Tag Archives: India

Tomatoes and some nano-sized nutrients

While zinc is a metal, it’s also a nutrient vital to plants as a Nov. 5, 2015 news item on ScienceDaily notes,

With the world population expected to reach 9 billion by 2050, engineers and scientists are looking for ways to meet the increasing demand for food without also increasing the strain on natural resources, such as water and energy — an initiative known as the food-water-energy nexus.

Ramesh Raliya, PhD, a postdoctoral researcher, and Pratim Biswas, PhD, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both at the School of Engineering & Applied Science at Washington University in St. Louis, are addressing this issue by using nanoparticles to boost the nutrient content and growth of tomato plants. Taking a clue from their work with solar cells, the team found that by using zinc oxide and titanium dioxide nanoparticles, the tomato plants better absorbed light and minerals, and the fruit had higher antioxidant content.

A Nov. 5, 2015 Washington University in St. Louis news release by Beth Miller (also on EurekAlert but dated Nov. 6, 2015), which originated the news item, describes the work in more detail,

“When a plant grows, it signals the soil that it needs nutrients,” Biswas says. “The nutrient it needs is not in a form that the plant can take right away, so it secretes enzymes, which react with the soil and trigger bacterial microbes to turn the nutrients into a form that the plant can use. We’re trying to aid this pathway by adding nanoparticles.”

Zinc is an essential nutrient for plants, helps other enzymes function properly and is an ingredient in conventional fertilizer. Titanium is not an essential nutrient for plants, Raliya says, but boosts light absorption by increasing chlorophyll content in the leaves and promotes photosynthesis, properties Biswas’ lab discovered while creating solar cells.

The team used a very fine spray using novel aerosolization techniques to directly deposit the nanoparticles on the leaves of the plants for maximum uptake.

“We found that our aerosol technique resulted in much greater uptake of nutrients by the plant in comparison to application of the nanoparticles to soil,” Raliya says. “A plant can only uptake about 20 percent of the nutrients applied through soil, with the remainder either forming stable complexes with soil constituents or being washed away with water, causing runoff. In both of the latter cases, the nutrients are unavailable to plants.”

Overall, plants treated with the nanoparticles via aerosol routes produced nearly 82 percent (by weight) more fruit than untreated plants. In addition, the tomatoes from treated plant showed an increase in lycopene, an antioxidant linked to reduced risk of cancer, heart disease and age-related eye disorders, of between 80 percent and 113 percent.

Previous studies by other researchers have shown that increasing the use of nanotechnology in agriculture in densely populated countries such as India and China has made an impact on reducing malnutrition and child mortality. These tomatoes will help address malnutrition, Raliya says, because they allow people to get more nutrients from tomatoes than those conventionally grown.

In the study, published online last month in the journal Metallomics, the team found that the nanoparticles in the plants and the tomatoes were well below the USDA limit and considerably lower than what is used in conventional fertilizer. However, they still have to be cautious and select the best concentration of nanoparticles to use for maximum benefit, Biswas says.

Raliya and the rest of the team are now working to develop a new formulation of nanonutrients that includes all 17 elements required by plants.

“In 100 years, there will be more cities and less farmland, but we will need more food,” Raliya says. “At the same time, water will be limited because of climate change. We need an efficient methodology and a controlled environment in which plants can grow.”

Here’s a link to and a citation for the paper,

Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant by Ramesh Raliya, Remya Nair, Sanmathi Chavalmane, Wei-Ning Wang and Pratim Biswas. Metallomics, 2015, Advance Article DOI: 10.1039/C5MT00168D First published online 08 Oct 2015

I believe this article is behind a paywall.

‘Nano to go’, a practical guide to safe handling of nanomaterials and other innovative materials in the workplace

If you’ve been looking for a practical guide to handling nanomaterials you may find that nanoToGo fills the bill. From an Oct. 23, 2015 posting by Lynn Bergeson for Nanotechnology Now,

In September 2015, “Nano to go!” was published. See http://nanovalid.eu/index.php/nanovalid-publications/306-nanotogo “Nano to go!” is “a practically oriented guidance on safe handling of nanomaterials and other innovative materials at the workplace.” The German Federal Institute for Occupational Health (BAuA) developed it within the NanoValid project.

