Tag Archives: I’m a scientist – Get me out of here

Science education for children in Europe, so what’s happening in BC?

I’ve been informally collecting information about children’s science education for a few months when yesterday there was a sudden explosion of articles (well, there were three) on the subject.

First off, a science game was launched by the European Commission titled Power of Research. From the March 2, 2011 news item on Nanowerk,

A new strategy browser game – the “Power of research” – is officially launched. Supported by the European Commission, “Power of Research” has been developed to inspire young Europeans to pursue scientific careers and disseminate interesting up-to-date scientific information. Players assume the role of scientists working in a virtual research environment that replicates the situations that scientists have to deal with in the real world. The game, which can be played for free under www.powerofresearch.eu, is expected to create a large community of more than 100,000 players who will be able to communicate in real time via a state of the art interface.

They really do mean it when they say they’re replicating real life situations but the focus is on medical science research and I don’t think the game title makes that clear. Yes, there are many similarities between the situations that scientists of any stripe encounter in their labs but there are also some significant differences between them. In any event,

In “Power of Research” players can engage in “virtual” health research projects, by performing microscopy, protein isolation and DNA experiments, publishing research results, participating in conferences, managing high tech equipment and staff or request funding – all tasks of real researchers. The decisive game elements are communication, collaboration and competition: players can compete against each other in real time or collaborate to become a successful virtual researcher, win scientific awards or become the leader of a research institute.

The game connects the players to the real world. It is based on up-to-date science content and players work on real world research topics inspired by the FP7 health research programme that will be regularly updated. Popular science events, real research institutes, universities and European health research projects form part of the game. Players also have access to a knowledge platform, where they can search in a virtual library, zoom-into real scientific images and learn more about Nobel Prize laureates. European science institutions and hospitals will have the possibility to contribute to the game and provide details about their research.

I like the immersiveness and the game aspect of this project very much. I do wish they were a little more clear about exactly what kind of research the player will engage in. From the Power of Research About webpage,

Your researcher

* Become a famous researcher in “Power of Research”

* Research different topics through exciting research projects

* Play together with your friends and other players from all over the world

* Earn reputation, win science prizes and more …

* Gain special skills and knowledge in 9 different main research areas (like Brain, Paediatrics, …)

* Become a leader in your institute and lead it to international ranks

* The game is 100% free and needs no prior knowledge

Meanwhile, there are more projects. From the March 2, 2011 news item on physorg.com,

Children who are taught how to think and act like scientists develop a clearer understanding of the subject, a study has shown.

The research project led by The University of Nottingham and The Open University has shown that school children who took the lead in investigating science topics of interest to them gained an understanding of good scientific practice.

The study shows that this method of ‘personal inquiry’ could be used to help children develop the skills needed to weigh up misinformation in the media, understand the impact of science and technology on everyday life and help them to make better personal decisions on issues including diet, health and their own effect on the environment.

The three-year project involved providing pupils aged 11 to 14 at Hadden Park High School in Bilborough, Nottingham, and Oakgrove School in Milton Keynes with a new computer toolkit named nQuire, now available as a free download for teachers and schools.

The pupils were given wide themes for their studies but were asked to decide on more specific topics that were of interest to them, including heart rate and fitness, micro climates, healthy eating, sustainability and the effect of noise pollution on birds.

The flexible nature of the toolkit meant that children could become “science investigators”, starting an inquiry in the classroom then collecting data in the playground, at a local nature reserve, or even at home, then sharing and analysing their findings back in class.

Immersive and engaging, yes? I have gone to the nQuire website and while I haven’t downloaded the software, I did successfully log in to the demonstration, in other words, the demonstration is not limited to a UK-based audience.

Meanwhile there’s this project but it seems to be different. It’s spelled differently, INQUIRE, and the focus is on the teachers. From a March 2, 2011 news item on Science Daily,

Thousands of schoolchildren will soon be asking the questions when inquiry-based learning comes to science classrooms across Europe, turning the traditional model of science teaching on its head. The pan-European INQUIRE programme is an exciting new teacher-training initiative delivered by a seventeen-strong consortium of botanic gardens, natural history museums, universities and NGOs.

