacy settings.

The survey also found that one in 10 say they plan to abandon the platform, at least temporarily.

Facebook has been under fire for its ability to protect user privacy after Cambridge Analytica was accused of lifting the Facebook profiles of more than 50 million users without their permission.

There you have it.

*Well, a bit more information about one of the “Emergent’ speakers was received in an April 4, 2018 ArtSci Salon email announcement,

Do make sure to check out Pier Luigi Capucci’s EU-based (but with international breadth) Noemalab platform. https://noemalab.eu/ since the mid-nineties, this platform has been an important node of information for New Media Art and the relation between the arts and science.

noemalab’s blog regularly hosts reviews of events and conferences occurring around the world, including  the Subtle Technologies Festival between 2007 and 2014. you can search its archives here http://blogs.noemalab.eu/

Capucci has been writing several reflections on emergent forms of Life and theorized what he called the “third life”. See a recent essay https://noemalab.eu/memo/events/evolutionary-creativity-the-inner-life-and-meaning-of-art/ here is a picture which I would love him to explain during Emergent Form. Intrigued? come listen to him!

Evolution of literature as seen by a classicist, a biologist and a computer scientist

Studying intertextuality shows how books are related in various ways and are reorganized and recombined over time. Image courtesy of Elena Poiata.

I find the image more instructive when I read it from the bottom up. For those who prefer to prefer to read from the top down, there’s this April 5, 2017 University of Texas at Austin news release (also on EurekAlert),

A classicist, biologist and computer scientist all walk into a room — what comes next isn’t the punchline but a new method to analyze relationships among ancient Latin and Greek texts, developed in part by researchers from The University of Texas at Austin.

Their work, referred to as quantitative criticism, is highlighted in a study published in the Proceedings of the National Academy of Sciences. The paper identifies subtle literary patterns in order to map relationships between texts and more broadly to trace the cultural evolution of literature.

“As scholars of the humanities well know, literature is a system within which texts bear a multitude of relationships to one another. Understanding what is distinctive about one text entails knowing how it fits within that system,” said Pramit Chaudhuri, associate professor in the Department of Classics at UT Austin. “Our work seeks to harness the power of quantification and computation to describe those relationships at macro and micro levels not easily achieved by conventional reading alone.”

In the study, the researchers create literary profiles based on stylometric features, such as word usage, punctuation and sentence structure, and use techniques from machine learning to understand these complex datasets. Taking a computational approach enables the discovery of small but important characteristics that distinguish one work from another — a process that could require years using manual counting methods.

“One aspect of the technical novelty of our work lies in the unusual types of literary features studied,” Chaudhuri said. “Much computational text analysis focuses on words, but there are many other important hallmarks of style, such as sound, rhythm and syntax.”

Another component of their work builds on Matthew Jockers’ literary “macroanalysis,” which uses machine learning to identify stylistic signatures of particular genres within a large body of English literature. Implementing related approaches, Chaudhuri and his colleagues have begun to trace the evolution of Latin prose style, providing new, quantitative evidence for the sweeping impact of writers such as Caesar and Livy on the subsequent development of Roman prose literature.

“There is a growing appreciation that culture evolves and that language can be studied as a cultural artifact, but there has been less research focused specifically on the cultural evolution of literature,” said the study’s lead author Joseph Dexter, a Ph.D. candidate in systems biology at Harvard University. “Working in the area of classics offers two advantages: the literary tradition is a long and influential one well served by digital resources, and classical scholarship maintains a strong interest in close linguistic study of literature.”

Unusually for a publication in a science journal, the paper contains several examples of the types of more speculative literary reading enabled by the quantitative methods introduced. The authors discuss the poetic use of rhyming sounds for emphasis and of particular vocabulary to evoke mood, among other literary features.

“Computation has long been employed for attribution and dating of literary works, problems that are unambiguous in scope and invite binary or numerical answers,” Dexter said. “The recent explosion of interest in the digital humanities, however, has led to the key insight that similar computational methods can be repurposed to address questions of literary significance and style, which are often more ambiguous and open ended. For our group, this humanist work of criticism is just as important as quantitative methods and data.”

The paper is the work of the Quantitative Criticism Lab (www.qcrit.org), co-directed by Chaudhuri and Dexter in collaboration with researchers from several other institutions. It is funded in part by a 2016 National Endowment for the Humanities grant and the Andrew W. Mellon Foundation New Directions Fellowship, awarded in 2016 to Chaudhuri to further his education in statistics and biology. Chaudhuri was one of 12 scholars selected for the award, which provides humanities researchers the opportunity to train outside of their own area of special interest with a larger goal of bridging the humanities and social sciences.