From the nanoToGo webpage on the NanoValid project website (Note: Links have been removed),

Nano to go! contains a brochure, field studies, presentations and general documents to comprehensively support risk assessment and risk management. …

Brochure →

The brochure Safe handling of nanomaterials and other advanced materials at workplacessupports risk assessment and risk management when working with nanomaterials. It provides safety strategies and protection measures for handling nanomaterials bound in solid matrices, dissolved in liquids, insoluble or insoluble powder form, and for handling nanofibres. Additional recommendations are given for storage and disposal of nanomaterials, for protection from fire and explosion, for training and instruction courses, and for occupational health.

Field Studies→

The field studies comprise practical examples of expert assessment of safety and health at different workplaces. They contain detailed descriptions of several exposure measurements at pilot plants and laboratories. The reports describe methods, sampling strategies and devices, summarise and discuss results, and combine measurements and non-measurement methods.

General →

Useful information, templates and examples, such as operating instructions, a sampling protocol, a dialogue guide and a short introduction to safety management and nanomaterials.

Presentations →

Ready to use presentations for university lecturers, supervisors and instruction courses, complemented with explanatory notes.

The ‘brochure’ is 56 pages; I would have called it a manual.

As for the NanoValid project, there’s this from the project’s homepage,

The EU FP7 [Framework Programme 7] large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

I was not expecting to see Canada in there.

Nanotechnology-enabled flame retardant coating

This is a pretty remarkable demonstration made more so when you find out the flame retardant is naturally derived and nontoxic. From an Oct. 5, 2015 news item on Nanowerk,

Inspired by a naturally occurring material found in marine mussels, researchers at The University of Texas at Austin have created a new flame retardant to replace commercial additives that are often toxic and can accumulate over time in the environment and living animals, including humans.

An Oct. 5, 2015 University of Texas news release, which originated the news item, describes the situation with regard to standard flame retardants and what makes this new flame retardant technology so compelling,

Flame retardants are added to foams found in mattresses, sofas, car upholstery and many other consumer products. Once incorporated into foam, these chemicals can migrate out of the products over time, releasing toxic substances into the air and environment. Throughout the United States, there is pressure on state legislatures to ban flame retardants, especially those containing brominated compounds (BRFs), a mix of human-made chemicals thought to pose a risk to public health.

A team led by Cockrell School of Engineering associate professor Christopher Ellison found that a synthetic coating of polydopamine — derived from the natural compound dopamine — can be used as a highly effective, water-applied flame retardant for polyurethane foam. Dopamine is a chemical compound found in humans and animals that helps in the transmission of signals in the brain and other vital areas. The researchers believe their dopamine-based nanocoating could be used in lieu of conventional flame retardants.

“Since polydopamine is natural and already present in animals, this question of toxicity immediately goes away,” Ellison said. “We believe polydopamine could cheaply and easily replace the flame retardants found in many of the products that we use every day, making these products safer for both children and adults.”

Using far less polydopamine by weight than typical of conventional flame retardant additives, the UT Austin team found that the polydopamine coating on foams leads to a 67 percent reduction in peak heat release rate, a measure of fire intensity and imminent danger to building occupants or firefighters. The polydopamine flame retardant’s ability to reduce the fire’s intensity is about 20 percent better than existing flame retardants commonly used today.

Researchers have studied the use of synthetic polydopamaine for a number of health-related applications, including cancer drug delivery and implantable biomedical devices. However, the UT Austin team is thought to be one of the first to pursue the use of polydopamine as a flame retardant. To the research team’s surprise, they did not have to change the structure of the polydopamine from its natural form to use it as a flame retardant. The polydopamine was coated onto the interior and exterior surfaces of the polyurethane foam by simply dipping it into a water solution of dopamine for several days.

Ellison said he and his team were drawn to polydopamine because of its ability to adhere to surfaces as demonstrated by marine mussels who use the compound to stick to virtually any surface, including Teflon, the material used in nonstick cookware. Polydopamine also contains a dihydroxy-ring structure linked with an amine group that can be used to scavenge or remove free radicals. Free radicals are produced during the fire cycle as a polymer degrades, and their removal is critical to stopping the fire from continuing to spread. Polydopamine also produces a protective coating called char, which blocks fire’s access to its fuel source — the polymer. The synergistic combination of both these processes makes polydopamine an attractive and powerful flame retardant.

