Tag Archives: Hydro-Québec

Hydro-Québec, lithium-ion batteries, and silicate-based nanoboxes

Hydro-Québec (Canada) is making a bit of a splash these days (this is the third mention within less than a week) on my blog, if nowhere else. The latest development was announced in a Feb. 24, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Singapore’s Institute of Bioengineering and Nanotechnology (IBN) of A*STAR and Quebec’s IREQ (Hydro-Québec’s research institute) have synthesized silicate-based nanoboxes that could more than double the energy capacity of lithium-ion batteries as compared to conventional phosphate-based cathodes (“Synthesis of Phase-Pure Li2MnSiO4@C Porous Nanoboxes for High-Capacity Li-Ion Battery Cathodes”). This breakthrough could hold the key to longer-lasting rechargeable batteries for electric vehicles and mobile devices.

A Feb. 24, 2015 Hydro-Québec press release (also on Canadian News Wire), which originated the news item, describe the research and the relationship between the two institutions,

“IBN researchers have successfully achieved simultaneous control of the phase purity and nanostructure of Li2MnSiO4 for the first time,” said Professor Jackie Y. Ying, IBN Executive Director. “This novel synthetic approach would allow us to move closer to attaining the ultrahigh theoretical capacity of silicate-based cathodes for battery applications.”

“We are delighted to collaborate with IBN on this project. IBN’s expertise in synthetic chemistry and nanotechnology allows us to explore new synthetic approaches and nanostructure design to achieve complex materials that pave the way for breakthroughs in battery technology, especially regarding transportation electrification,” said Dr. Karim Zaghib, Director – Energy Storage and Conservation at Hydro-Québec.

Lithium-ion batteries are widely used to power many electronic devices, including smart phones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. Due to a growing demand for long-lasting, rechargeable lithium-ion batteries for various applications, significant efforts have been devoted to improving the capacity of these batteries. In particular, there is great interest in developing new compounds that may increase energy storage capacity, stability and lifespan compared to conventional lithium phosphate batteries.

The five-year research collaboration between IBN and Hydro-Québec was established in 2011. The researchers plan to further enhance their new cathode materials to create high-capacity lithium-ion batteries for commercialization.

Here’s a link to and a citation for the paper,

Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes by Xian-Feng Yang, Jin-Hua Yang, Karim Zaghib, Michel L. Trudeau, and Jackie Y. Ying. Nano Energy Volume 12, March 2015, Pages 305–313 doi:10.1016/j.nanoen.2014.12.021

This paper is behind a paywall.

Here are my two most recent mentions of Hydro-Québec and lithium-ion batteries (both Grafoid and NanoXplore have deals with Hydro-Québec),

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election (Feb. 23, 2015)

NanoXplore: graphene and graphite in Québec (Canada) (Feb. 20, 2015)

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election

The federal government of Canada is facing an election this year and many analysts believe it will be held in October 2015. Interestingly, there have been a few recent announcements about funding, also referred to as contributions, for technology companies in the provinces of Ontario and Québec. (You need to win at least one of these provinces if you want to enjoy a majority government.) My Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists post* on Feb. 19, 2015 includes my observations (scroll down past the toxicity topic) about the government’s ‘clean technology’ promotional efforts and the rebranding of environmentalism into an ‘anti-petroleum’ movement.

This latest announcement about a ‘non-repayable grant’ is to be found in a Feb. 20, 2015 news item on Azonano,

The Hon. Greg Rickford, Minister of Natural Resources and Minister Responsible for Sustainable Development Technology Canada (SDTC) announced today the award of $8.1 million to Grafoid Inc. – Canada’s leading graphene technologies and applications developer – to automate Grafoid’s production of its low-cost, high-purity MesoGraf™ graphene.

“Our government is investing in advanced clean energy technologies that create well-paying jobs and generate economic opportunities. Today’s announcement contributes to economic prosperity and a cleaner environment in Ontario and across Canada,” said Mr. Rickford, who is also the Minister Responsible for Federal Economic Development Initiative for Northern Ontario.

The contribution from SDTC is an $8.1 million non-repayable grant to design and test the automation system for the production of constant quality MesoGraf™. Further, the grant enables the testing of pre-commercial products using MesoGraf™ graphene from the automated system.