Coordinated by Innsbruck University Botanic Garden, with support from London-based Botanic Gardens Conservation International (BGCI), INQUIRE is a practical, one-year, continual professional development (CPD) course targeted at qualified teachers working in eleven European countries. Its focus on inquiry-based science education (IBSE) reflects a consensus in the science education community that IBSE methods are more effective than current teaching practices.

Designed to reflect how students actually learn, IBSE also engages them in the process of scientific inquiry. Increasingly it is seen as key to developing their scientific literacy, enhancing their understanding of scientific concepts and heightening their appreciation of how science works. Whereas traditional teaching methods have failed to engage many students, especially in developed countries, IBSE offers outstanding opportunities for effective and enjoyable teaching and learning.

Biodiversity loss and global climate change, among the major scientific as well as political challenges of our age, are core INQUIRE concerns.

That final sentence fragment is a  little puzzling but I believe they’re describing their scientific focus.

My favourite of these projects is one I came across in December 2010 when children from a school in England had a research paper about bees published by the Royal Society’s Biology Letters. You still can access the paper (according to another blogger, Ed Yong, open access would only last to the new year in 2011 but they must have changed their minds). The paper is titled Blackawton bees and lists 30 authors.

1. P. S. Blackawton,
2. S. Airzee,
3. A. Allen,
4. S. Baker,
5. A. Berrow,
6. C. Blair,
7. M. Churchill,
8. J. Coles,
9. R. F.-J. Cumming,
10. L. Fraquelli,
11. C. Hackford,
12. A. Hinton Mellor,
13. M. Hutchcroft,
14. B. Ireland,
15. D. Jewsbury,
16. A. Littlejohns,
17. G. M. Littlejohns,
18. M. Lotto,
19. J. McKeown,
20. A. O’Toole,
21. H. Richards,
22. L. Robbins-Davey,
23. S. Roblyn,
24. H. Rodwell-Lynn,
25. D. Schenck,
26. J. Springer,
27. A. Wishy,
28. T. Rodwell-Lynn,
29. D. Strudwick and
30. R. B. Lotto

This is from the introduction to the paper,

(a) Once upon a time …

People think that humans are the smartest of animals, and most people do not think about other animals as being smart, or at least think that they are not as smart as humans. Knowing that other animals are as smart as us means we can appreciate them more, which could also help us to help them.

If you don’t ever read another science paper in your life, read this one. For the back story on this project, here’s Ed Yong on his Not Exactly Rocket Science blog (a Discover blog) in a December 21, 2010 posting,

“We also discovered that science is cool and fun because you get to do stuff that no one has ever done before.”

This is the conclusion of a new paper published in Biology Letters, a high-powered journal from the UK’s prestigious Royal Society. If its tone seems unusual, that’s because its authors are children from Blackawton Primary School in Devon, England. Aged between 8 and 10, the 25 children have just become the youngest scientists to ever be published in a Royal Society journal.

Their paper, based on fieldwork carried out in a local churchyard, describes how bumblebees can learn which flowers to forage from with more flexibility than anyone had thought. It’s the culmination of a project called ‘i, scientist’, designed to get students to actually carry out scientific research themselves. The kids received some support from Beau Lotto, a neuroscientist at UCL [University College London], and David Strudwick, Blackawton’s head teacher. But the work is all their own.

Yong’s posting features a video of  the  i, scientist project mentioned in the posting, images, and, of course, the rest of the back story.

As it turns out one of my favourite science education/engagement projects is taking place right now (this is based in the UK), I’m a scientist, Get me out of Here!, from their website home page,

I’m a Scientist, Get me out of Here! is an award-winning science enrichment and engagement activity, funded by the Wellcome Trust. It takes place online over a two week period. It’s an X Factor-style competition for scientists, where students are the judges. Scientists and students talk online on this website. They both break down barriers, have fun and learn. But only the students get to vote.