Ellison and his team are now testing to see whether they can shorten the nanocoating treatment process or develop a more convenient application process.

“We believe this alternative to flame retardants can prove very useful to removing potential hazards from products that children and adults use every day,” Ellison said. “We weren’t expecting to find a flame retardant in nature, but it was a serendipitous discovery.”

Here’s a link to and a citation for the paper,

Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams by Joon Hee Cho, Vivek Vasagar, Kadhiravan Shanmuganathan, Amanda R. Jones, Sergei Nazarenko, and Christopher J. Ellison. Chem. Mater., 2015, 27 (19), pp 6784–6790 DOI: 10.1021/acs.chemmater.5b03013
Publication Date (Web): September 9, 2015
Copyright © 2015 American Chemical Society

This paper is behind a paywall. It should be noted that researchers from the University of Southern Mississippi and the Council of Scientific & Industrial Research (CSIR)-National Chemical Laboratory in Pune, India were also involved in this work.

Cleaning up carbon dioxide pollution in the oceans and elsewhere

I have a mini roundup of items (3) concerning nanotechnology and environmental applications with a special focus on carbon materials.

Carbon-capturing motors

First up, there’s a Sept. 23, 2015 news item on ScienceDaily which describes work with tiny carbon-capturing motors,

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form.

The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers. …

A Sept 22, 2015 University of California at San Diego (UCSD) news release by Liezel Labios, which originated the news release, provides more details about the scientists’ hopes and the technology,

“We’re excited about the possibility of using these micromotors to combat ocean acidification and global warming,” said Virendra V. Singh, a postdoctoral scientist in Wang’s [nanoengineering professor and chair Joseph Wang] research group and a co-first author of this study.

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

“In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant,” said Kevin Kaufmann, an undergraduate researcher in Wang’s lab and a co-author of the study.

The micromotors are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement. The micromotors have an outer polymer surface that holds the enzyme carbonic anhydrase, which speeds up the reaction between carbon dioxide and water to form bicarbonate. Calcium chloride, which is added to the water solutions, helps convert bicarbonate to calcium carbonate.

The fast and continuous motion of the micromotors in solution makes the micromotors extremely efficient at removing carbon dioxide from water, said researchers. The team explained that the micromotors’ autonomous movement induces efficient solution mixing, leading to faster carbon dioxide conversion. To fuel the micromotors in water, researchers added hydrogen peroxide, which reacts with the inner platinum surface of the micromotors to generate a stream of oxygen gas bubbles that propel the micromotors around. When released in water solutions containing as little as two to four percent hydrogen peroxide, the micromotors reached speeds of more than 100 micrometers per second.

However, the use of hydrogen peroxide as the micromotor fuel is a drawback because it is an extra additive and requires the use of expensive platinum materials to build the micromotors. As a next step, researchers are planning to make carbon-capturing micromotors that can be propelled by water.

“If the micromotors can use the environment as fuel, they will be more scalable, environmentally friendly and less expensive,” said Kaufmann.

The researchers have provided an image which illustrates the carbon-capturing motors in action,

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Here’s a link to and a citation for the paper,

Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers by Murat Uygun, Virendra V. Singh, Kevin Kaufmann, Deniz A. Uygun, Severina D. S. de Oliveira, and oseph Wang. Angewandte Chemie DOI: 10.1002/ange.201505155 Article first published online: 4 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Carbon nanotubes for carbon dioxide capture (carbon capture)

In a Sept. 22, 2015 posting by Dexter Johnson on his Nanoclast blog (located on the IEEE [Institute for Electrical and Electronics Engineers] website) describes research where carbon nanotubes are being used for carbon capture,

Now researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur have found that they can tailor the gas adsorption properties of vertically aligned carbon nanotubes (VACNTs) by altering their thickness, height, and the distance between them.

“These parameters are fundamental for ‘tuning’ the hierarchical pore structure of the VACNTs,” explained Mahshid Rahimi and Deepu Babu, doctoral students at the Technische Universität Darmstadt who were the paper’s lead authors, in a press release. “This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does.”

Dexter provides a good and brief summary of the research.

Here’s a link to and a citation for the paper,

Double-walled carbon nanotube array for CO2 and SO2 adsorption by Mahshid Rahimi, Deepu J. Babu, Jayant K. Singh, Yong-Biao Yang, Jörg J. Schneider, and Florian Müller-Plathe. J. Chem. Phys. 143, 124701 (2015); http://dx.doi.org/10.1063/1.4929609

This paper is open access.

