Tag Archives: ICN

Natural and engineered nanoparticles in an Orion magazine podcast & in a NanoBosc machinima piece

The Jan. 16, 2013 Orion magazine podcast discussion (more about that later) regarding safety and engineered and natural nanoparticles arose from an article (worth reading) by Heather Millar in the magazine’s January/February 2013 issue, Pandora’s Boxes.

For anyone familiar with the term ‘Pandora’s box’, Millar’s and the magazine’s bias is made clear immediately, nanoparticles are small and threatening. From the Pandora’s box Wikipedia essay,

Today, the phrase “to open Pandora’s box” means to perform an action that may seem small or innocuous, but that turns out to have severe and far-reaching consequences. [emphases mine]

Millar’s article is well written and offers some excellent explanations. For example, there’s this from Pandora’s Boxes,

So chemistry and physics work differently if you’re a nanoparticle. You’re not as small as an atom or a molecule, but you’re also not even as big as a cell, so you’re definitely not of the macro world either. You exist in an undiscovered country somewhere between the molecular and the macroscopic. Here, the laws of the very small (quantum mechanics) merge quirkily with the laws of the very large (classical physics). Some say nanomaterials bring a third dimension to chemistry’s periodic table, because at the nano scale, long-established rules and groupings don’t necessarily hold up.

Then, she has some dodgier material,

Yet size seems to be a double-edged sword in the nanoverse. Because nanoparticles are so small, they can slip past the body’s various barriers: skin, the blood-brain barrier, the lining of the gut and airways. Once inside, these tiny particles can bind to many things. They seem to build up over time, especially in the brain. Some cause inflammation and cell damage. Preliminary research shows this can harm the organs of lab animals, though the results of some of these studies are a matter of debate.

Some published research has shown that inhaled nanoparticles actually become more toxic as they get smaller. Nano–titanium dioxide, one of the most commonly used nanoparticles (Pop-Tarts, sunblock), has been shown to damage DNA in animals and prematurely corrode metals. Carbon nanotubes seem to penetrate lungs even more deeply than asbestos. [emphases mine]

I think it’s worth ‘unpacking’ these two paragraphs, so here goes.  Slipping past the body’s barriers is a lot more difficult than Millar suggests in the first paragraph. My July 4, 2012 posting on breakthough research  where they penetrated the skin barrier includes this comment from me,

After all the concerns  about nanosunscreens and nanoparticles penetrating the skin raised by civil society groups, the Friends of the Earth in particular, it’s interesting to note that doctors and scientists consider penetration of the skin barrier to be extremely difficult. Of course, they seem to have solved [as of July 2012] that problem which means the chorus of concerns may rise to new heights.

I had a followup in my Oct.3, 2012 posting titled, Can nanoparticles pass through the skin or not?, suggesting there’s still a lot of confusion about this topic even within the scientific community.

Moving on to the other ‘breaches’. As I recall, there was a recent  (Autumn 2012?) nanomedicine research announcement that the blood-brain barrier was breached by nanoparticles. I haven’t yet encountered any mention of breaching the gut and I mention lungs in my next paragraph where I discuss carbon nanotubes.

As for that second paragraph, it’s an example of scaremongering. ‘Inhaled nanoparticles become more toxic as their size decreases’—ok. Why mention nano-titanium oxide in pop tarts and sunblocks, which are not inhaled, in the followup sentence? As for the reference to DNA damage and corroded metals further on, this is straight out of the Friends of the Earth literature which often cites research in a misleading fashion including those two pieces.  There is research supporting part of Millar’s statement about carbon nanotubes—provided they are long and multiwalled. In fact, as they get shorter, the resemblance to asbestos fibers in the lungs or elsewhere seems to disappear as per my Aug 22, 2012 posting and my Jan. 16, 2013 posting.

You don’t need to read the article before listening to the fascinating Jan. 16, 2013 Orion magazine podcast with Millar (reading portions of her article) and expert guests, Mark Wiesner from Duke University and director of their Center for Environmental Implications of Nano Technology (CEINT was first mentioned in my April 15, 2011 posting), Ronald Sandler from Northeastern University and author of Nanotechnology: The Social And Ethical Issues, and Jaydee Hanson, policy director for the International Center for Technology Assessment.

The discussion between Wiesner, Sandler, and Hanson about engineered and natural nanoparticles is why I’ve called the podcast fascinating. Hearing these experts ‘fence’ with each other highlights the complexities and subtleties inherent in discussions about emerging technologies (nano or other) and risk. Millar did not participate in that aspect of the conversation and I imagine that’s due to the fact that she has only been researching this area for six months while the other speakers all have several years worth experience individually and, I suspect, may have debated each other previously.

At the risk of enthusing too much about naturally occurring nanoparticles, I’m mentioning, again (my Feb. 1, 2013 posting), the recently published book by Nanowiki, Nanoparticles Before Nanotechnology, in the context of the stunning visual images used to illustrate the book. I commented previously about them and Victor Puntes of the Inorganic Nanoparticles Group at the Catalan Institute of Nanotechnology (ICN) and one of the creators of this imagery, kindly directed me to a machinima piece (derived from the NanoBosc Second Life community) which is the source for the imagery. Here it is,

NanoBosc from Per4mance MetaLES ..O.. on Vimeo.

Happy Weekend!

Gold Light jewellery courtesy of gold nanoparticles and designers in Spain

Nanowerk is featuring a Dec. 21, 2012 news item about a jewellery project from the Institut Català de Nanotecnologia (ICN) Note: Links have been removed,

The Centre for NanoBioSafety and Sustainability (CNBSS) organised the premiere of Gold Light, the first quantum jewellery product, last week at the Hotel Mercer, in Barcelona [Spain]. Gold Light is the fruit of a collaboration that combines Barcelona’s long artisanal tradition with Nanotechnology developed by Institut Català de Nanotecnologia (ICN)’s Inorganic Nanoparticles Group. Gold Light is an extraordinary jewellery product, unique for both its innovation and its aesthetics.