You can view the scientist/student conversations by picking a zone: Argon, Chlorine, Potassium, Forensic, Space, or Stem Cell. The questions the kids ask are fascinating, anything from What’s your favourite colour? to Do you think humans will evolve more? The conversations that ensue can be quite stimulating. This project has been mentioned here before in my June 15, 2010 posting, April 13, 2010 posting (scroll down) and  March 26, 2010 posting (scroll down).

ETA Mar. 3, 2011: The scientists get quite involved and can go to some lengths to win. Here’s Tom Hartley’s video from last year’s (2010) event,

I find the contrast between these kinds of science education/engagement projects in the UK and in Europe and what seems to be a dearth of these in my home province British Columbia (Canada) to be striking. I’ve commented previously on BC’s Year of Science initiative currently taking place in a Dec. 30, 2010 posting where I was commenting on a lack of science culture in Canada. Again, I applaud the initiative while I would urge that in future a less traditional and top/down approach is taken. The Europeans and the British are making science fun by engaging in imaginative and substantive ways. Imagine what getting a paper published in a prestigious science journal does for you (regardless of your age)!

US National Science Foundation on science and communicating about its impact on society and OECD report on innovation as a societal effort

On the heels of last week”s posting about the importance of a broad-ranging approach to science and innovation (See: Rob Annan’s [Don’t leave Canada behind blog] latest post, Innovation isn’t just about science funding and Poetry, molecular biophysics and innovation in Canada on this blog), I found these and other related issues being discussed elsewhere. (Side note: I’d love to hear from anyone who might be able to comment on these issues as they arise in other countries. I get most of my information from Canadian, US, and UK sources so it does tend to be limited.)

Dave Bruggeman at Pasco Phronesis highlights an editorial and an article by Corie Lok about the US National Science Foundation and its efforts to have scientists demonstrate or communicate the broader societal impacts of their research work by making it a requirement in their grant application. From Dave’s posting,

Do read the pieces [published in the journal Nature], because I think the point about developing the infrastructure to support research on broader impacts and the implementation of those broader impacts is a necessary step. With a support system in place, researchers may be more inclined to take the criterion seriously. With infrastructure better able to measure impacts, science advocates may have better data from which to advance their causes. …

While there was some mention of efforts in the U.K. and the European Commission to do similar work in making more explicit the connections between scientific research and broader impacts, I was a bit disappointed that there wasn’t a bit more effort to make a stronger connection of lessons learned both for other countries and for the U.S. This is particularly true if new U.K. Science and Universities Minister Willets goes through with a campaign promise to give the Research Excellence Framework a more thorough review.

I encourage you to read Dave’s posting in its entirety as he adds thoughtful commentary and information about the situation in the US while I focus on other aspects of the issue, from the Nature editorial,

The US National Science Foundation (NSF) is unique among the world’s science-funding agencies in its insistence that every proposal, large or small, must include an activity to demonstrate the research’s ‘broader impacts’ on science or society. This might involve the researchers giving talks at a local museum, developing new curricula or perhaps forming a start-up company. [emphases mine]

The requirement’s goal is commendable. It aims to enlist the scientific community to help show a return on society’s investment in research and to bolster the public’s trust in science — the latter being particularly important given the well-organized movements currently attacking concepts such as evolution and climate change.

I find the notion that starting up a new company is a way of demonstrating research’s broader societal impact rather unexpected and something I like and dislike in equal measure. I can certainly see where it would encourage the kind of innovation that the Canadian government wishes to foster and I can see the benefits. On the other hand, I think there is a very strong focus on the almighty buck to the exclusion of other social benefits as per “show a return on society’s investment in research,” in the editorial excerpt’s 2nd paragraph. You’ll note that ‘fostering trust’ is second and it’s in the service of ensuring that cherished concepts are not attacked. (Aside: While Nature uses evolution and climate change for its examples here, scientists have fought bitterly over other cherished concepts which have over time proved to be incorrect. For years geneticists dismissed some 98% of the human genome as ‘junk DNA’ . It turns out they were wrong. [see this article in New Scientist for more about the importance of ‘junk DNA’])

As for the focus on ‘society’s return on its research investment’, there’s this from Corie Lok’s Nature article,

Research-funding agencies are forever trying to balance two opposing forces: scientists’ desire to be left alone to do their research, and society’s demand to see a return on its investment. [emphasis mine]

The European Commission, for example, has tried to strike that balance over the past decade by considering social effects when reviewing proposals under its various Framework programmes for research. And the Higher Education Funding Council for England announced last year that, starting in 2013, research will be assessed partly on its demonstrable benefits to the economy, society or culture.