The market for nanotechnology-enabled environmental applications

Coincident with stumbling across these two possible capture solutions, I found this Sept. 23, 2015 BCC Research news release,

A groundswell of global support for developing nanotechnology as a pollution remediation technique will continue for the foreseeable future. BCC Research reveals in its new report that this key driver, along with increasing worldwide concerns over removing pollutants and developing alternative energy sources, will drive growth in the nanotechnology environmental applications market.

The global nanotechnology market in environmental applications is expected to reach $25.7 billion by 2015 and $41.8 billion by 2020, conforming to a five-year (2015-2020) compound annual growth rate (CAGR) of 10.2%. Air remediation as a segment will reach $10.2 billion and $16.7 billion in 2015 and 2020, respectively, reflecting a five-year CAGR of 10.3%. Water remediation as a segment will grow at a five-year CAGR of 12.4% to reach $10.6 billion in 2020.

As nanoparticles push the limits and capabilities of technology, new and better techniques for pollution control are emerging. Presently, nanotechnology’s greatest potential lies in air pollution remediation.

“Nano filters could be applied to automobile tailpipes and factory smokestacks to separate out contaminants and prevent them from entering the atmosphere. In addition, nano sensors have been developed to sense toxic gas leaks at extremely low concentrations,” says BCC research analyst Aneesh Kumar. “Overall, there is a multitude of promising environmental applications for nanotechnology, with the main focus area on energy and water technologies.”

You can find links to the report, TOC (table of contents), and report overview on the BCC Research Nanotechnology in Environmental Applications: The Global Market report webpage.

Indian scientists explore graphene ripples

A Sept. 19, 2015 Nanotechnology Now announces that Indian scientists have developed a theory about curved or rippled graphene,

The single-carbon-atom-thick material, graphene, featuring ripples is not easy to understand. Instead of creating such ripples physically, physicists investigating this kind of unusually shaped material rely on a quantum simulator. It is made up of an artificial lattice of light – called ultra-cold optical lattice – akin to eggs held in the cavities of an egg tray. This approach allowed a team of theoretical physicists from India to shed some light – literally and figuratively – on the properties of rippled graphene. These findings have just been published in EPJ B by Tridev Mishra and colleagues from the Birla Institute of Technology and Science, in Pilani, India. Ultimately, this work could find applications in novel graphene-based sensors.

A Sept. 18, 2015 Springer press release, which originated the news item, expands on the theme,

Optical lattices are perfect simulators. They are like mini-laboratories suitable for studying the response of a material after it has been subjected to controllable parameters inducing a deformation. What makes this particular study novel is that the team has managed to control the creation of a curved space or ripples in graphene by relying on an optical lattice simulator. The authors have thus developed a theory describing how a sequence of pulses, whose amplitude can be modulated, changes an optical lattice – specifically, the background geometry of its constituent particles. Previous modelling attempts only described static curved graphene.

Mishra and colleagues have established equations of the energy for particles caught in an optical lattice. This, in turn, simulates the energy of the electrons in a graphene sheet with a curvature. They then use a map to translate the physical characteristics of the approximation used in the curved space picture of graphene to the more realistic optical lattice picture. They thus obtain an understanding of the dynamics of the evolution from the ‘egg in a tray’ structure of the optical lattice in terms of the properties of ‘an omelette style’ continuum of energy found in graphene.

Here’s a link to and a citation for the paper,

Floquet analysis of pulsed Dirac systems: a way to simulate rippled graphene by Tridev Mishra, Tapomoy Guha Sarkar, and Jayendra N. Bandyopadhyaya. Eur. Phys. J. B (2015) 88: 231 http://dx.doi.org/10.1140/epjb/e2015-60356-2 Published online: 16 September 2015

This paper is behind a paywall.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

Kenya and a draft nanotechnology policy

I don’t often stumble across information about Kenya’s nanotechnology efforts (my last was in a Sept. 1, 2011 posting) but I’m going include my latest find here even though I can’t track down the original source for the information. From an April 29, 2015 news item on SpyGhana (original source: Xinhua News Agency,  official press agency of the People’s Republic of China),

The Kenyan government will soon adopt a comprehensive policy to promote use of nanotechnology in diverse fields like medicine, agriculture, manufacturing and environment.