The ICN’s Dec. 13, 2012 news release provides more detail (which originated the news item on Nanowerk),

A multidisciplinary team, including jewellery designer Roberto Carrascosa, artist Joan Peris, production designer Francesc Oliveras, and art business manager Jose Luis Fettolini, developed Gold Light over the course of a year, based on specialist knowledge from the Inorganic Nanoparticles Group. The final product exploits the aesthetic potential of noble-metal nanoparticles and their special interaction with light. Jewellers traditionally work with precious metals, which in their smallest form exist as nanoparticles(at smaller sizes, metal particles lose their metallic properties). Gold Light, composed of gold nanoparticles, represents the advent of quantum jewellery, where quantum is used in the literal sense. Their work on Gold Light has also served as a case model for the CNBSS to evaluate the regulatory mechanisms and corporate obligations for the development and marketing of a product that contains nanoparticles. For the CNBSS, the venture served as a study in the safety-by-design of a nanoproduct, through advice from attorney Ignasi Gispert.

Here’s what one of the pieces looks like,

The distinctive colours of Gold Light jewellery derive from different types of gold nanoparticles.

The distinctive colours of Gold Light jewellery derive from different types of gold nanoparticles.

You can see more on the Gold Light jewellery website but you won’t find any technical information about the colour differences or information about how to purchase.

Dyeing textiles naturally when enabled by nanotechnology

The May 15, 2012 news item on Nanowerk is intriguing,

Nanoparticles from a fungus could lead to new eco friendly dyes claim scientists from the Catholic University of Louvain.

Researchers working for the EU-funded research project SOPHIED have discovered that a fungus from the Solomon Islands produces special enzymes that act as nano-bio-catalysts.  These components help to trigger a chemical reaction between two different basic ingredients and turn it into a dye.

On digging into the matter a little further I found a Sept. 2, 2011 article by Elena Ledda for YOURIS; European Research Media Center about the reasons for the work and about the researcher who’s  focusing on the fungus, Estelle Enaud at Catholic University  of Louvain in Belgium,

The problems encountered by the traditional European colour industry go from lack of innovation and weak market competitiveness to toxicity, environmental hazards and health risks for those working in it. Dye-making industry is based on chemistry and processes designed more than a century ago, some of which are very energy consuming and potentially dangerous for the workers. In order to prevent explosive reactions when mixing the chemicals, the process has to be cooled down to ice cold temperatures, which consumes a lot of energy. Besides, some dyes can be toxic and there is a risk that they may pass the skin through perspiration. …

To overcome this bias scientists of the EU-funded research project SOPHIED led by the Catholic University of Louvain, in Belgium, have extracted special proteins, called enzymes, from fungi. …

“We already knew there is a whole spectrum of colours in the fungis and that the enzymes can form new color compounds during the bioremediation part, that is the process through which the metabolisms of microorganism removes pollutants. What we didn’t know was if it was possible to make textile dyes because these have special properties and chemical functions that you cannot find in nature”, says Estelle Enaud of the Earth and Life Institute – Applied Microbiology at the Université Catholique de Louvain. Enaud was a post-doc researcher in Sophie Vanhulle’s team. Sophie Vanhulle, the project co-ordinator, died two years ago. “The challenge was if it was possible to use the enzyme on a substance that is not natural, and it turned out it was!”

Here’s an interview with Enaud discussing her project (from the YOURIS website),

My curiosity still not satisfied, I researched SOPHIED to find out it is a European Union-funded project (Framework Project 6) with the tagline, novel sustainable bioprocess for European colour industries.  Here’s a 2008 interview with Magalie Foret, another researcher on the project discussing he SOPHIED project and her specialty wetlands engineering  (in French), from the SOPHIED website,

Getting back to Enaud and her latest work (from the Ledda article),

To extract the enzymes the fungi are put into a liquid that contains nutrients, which allows them to grow and release the desired proteins. After taking out the fungi, silica particles are added to the fluid. “The combination of enzymes and silica particles brings to a stabilization of the enzyme and eliminates proteins at the end in our dye product, since they might provoke allergies”, Estelle Enaud points out. “The particle we used the most had a mean size of 100 µm, much bigger than nano. The nano size and the nano part of the project concern the enzymes that are nanocatalysts and can also be called biological nano tools”, she explains. “I must admit I do not really like to use the word nano because although everything I work with as a biochemist is nano, biochemistry is not a new science area”.

The new colorants possess chemical features that allow them to adhere directly to the fibers of polyamide, wool or silk, making it unnecessary to add extra chemicals that can pollute water and provoke allergies. “Before putting this product on the market, it would be important to check its toxicity”, Victor Puntes, responsible of the ‘Inorganic nanoparticles group’ at the ICN (Institut Català de Nanotecnologia) points out. “In principle, large silica particles are more toxic than their nano counterpart: on the one hand, being larger they have a hard time to enter into the cell, on the other, once a few of them have entered, they can produce chronic inflammation that can result, maybe 20 years later, in some kind of cancer”, Puntes explains. Enaud ensures that the silica particles that they use are not toxic. She adds that the particles are customarily used in tooth paste, as ingredient in horticulture, and in concrete are not classified as dangerous substances.

Some interesting possibilities here assuming toxicity and scaling issues are dealt with. One final thought, I wonder if there might be some sort of ‘property’ issues. Given that the fungus under discussion comes from the Solomon Islands, it seems possible that indigenous peoples might feel proprietary, especially if they’ve been making using of it themselves thereby piquing the scientists’ interest in the first place.