The minister announced the funding at a news conference in Toronto attended by Grafoid and five other Canadian non graphene-related technology companies.

Ottawa-based [Ottawa is in the province of Ontario] Grafoid, the developer of a diverse range of renewable energy, industrial, military and consumer applications from its MesoGraf™ materials is the first Canadian graphene technologies developer to partner with the Canadian Government.

A Feb. 20, 2015 Grafoid news release on Marketwired.com, which originated the news item, describes how this makes Canada like other constituencies and gives a bit more detail about the company and its aims,

Canada joins the European Union, the United States, China and South Korea in providing funding assistance to privately-held graphene enterprises.

Grafoid Founding Partner and CEO Gary Economo praised Canada’s decision to stake its claim in the graphene space as the world races toward the commercialization of a potentially disruptive, pan-industrial nanomaterial.

“This is a great day for the Canadian graphene industry and for Grafoid, in particular, because it leads us out of the laboratory and into the automated manufacturing of the world’s new wonder material,” he told the news conference.

“Effectively, today’s $8.1million Federal government funding grant enables us to take a giant leap towards graphene’s broader commercialization,” Mr. Economo said. “It will permit us to increase MesoGraf™ production output from kilograms to tonnes within our global technology centre in Kingston, Ontario.

“For this we are truly appreciative of Canada’s actions in recognizing our science and commercial objectives. In the past three years Grafoid has travelled the globe staking our unique position in the graphene revolution. Today we are gratified to do this going forward with the Government of Canada,” Mr. Economo said.

Grafoid produces MesoGraf™ directly from high-grade graphite ore on a safe, economically scalable, environmentally sustainable basis. Its patent pending one-step process is unique in the industry, producing single layer, bi-layer and tri-layer graphene.

It is then adapted – or functionalized – by Grafoid for use in biomedical, renewable energy storage and production, military, aerospace and automotive, additive materials for 3D printing, water purification, construction, lubricants, solar solutions, coatings, sporting equipment and other sectoral applications.

At one atom thin, graphene is a two-dimensional pure carbon derived from graphite.

It is the strongest material known to science, is barely visible to the naked eye, yet it holds the potential to become a disruptive technology across all industrial sectors and ultimately, for the benefit of humanity.

Grafoid’s Game-Changing Process

Grafoid’s unique graphite ore-to-graphene process produces a material that eliminates cost barriers to graphene’s broad commercialization in a number of industries, some of which include building materials, automotive, aerospace, military, biomedical, renewable energy and sporting equipment.

In order to bring those application developments to market Grafoid’s partners require a scaling up of MesoGraf™ production to supply their needs for pre-production development testing and commercial production, and; the expansion of Grafoid’s research and development.

The automation of bulk MesoGraf™ graphene production is a global first. Uniformity and consistency are critical to the development of mass produced commercial applications.

One of the company’s first-to-market MesoGraf™ developments is in the renewable energy storage and power generation sectors. The market for quick charge long-life batteries is vast, and growing.

Hydro-Quebec – one of the world’s premier patent holders and suppliers of renewable energy technologies – is one of Grafoid’s first long-term sustainable technology development partners. [emphasis mine]

Within six months of development, multiple patents were filed and initial tests of the joint venture’s MesoGraf™ lithium-iron phosphate materials resulted in extreme gains in power performance over conventional batteries.

Grafoid’s corporate goal is not to simply be a graphene supplier but a global partner in commercial application development. With the ability to ramp up graphene output the company’s long-term financial prospects are secured from royalties and licensing fees from jointly developed technologies.

Competitive cost advantages built into an automated MesoGraf™ graphene production regime results in anticipated cost advantages to customers and licensees.

The Hydro-Québec deal with Grafoid was mentioned here in a Nov. 27, 2012 posting which includes this nugget,

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Given the company information included in the news release, there seems to have been a change in the corporate relationship between Grafoid and Focus Graphite. At the very least, Grafoid announcements are now generated by Grafoid itself,

About Grafoid Inc.

Incorporated in late 2011, Grafoid invested in a novel process that transforms raw, unprocessed, high grade graphite ore from its sister company, Focus Graphite to produce single layer, bi-layer and tri-layer MesoGraf™ graphene.