Here’s another link to the paper along with a citation,

Quantitative criticism of literary relationships by Joseph P. Dexter, Theodore Katz, Nilesh Tripuraneni, Tathagata Dasgupta, Ajay Kannan, James A. Brofos, Jorge A. Bonilla Lopez, Lea A. Schroeder, Adriana Casarez, Maxim Rabinovich, Ayelet Haimson Lushkov, and Pramit Chaudhuri. PNAS Published online before print April 3, 2017, doi: 10.1073/pnas.1611910114

This paper appears to be open access.

Canadian ‘studies of science’ news: career opportunity for postdoc (2nd call), summer school in India, and a Situating Science update

The deadline for a posdoctoral fellowship with Atlantic Canada’s Cosmoplitanism group (which morphed out of the Situating Science group) is coming up shortly (March 2, 2015). I wrote about this opportunity in a Dec. 12, 2014 post part of which I will reproduce here,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Good luck! You can find more application information here.

Now for the summer school opportunity in India, (from a Feb. 18, 2015 Cosmopolitanism announcement).

Call for applications:
“Scientific Objects and Digital Cosmopolitanism” Summer School

Manipal Centre for Philosophy and Humanities,
Manipal, India
July 20-24, 2015

Please spread the word in your communities.

 

Scientific Objects and Digital Cosmopolitanism

Co-organized by the Manipal Centre for Philosophy and Humanities and Cosmopolitanism and the Local in Science and Nature.

Dates
July 20-24, 2015

Deadline for applications
Monday March 23, 2015

Organizers
Sundar Sarukkai, Manipal Centre for Philosophy and Humanities
Gordon McOuat, University of King’s College

Coordinator
Varun Bhatta, Manipal Centre for Philosophy and Humanities

Description:
Applications from post-graduate and doctoral students in the fields of philosophy, philosophy of science and social sciences, history and philosophy of science, science and technology studies, and cognate fields are invited to a five-day summer school in India, made possible by collaborations between institutions and scholars in Canada, India and Southeast Asia. This will be an excellent opportunity for graduate students interested in receiving advanced training in the philosophy of science and science and technology studies, with a focus on scientific objects and their relation to cosmopolitanism.

The paradigm of scientific objects has undergone a major transformation in recent times. Today, scientific objects are not limited to microscopic or major astronomical objects. A new category of objects involves ontological modes of data, grids, simulation, visualization, etc. Such modes of objects are not merely peripheral props or outcomes of scientific endeavour. They actively constitute scientific theorizing, experimentation and instrumentation, and catalyze notions of cosmopolitanism in the digital world. Cosmopolitanism in this context is defined as a model of cultural and political engagement based on multidirectional exchange and contact across borders. A cosmopolitan approach treats science as a contingent, multifaceted and multicultural network of exchange. The summer school will engage with philosophical themes around the nature of new scientific objects and digital cosmopolitanism.

“The event is organized by the Manipal Centre for Philosophy and Humanities (Manipal University) and by the Social Sciences and Humanities Research Council of Canada-funded Cosmopolitanism and the Local in Science and Nature, a three-year project to establish a research network on cosmopolitanism in science with partners in Canada, India, and Southeast Asia. The project closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape.

Program and Faculty:
Each of the days will be split among:
(a) Background sessions led by Arun Bala, Gordon McOuat and Sundar Sarukkai,
(b) Sessions led by other faculty members with recognized expertise in the theme, and
(c) Sessions devoted to student research projects.

There will be plenty of opportunities for interaction and participation. The seminar will be held in English and readings will be circulated in advance. Special events will be organized to complement session content. There also will be opportunities for exploring the incredible richness and diversity of the region.

Selection Criteria:
We seek outstanding graduate students from Canada, India and Southeast Asia. We will prioritize applications from graduate students in disciplines or with experience in philosophy, philosophy of science, social studies, the history and philosophy of science, or science and technology studies.

Location and Accommodations:
The event will be hosted by the Manipal Centre for Philosophy and Humanities in the picturesque ocean-side state of Karnataka in south-western India. Students will be housed in student residences. The space is wheelchair accessible.

Fees:
A registration fee of Rs 1500 for Indian students and $100 CAD for international students will be charged. This fee will include accommodations and some meals.

Financial Coverage:

Students from India:
Travel for India-based students will be covered by the summer school sponsors.