But no agency has gone as far as the US National Science Foundation (NSF), which will not even consider a proposal unless it explicitly includes activities to demonstrate the project’s ‘broader impacts’ on science or society at large. “The criterion was established to get scientists out of their ivory towers and connect them to society,” explains Arden Bement, director of the NSF in Arlington, Virginia.

Here there seems to be a softening of the “return on investment” focus on money and the economy to include “broader impacts” on society and culture. Since the phrase ‘return on investment’ comes from the financial services sector, the meaning will default, unless carefully framed, to financial and economic considerations only.

I guess the question I have is, how do we value broader impacts? I’m a scientist, Get me out of here is a public engagement programme I’ve mentioned before (towards the end of this posting). How do you measure the outcome for a programme where kids stay after school to chat online with scientists about science? Sure you can measure how many kids participate and whether more of them indicate an interest in studying science but these are short-term. There are other possibilities such as increased science literacy over their lifetimes or going on to become a scientist but that will be at least 10 years away. There are also other less directly measurable possibilities (such as using an idea from an online science chat to create a story or an art piece decades after the fact) but these are in the long term and don’t lend themselves easily to measurement.

One other issue, I’d like to touch on is the scientists themselves having difficulty with the concept of ‘broader implications’. I sometimes ask them something along this line, where is your work going to be used or what are the practical applications. The answers can baffle me as I receive a very stripped down response which doesn’t answer the question adequately for someone (me) who isn’t an expert colleague. As I’m usually interviewing by email, I don’t have the option of asking all of the followup questions (often, more than one would be needed) to extract the information.

I’m hopeful that the situation will change with projects such as Terry at the University of British Columbia, from the About page listing a special course,

ASIC 200 – THAT‘S ARTS AND SCIENCE INTEGRATED COURSE – GLOBAL ISSUES.

What is ASIC200? Full course details can be found [here], but here’s a gander at the general course description:

“Human society confronts a range of challenges that are global in scope. These changes threaten planetary and local ecosystems, the stability and sustainability of human societies, and the health and well being of human individuals and communities. The natural and human worlds are now interacting at the global level to an unprecedented degree. Responding to these global issues will be the greatest challenge facing human society in the 21st century. In this course students will explore selected global issues from the perspective of both the physical and life sciences and the social sciences and humanities. The fundamental philosophy of the course is that global issues cannot be fully understood or addressed without a functional literacy in both the Sciences and the Arts. [emphasis mine] In this course, students will develop the knowledge and the practical skills required to become engaged citizens in the local, national, and international civil society dialogue on global issues.”

I like this approach as it requires that arts students also extend their range; it’s not just scientists doing all the work to expand understanding. Even the OECD (Organization for Economic Cooperation and Development) is getting in on the act with recommendations for more innovative societies. From Key Findings (p. 9) in The OECD Innovation Strategy: Getting a Head Start on Tomorrow,

Formal education is the basis for forming human capital, and policy makers should ensure that education systems help learners to adapt to the changing nature of innovation from the start. This requires curricula and pedagogies that equip students with the capacity to learn and apply new skills throughout their lives. Emphasis needs to be placed on skills such as critical thinking, creativity, communication, user orientation and teamwork, in addition to domain-specific and linguistic skills. [emphasis mine]

The recommendation is inclusive and not aimed at a specific group such as scientists, although the Key Findings and the Executive Summary (which can be found on this page) seem most heavily invested in developing recommendations for business/market/entrepreneurial innovation rather than the sciences or the humanities.