Today, Grafoid, a private company, sits as Canada’s innovation leader and standard-bearer in the global graphene technology space.

The company’s diverse commercial application developments include more than 15 global corporate partnerships – including Fortune 500 companies.

With 17 active projects under development with 11 universities and laboratories, and; some 64 patent applications filed or in development, Grafoid’s business goes beyond scientific R&D.

Grafoid’s Canadian-developed technologies are exported globally.

During the last three years Grafoid has experienced exponential growth as a global enterprise through joint-venture partnerships with Hydro-Quebec, Japan’s Mitsui & Company and other multinational corporations in the United States and Europe.

Grafoid’s wholly-owned subsidiaries Alcereco of Kingston, Ontario and Braille Battery, of Sarasota, Florida extend the company’s capabilities into graphene related material science and nano-engineering.

Braille is a world leader in ultra lightweight Lithium-ion high performance battery production and is a supplier to Formula 1, NASCAR and IndyCar racing vehicles.

The sister company, Focus Graphite also based in Ottawa, which provides Grafoid’s graphite flakes, owns a deposit in the northeastern part of Québec. (You can read more about graphite deposits and mines in my Feb. 20, 2015 post, NanoXplore: graphene and graphite in Québec (Canada).

Of course, this flurry of announcements may point to a Spring 2015 election.

*’posted’ changed to ‘post’ on Oct. 26, 2015.

NanoXplore: graphene and graphite in Québec (Canada)

For the second time this week I’m going to be mentioning the province of Québec (Canada) in relation to its ‘nanotechnology’ businesses (see: Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015). A Feb. 20, 2015 news item on Azonano announces a graphene production facility in the Montréal area,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that its graphene production facility is in full operation with a capacity of 3 metric tonnes per year. This is the largest graphene production capacity in Canada and, outside of China, one of the 5 largest in the world.

A Feb. 19, 2015 NanoXplore news release on MarketWire, which originated the news item, provides a bit more detail in amidst the promotional hype,

NanoXplore’s production process is unique and the core of the company’s competitive advantage. The proprietary process gently and efficiently creates pristine graphene from natural flake graphite without creating the crystalline defects that can limit performance. The process also functionalises the graphene material during production making subsequent mixing with a broad range of industrial materials simple and efficient. NanoXplore’s facility is routinely producing several standard grades of graphene as well as derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries. [emphasis mine]

Another graphite connection in Québec

Interestingly, back in 2012 Hydro-Québec signed a deal with another Québec-based company, Focus Graphite (which owns a graphite deposit in the northeastern part of the province) to explore ways to produce more efficient lithium-ion batteries (my Nov 27, 2012 posting).

Getting back to the news release, it also provides a summary description of NanoXplore,

NanoXplore is a privately held advanced materials company focused on the large-scale production of high quality graphene and the integration of graphene into real world industrial products. NanoXplore achieves significant improvements in performance for its customers with very low levels of graphene because its material is of high quality (few defects, highly dispersible), because the production process can easily tune the dimensions of the graphene platelets, and because NanoXplore has specific expertise in dispersing graphene in a broad range of industrial materials. NanoXplore partners with its customers to integrate graphene into their products and processes, providing them with innovative products and a strong competitive advantage.

Graphite mines

NanoXplore, too, has some sort of relationship with a graphite mine or, in this case mining company, Mason Graphite (from the NanoXplore website’s Investors’ page),


Partnered with Canadian mining company Mason Graphite, NanoXplore has access to lower quartile graphite/graphene production costs as well as a stable, long term, large flake source of raw material. Local government bodies have embraced the graphite-graphene cluster. With production and R&D centrally located in Montreal, NanoXplore offers world class innovation and true intellectual property safety for its formulation partners.

By the way, Benoit Gascon, NanoXplore’s board chair (scroll down to the bottom  of the team list) is also Mason Graphite’s Chief Executive Officer (CEO). The company has recently announced a detailed study on large-scale production of value-added graphite products (from a Feb. 11, 2015 Mason Graphite news release),

Mason Graphite Inc. (“Mason Graphite” or the “Company”) (TSX VENTURE:LLG)(OTCQX:MGPHF) announces that it has initiated a detailed study for large scale processing of value-added graphite products.