Students from Canada and Southeast Asia:
Pending government funding, travel costs may be defrayed for students from Canada or Southeast Asia. Students should indicate in their applications whether they have access to travel support (confirmed or unconfirmed) from home institutions or funding agencies. This will not affect the selection process. Acceptance letters will include more information on travel support.

Students from outside Canada, India and Southeast Asia:
Students from outside Canada, India and Southeast Asia will be expected to provide their own funding.

Students at home institutions of “Cosmopolitanism and the Local in Science and Nature” team members are strongly encouraged to contact the local team member to discuss funding options. Information on the project’s partners and team members is available on the project’s “About Us” page: www.CosmoLocal.org/about-us.

Any travel support will be considered as co-sponsorship to this international training event and acknowledged accordingly. Further information on funding will be included with acceptance letters.

Timeline:
Deadline for applications: March 23, 2015
Notification of acceptance: Week of April 6, 2015
Deadline for registration forms: May 11, 2015

Procedure:
Applications should include the following, preferably sent as PDFs:
1. Description of research interests and their relevance to the school (max. 300 words)
2. Brief Curriculum Vitae / resume highlighting relevant skills, experience and training,
3. One signed letter of recommendation from a supervisor, director of graduate studies, or other faculty member familiar with applicant’s research interests.

Applications should be sent to:
MCPH Office, mcphoffice@gmail.com
with a copy to
Varun Bhatta, varunsbhatta@gmail.com

For more information, please contact :
Greta Regan
Project Manager
Cosmopolitanism and the Local
University of King’s College
situsci@dal.ca

and/or

Dr. Gordon McOuat, History of Science and Technology Programme,
University of King’s College
gmcouat@dal.ca

The last bit of information for this post concerns the Situating Science research cluster mentioned here many times. Situating Science was a seven-year project funded by the Social Sciences and Humanities Research Council (SSHRC) which has become the Canadian Consortium for Situating Science and Technology (CCSST) and has some sort of a relationship (some of the Situating Science organizers have moved over) to the Cosmopolitanism project. The consortium seems to be a somewhat diminished version of the cluster so you may want to check it out now while some of the information is still current.

Quantum entanglement and magnetism

A joint Indian/Austrian research team has uncovered the secrets behind why manganese oxides (manganites) have demonstrably different properties when size is reduced. From the Nov. 29, 2011 news item on Nanowerk,

Material properties such as electrical conductivity, magnetic properties or the melting point do not depend on an object’s size and shape. “In India, however, an experiment recently showed that special manganese oxides – so called manganites – exhibit completely different properties, when their size is reduced to tiny grains”, Karsten Held explains.

A team of scientists from the Vienna University of Technology (Austria) and the University of Calcutta (India) investigated this phenomenon – and the new effect could be explained in computer simulations. In a crossover from large crystals to smaller crystals, the distribution of the electrons changes, and so does their energy. This, in turn, changes the electrical and magnetic properties of the crystal. “The phenomenon of quantum entanglement plays a very important role here”, says Professor Karsten Held. “We cannot think of the electrons as classical particles, moving independently of each other, on well-separated paths. The electrons can only be described collectively.” By changing their size, the properties of the manganite-crystals can now be harnessed. Larger crystals are insulators, and they are not magnetic. Tiny crystal pieces on the other hand turn out to be metallic ferromagnets.

Here’s an image of a magnet and crystals,

A magnet and an illustration of manganite cystals (downloaded from the Vienna University of Technology wesite)

Here’s a link to the Nov. 29, 2011 news release from the Vienna University of Technology where you can find additional information in English and German and some pictures.

Poetry, molecular biophysics and innovation in Canada

There’s an interesting story by Karen Hopkin (Carpe Datum)  in the latest The Scientist newsletter about Gregory Petsko, a would-be student of epic poetry who changed his field of studies to molecular biophysics as he made his way to a Rhodes scholarship at Oxford. From Carpe Datum,

With his heart set on the study of epic poetry, Petsko arranged to work with Maurice Bowra, a preeminent classicist, and set sail for England. “Back then, all the Rhodes scholars traveled over on the Queen Elizabeth, which took 8 days,” he says. “And sometime while I was out over the Atlantic, Maurice Bowra died.” Not sure how to proceed, Petsko phoned Princeton and spoke to the head of the lab where he’d worked part-time to earn a few bucks. “He told me to go over to David Phillips’s lab and get a degree in molecular biophysics,” says Petsko. “And it was the best thing that ever happened to me.”

“For me, structure is just a means to an end. That end is function. I care about function,” he says. “I want to know how things work.”