“Nanotechnology as a science promises more for less. The competitive edge for Kenya as a developing nation lies in robust investments in this technology,” Njeri Wamae, chairman of National Commission for Science, Technology and Innovation (NACOSTI), said in Nairobi.

Nanotechnology is relatively new in Kenya though the government has prioritized its development through research, training and setting up of supportive infrastructure.

Wamae noted that enactment of a nanotechnology policy will position Kenya as a hub for emerging technologies that would revolutionalize key sectors of the economy.

Policy briefs from Kenya’s scientific research body indicates that globally, nanotechnology was incorporated into manufacturing goods worth over 30 billion U.S. dollars in 2005.

The briefs added that nanotechnology related business was worth 2.6 trillion dollars by 2015. Kenya has borrowed best practices from industrialized countries and emerging economies to develop nanotechnology.

Professor Erastus Gatebe, an official at Kenya Industrial Research and Development Institute (KIRDI), noted that China and India offers vital lessons on harnessing nanotechnology to propel industrial growth.

This draft policy seems to be the outcome of a number of initiatives including Nanotechnologies for Development in India, Kenya and the Netherlands: Towards a Framework for Democratic Governance of Risks in Developing Countries, WOTRO (2010 – 2014) from the African Technology Policy Studies (ATPS) Network,

The ATPS has secured funding for a new Integrated Program (IP) on “Nanotechnologies for Development in India, Kenya and the Netherlands: Towards a Framework for Democratic Governance of Risks in Developing Countries, January 2010 – 2014, in liaison with partners in Europe and India. This IP which is led by Prof. Wiebe Bijker of the University of Maastricht, the Netherlands addresses the inevitable risks and benefits associated with emerging technologies, such as nanotechnology through a triangulation of PhD and Post-Doctoral positions drawn from Africa (2), India (1) and the Netherlands (2) based at the University of Maastricht but address core areas of the nanotechnology governance in Africa, India and the Netherlands. The program will be coordinated by Prof. Wiebe Bijker, the University of Maastricht, in the Netherlands; with the University of Hyderabad, India; the ATPS and the University of Nairobi, Kenya as partners.

Nanotechnology events and discussions played in important role in Kenya’s 2013 National Science, Technology and Innovation (ST&I) Week by Daphne Molewa (on the South African Agency for Science and Technology Advancement [SAASTA] website),

The National Science, Technology and Innovation (ST&I) Week, organised by the Ministry of Higher Education, Science and Technology, is a major event on the annual calendar of the Kenyan Government.

The theme for 2013, “Science, Technology and Innovation for the realisation of Kenya’s Vision 2030 and beyond” is aligned with the national vision to transform Kenya into a newly industrialised, middle-income country providing a high-quality life to all its citizens in a safe and secure environment by the year 2030. pemphasis mine]

Nanotechnology, the science of the future

SAASTA representatives Mthuthuzeli Zamxaka and Sizwe Khoza were invited to participate in this year’s festival in Nairobi [Kenya] on behalf of the Nanotechnology Public Engagement Programme (NPEP).

Zamxaka delivered a stirring presentation titled Nanotechnology Public Engagement: The Case of South Africa. He introduced the topic of nanotechnology, focusing on engagement, outreach and awareness. …

Zamxaka touched on a number of nanotechnologies that are currently being applied, such as the research conducted by the Johns Hopkins University in Maryland on biodegradable nano-sized particles that can easily slip through the body’s sticky and viscous mucus secretions to deliver a sustained-release medication cargo. It is believed that these nanoparticles, which degrade over time into harmless components, could one day carry life-saving drugs to patients suffering from dozens of health conditions, including diseases of the eye, lung, gut or female reproductive tract.

For anyone interested , look here for Kenya’s Vision 2030. Harkening back to the first news item and the mention of NACOSTI, Kenya’s National Commission for Science, Technology and Innovation, it can be found here.

Looking for nano silicon at 10 nm (nanometres)

I received this request from Greg Packer on March 17, 2015,

Dear Sir we are looking for suppliers of a small qty say 5 kilo of nano silicon 10nm for hydrogen production with water for testing of a new producť designed fòr Ìndia.If you can help please ĺet us know plus the cost we are on the Gold Coast Qld
Thanks Greg Packer. 0403159635

As the request was in a comment to a post from 2010 I’m not sure how many people would see it and so have placed it here. The Gold Coast he is referring to is in Queensland, Australia.