Value-added processing includes micronization, additional purification, spheronization and coating, resulting in graphite products that are suitable for a wide range of electrochemical applications (including alkaline batteries, lithium-ion batteries and fuel cells), technical applications (including carbon brushes, brake linings, plastics and lubricants), and other specialized uses.

The development and validation of the fabrication processes for these graphite products will be carried out by the National Research Council of Canada (“NRC”) along with Hatch, and is expected to conclude by the end of 2015. Following initial scoping work, equipment trials and product testing, the Company intends to provide preliminary results and an updated work program by mid-2015.

The NRC is the Government of Canada’s premier research and technology organization. Hatch is an engineering firm located in Montreal which is already working closely with Mason Graphite on the development of the Lac Gueret Graphite Project.

Other parts of Canada and the graphite/graphene enterprise

NanoXplore and Focus Graphite are not the only companies with connections to a graphite mine in Québec. There’s also Vancouver (Canada)-based Lomiko Metals (mentioned here in an April 17, 2013 posting [for the first time]. A. Paul Gill, Lomiko’s CEO, seems to be pursuing a similar business strategy in that Lomiko, too, has a number of business alliances, e.g., the mine, a research and development laboratory, etc. Moving out of Québec, there is also a graphite mine in Ontario owned by Northern Graphite (my Feb. 6, 2012 posting). It seems Canadians in eastern Canada have a valuable resource in graphite flakes.

A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite

Focus Graphite, a Canadian company with the tag line ‘Think Graphite today, Think Graphene tomorrow’, is making a bit of splash this month (April 2013) with its announcement of three deals (two joint ventures and the commissioning of their pilot plant) and it’s only April 17.

The most recent is the pilot plant announcement, from Focus Graphite’s Apr. 17, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) (“Focus” or the “Company”) is pleased to report the commissioning of its pilot plant and the start-up of circuit testing for the production of high-grade graphite concentrates from the Company’s wholly-owned Lac Knife, Québec graphite project.

The principal objectives of the pilot plant testwork are to confirm the results from Phase II bench scale Locked Cycle Tests (LCT)*; to assess the technical viability and operational performance of the processing plant design; to generate tailings for environmental testing, and; to produce a range of graphite raw materials for customer assessments and for further upgrading.

The Lac Knife project pilot plant was designed and built and is being operated by SGS Canada Inc. (“SGS”) in Lakefield, Ontario. The testing is expected to last 4-6 weeks.


The highlights of those tests conducted by SGS confirmed:-       The average amount of graphite flake recovered from the core samples in the Phase II LCT increased to 92.2% compared with a recovery of 84.7% graphite flake in the Phase I LCT;

–       The proportion of large flakes (+80 mesh) in the graphite concentrates ranged between 35% and 58%;

–       The carbon content of graphite concentrates produced from the four (4) composites averaged 96.6 %C, including the fine flake fraction (-200 mesh), a 4.6% increase over Phase I LCT completed in mid-2012.

Final results for Phase II LCT including for the two composite drill core samples of massive graphite mineralisation are pending.

* A locked cycle test is a repetitive batch flotation test conducted to assess flow sheet design. It is the preferred method for arriving at a metallurgical projection from laboratory testing. The final cycles of the test are designed to simulate a continuous, stable flotation circuit.

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid’s unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.

“Today’s announcement marks Grafoid’s fifth publicly declared graphene development project with a major academic or corporate institution, and the third related directly to a next generation green technology or renewable energy development project,” Mr. Economo said.

It follows R&D partnering projects announced with Rutgers University’s AMIPP, CVD Equipment Corporation, with Hydro-Quebec’s research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.

Focus Graphite’s Apr. 16, 2013 press release, which originated the news item on Azonano, provides some context for the intense worldwide interest in graphene and the business imperatives,

Alternative Energy & Graphene:

The quest for alternative energy sources is one of the most important and exciting challenges facing science and technology in the 21st century. Environmentally-friendly, efficient and sustainable energy generation and usage have become large efforts for advancing human societal needs.  Graphene is a pure form of carbon with powerful characteristics which can bring about success in portable, stationary and transportation applications in high energy demanding areas in which electrochemical energy storage and conversion devices such as batteries, fuel cells and electrochemical supercapacitors  are the necessary devices.