“Greg never loses sight of the big picture. For him, it’s ultimately about the biology,” says former postdoc Ann Stock, an HHMI investigator at the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. “In the field of structural biology, that hasn’t always been true. In the early years, many structural biologists focused mostly on the nuts-and-bolts technical aspects of solving three-dimensional structures.” Petsko is proficient when it comes to nuts and bolts, she says, “but he sees them as tools that allow him to explore the biology of proteins.”

I find it interesting that Petsko is well grounded in the humanities as there is a longstanding argument that an education in the humanities and/or liberal arts is a “big picture” education. Petsko’s discoveries include the TIM barrel,

“It’s like an alpha helix or a beta-pleated sheet: the TIM barrel is a protein fold that basically implies function,” says [Jan] Westpheling [geneticist at University of Georgia]. “And Greg discovered it. This was a profound contribution in the days when people were just beginning to understand the three-dimensional structure of proteins.”

If you’re interested in more about how scientists think and work, please do read Hopkin’s story as I’m now switching gears to Rob Annan’s (Don’t leave Canada behind blog) latest post, Innovation isn’t just about science funding.

Rob raises a number of points about innovation in Canada, along with this one (from the post),

Expecting researchers to produce innovative research and to translate it into the broader world is unrealistic. And giving more money to researchers isn’t going to change that.

Much of the discussion about Canada’s lack of innovation is focused on how money can be made from research. Scientists are quite innovative in their research; the problem, from the government’s perspective, lies in bringing the research to market. Back to Rob,

… Unlike scientific research, social and commercial innovation isn’t a relatively linear process you can lay out in five year funding applications. It doesn’t require a highly-specialized skill set. It requires a broad skill set that involves creative thinking, communication skills, problem-solving, critical thinking, and cultural and civic understanding – all of which need to be applied to the varied stages of innovation development.

These are the attributes of successful entrepreneurs. These are also the attributes of a liberal arts and science education.

You might say that Petsko embodies “the attributes of a liberal arts and science education,” although as far as I know he’s not an entrepreneur.  Rob expands on the notion of “big picture” education,

Even a who’s-who of Canadian high-tech CEOs have made an explicit case for the importance of liberal arts and science graduates in their industries.

Yes, we need to fund scientific research to ensure that we have a deep pool of innovation from which to draw. But translating this research into world-leading social or commercial innovation won’t happen if we leave it strictly to the scientists. Individuals trained in the social sciences and humanities bring an essential skill set to the process, and we neglect funding these areas at our competitive peril.

Thank you, Rob. It’s always good when someone who’s a scientist makes these kinds of comments as someone with a liberal arts/social science/humanities background could be accused of being self-serving.

While the  Petsko story doesn’t perfectly illustrate Rob’s points, it does hint at the importance of broad-based thinking for breakthroughs and, ultimately, innovation. I’d add one item to Rob’s list of skills, risktaking.

I do have a few questions but I’m going to take those to Rob’s comments section.

Social science and nanotechnology (Canadian or otherwise)

They sure don’t make it easy to find but there is a way to search Canada’s Social Science and Humanities Research Council awards for research. I ran a search for nanotechnology projects spanning the 2005-6 and 2006-7 fiscal years and found four projects. Two at the University of Alberta and two at Simon Fraser University in British Columbia. Hmmm….here are the titles (and researchers and universitites):

  • Giorgio Agamben’s political ontologies: a study of biopower, biopolitics, and nanotechnology. (Charles A Barbour at the U of A)
  • A field perspective on nanotechnology path creation: an examination of carbon nanotubes. (Michael Lounsbury at the U of A)
  • Opportunity creation from the confluence of technologies. (Eliicia Maine, SFU)
  • Bionanotechnology in British Columbia: conceptualizations of social implications. (Karen M Woods, SFU)

Those were all awarded in 2006. For fun, I went back to the 2001-2 fiscal year and found one other researcher (she got two grants for the same project) in 2003-4

  • Weaving new technologies: social theory and ubiquitous computing. (Anne Galloway, Carleton University, Ontario)

It doesn’t seem like a lot especially when I see some of the work being done in the UK and in the US.

On other fronts, I stumbled across an old (2004?) Neal Stephenson interview with Slashdot (I think the writer is Adam Shand). They make no mention of Diamond Age, which is more or less Stephenson’s nano novel. Still, he provides an interesting take on being a science fiction writer and making money as a writer. In fact, if you’re interested in Neal Stephenson interviews, etc., you can go here for a listing.