Electrochemical Supercapacitors:

Supercapacitors, a zero-emission energy storage system, have a number of high-impact characteristics, such as fast charging, long charge-discharge cycles and broad operating temperature ranges, currently used or heavily researched in hybrid or electrical vehicles, electronics, aircrafts, and smart grids for energy storage. The US Department of Energy has assigned the same importance to supercapacitors and batteries. There is much research looking at combining electrochemical supercapacitors with battery systems or fuel cells.

Fuel Cells:

A fuel cell is a zero-emission source of power, and the only byproduct of a fuel cell is water. Some fuel cells use natural gas or hydrocarbons as fuel, but even those produce far less emissions than conventional sources. As a result, fuel cells eliminate or at least vastly reduce the pollution and greenhouse gas emissions caused by burning fossil fuels, and since they are also quiet in operation, they also reduce noise pollution. Fuel cells are more efficient than combustion engines as they generate electricity electrochemically. Since they can produce electricity onsite, the waste heat produced can also be used for heating purposes. Small fuel cells are already replacing batteries in portable products.

Toyota is planning to launch fuel cell cars in 2015, and has licensed its fuel cell vehicle technology to Germany’s BMW AG. BMW will use the technology to build a prototype vehicle by 2015, with plans for a market release around 2020.

By 2020, market penetration could rise as high as 1.2 million fuel cell vehicles, which would represent 7.6% of the total U.S. automotive market. Other fuel cell end users are fork lift and mining industries which continuously add profits to this growing industry.

Proton or polymer exchange membranes (PEM) have become the dominant fuel cell technology in the automotive market.

The U.S. Department of Energy has set fuel cell performance standards for 2015. As of today, no technologies under development have been able to meet the DOE’s  targets for performance and cost.

As I am from British Columbia and it was where* the first joint venture deal signed in April, here’s a bit more from Focus Graphite’s Apr. 9, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) on behalf of Grafoid Inc., announced today Grafoid’s joint venture development agreement with Coquitlam, British Columbia-based CapTherm Systems Inc. to develop and commercialize next generation, multiphase thermal management systems for electric vehicle (EV) battery and light emitting diode (LED) technologies.

CapTherm Systems Inc – Progressive Thermal Management is a thermal management/cooling company specializing in personal computer, server, LED, and electric vehicle cooling systems. It develops and commercializes proprietary, next-generation high-power electronics cooling technologies.

Its multiphase cooling technologies represent the core of its products that harness the power of latent heat from vaporization.

Under the terms of the agreement, Grafoid Inc., a company invested in the production of high-energy graphene and the development of graphene industrial applications will supply both materials and its science for adapting graphene to CapTherm’s existing EV and LED cooling systems.

Focus Graphite is a Canadian company, you can find more information on their website and the same for Grafoid and SGS Canada, and CapTherm Systems.

I have previously mentioned Focus Graphite in a Nov. 27, 2012 posting about their deal with Hydro Québec’s research institute, IREQ. I have also mentioned graphite mining in Canada with regard to the Northern Graphite Corporation and its Bissett Creek mine (my July 25, 2011 posting and my Feb. 6, 2012 posting). Apparently, Canada has high quality, large graphic flakes.

* ‘where’ added to sentence on Feb. 23, 2015.

Hydro-Québec, graphite, and lithium-ion batteries

While Dexter Johnson at Nanoclast blog writes about an investigation into why the storage capacity of lithium-ion (Li-ion) batteries degrades in his Nov. 26, 2012 posting (Newly Developed Live Nanoscale Imaging Technique Promises Improvement in Li-ion Batteries), Hydro-Québec and Grafoid Inc. have signed a development deal for the next generation of lithium iron phosphate materials to be combined with graphene for next generation rechargeable batteries. From the Nov. 27, 2012 news item on Nanowerk,

The 50-50 collaborative agreement sets out terms with the objective of creating patentable inventions by combining graphene, supplied by Grafoid, with Hydro-Québec’s patented lithium iron phosphate technologies.

Two key, specific commercial target markets – the rechargeable automobile battery sectors and batteries for mobile electronic devices used in smartphones, computing tablets and laptop computers – were identified in the agreement.

Hydro-Québec will study Grafoid’s graphene conductivity, electrochemical performance and its effects in electrode formulations, electrolyte and separator optimizations. Detailed characterizations of Grafoid’s supplied materials will be undertaken at IREQ’s cutting edge facilities using its advanced electron microscopy, spectrographic and other in-house technologies.

Hydro-Québec will also supply lithium iron phosphate materials and its electrochemistry know how which it acquired under license from famed American inventor Dr. John Goodenough.

The Nov. 26, 2012 news release from Focus Graphite, which originated the news item, provides additional detail about the various principles in the deal,

About Focus Graphite

Focus Graphite Inc. is an emerging mid-tier junior mining development company, a technology solutions supplier and a business innovator. Focus is the owner of the Lac Knife graphite deposit located in the Côte-Nord region of northeastern Québec. The Lac Knife project hosts a NI 43-101 compliant Measured and Indicated mineral resource of 4.972 Mt grading 15.7% carbon as crystalline graphite with an additional Inferred mineral resource of 3.000 Mt grading 15.6% crystalline graphite  Focus’ goal is to assume an industry leadership position by becoming a low-cost producer of technology-grade graphite. On October 29th, 2012 the Company released the results of a Preliminary Economic Analysis (“PEA”) of the Lac Knife project which demonstrates that the project has robust economics and excellent potential to become a profitable producer of graphite.  As a technology-oriented enterprise with a view to building long-term, sustainable shareholder value, Focus Graphite is also investing in the development of graphene applications and patents through Grafoid Inc.

About Grafoid Inc.

Grafoid, Inc. is a privately held Canadian corporation investing in graphene applications and economically scalable production processes for graphene and graphene derivatives from raw, unprocessed, graphite ore. Focus Graphite Inc., (TSX-V: FMS; OTCQX: FCSMF; FSE: FKC) holds a 40% interest in Grafoid Inc. [emphasis mine]

About IREQ

Hydro-Québec’s research institute, IREQ, is a global leader in the development of advanced materials for battery manufacturing and creates leading edge processes from its state of the art facilities. IREQ holds more than 100 patent rights and has issued over 40 licenses for battery materials to some of the world’s most successful battery manufacturers and materials suppliers. Its areas of expertise include energy storage and IREQ is a lead partner with private sector companies in Québec to build EV and HEV charging stations in support of its technology developments. Its material development contributions are helping to develop safe, high-performance lithium ion batteries that can be charged more quickly and a greater number of times. IREQ promotes open innovation and partners with private firms, universities, government agencies and research centers in Québec and abroad. Its partnerships allow IREQ to develop, industrialize and market technologies resulting from those innovation projects.

About Hydro-Québec

Hydro-Québec is Canada’s largest electricity producer among the world’s largest hydroelectric power producers and a public utility that generates, transmits and distributes electricity. Its sole shareholder is the Québec government. It primarily exploits renewable generating options, in particular hydropower, and supports the development of wind energy through purchases from independent power producers. Its research institute, IREQ, conducts R&D in energy efficiency, energy storage and other energy-related fields. Hydro-Québec invests more than $100 million per year in research.

Here’s one last bit I want to highlight from the Focus Graphite news release,

“Commercially, and ultimately, our technology development partnership with Hydro-Québec aims to produce high capacity, LFP-graphene batteries with ultra short charging times and longer recyclable lifetimes,” Mr. Economo said [Gary Economo, President and Chief Executive Officer of both Grafoid Inc. and Focus Graphite].

He said the parties chose to focus their collaboration on LFP-graphene batteries and materials because of their short-term-to-market potential.

In light of Dexter’s very informative posting about Li-ion batteries and the investigation into why the storage capatcity degrades, I find this Hydro-Québec/Grafoid Inc. development provides insight into the relationship between scientific research and business and insight into the risks as the various groups compete to bring products to market or to improve those products such that they come to dominate the market.

One last comment, graphite flakes are also mined in Ontario as per both my July 25, 2011 posting and my Feb. 6, 2012 posting about Northern Graphite Corporation and its Bissett Creek mine.