To be clear, I do not know Mr. Packer and am not familiar with the product or his company but if you’re selling, it never hurts to check these things out.

Canadian ‘studies of science’ news: career opportunity for postdoc (2nd call), summer school in India, and a Situating Science update

The deadline for a posdoctoral fellowship with Atlantic Canada’s Cosmoplitanism group (which morphed out of the Situating Science group) is coming up shortly (March 2, 2015). I wrote about this opportunity in a Dec. 12, 2014 post part of which I will reproduce here,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Good luck! You can find more application information here.

Now for the summer school opportunity in India, (from a Feb. 18, 2015 Cosmopolitanism announcement).

Call for applications:
“Scientific Objects and Digital Cosmopolitanism” Summer School

Manipal Centre for Philosophy and Humanities,
Manipal, India
July 20-24, 2015

Please spread the word in your communities.


Scientific Objects and Digital Cosmopolitanism

Co-organized by the Manipal Centre for Philosophy and Humanities and Cosmopolitanism and the Local in Science and Nature.

July 20-24, 2015

Deadline for applications
Monday March 23, 2015

Sundar Sarukkai, Manipal Centre for Philosophy and Humanities
Gordon McOuat, University of King’s College

Varun Bhatta, Manipal Centre for Philosophy and Humanities

Applications from post-graduate and doctoral students in the fields of philosophy, philosophy of science and social sciences, history and philosophy of science, science and technology studies, and cognate fields are invited to a five-day summer school in India, made possible by collaborations between institutions and scholars in Canada, India and Southeast Asia. This will be an excellent opportunity for graduate students interested in receiving advanced training in the philosophy of science and science and technology studies, with a focus on scientific objects and their relation to cosmopolitanism.

The paradigm of scientific objects has undergone a major transformation in recent times. Today, scientific objects are not limited to microscopic or major astronomical objects. A new category of objects involves ontological modes of data, grids, simulation, visualization, etc. Such modes of objects are not merely peripheral props or outcomes of scientific endeavour. They actively constitute scientific theorizing, experimentation and instrumentation, and catalyze notions of cosmopolitanism in the digital world. Cosmopolitanism in this context is defined as a model of cultural and political engagement based on multidirectional exchange and contact across borders. A cosmopolitan approach treats science as a contingent, multifaceted and multicultural network of exchange. The summer school will engage with philosophical themes around the nature of new scientific objects and digital cosmopolitanism.

“The event is organized by the Manipal Centre for Philosophy and Humanities (Manipal University) and by the Social Sciences and Humanities Research Council of Canada-funded Cosmopolitanism and the Local in Science and Nature, a three-year project to establish a research network on cosmopolitanism in science with partners in Canada, India, and Southeast Asia. The project closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape.

Program and Faculty:
Each of the days will be split among:
(a) Background sessions led by Arun Bala, Gordon McOuat and Sundar Sarukkai,
(b) Sessions led by other faculty members with recognized expertise in the theme, and
(c) Sessions devoted to student research projects.

There will be plenty of opportunities for interaction and participation. The seminar will be held in English and readings will be circulated in advance. Special events will be organized to complement session content. There also will be opportunities for exploring the incredible richness and diversity of the region.

Selection Criteria:
We seek outstanding graduate students from Canada, India and Southeast Asia. We will prioritize applications from graduate students in disciplines or with experience in philosophy, philosophy of science, social studies, the history and philosophy of science, or science and technology studies.

Location and Accommodations:
The event will be hosted by the Manipal Centre for Philosophy and Humanities in the picturesque ocean-side state of Karnataka in south-western India. Students will be housed in student residences. The space is wheelchair accessible.

A registration fee of Rs 1500 for Indian students and $100 CAD for international students will be charged. This fee will include accommodations and some meals.

Financial Coverage:

Students from India:
Travel for India-based students will be covered by the summer school sponsors.

Students from Canada and Southeast Asia:
Pending government funding, travel costs may be defrayed for students from Canada or Southeast Asia. Students should indicate in their applications whether they have access to travel support (confirmed or unconfirmed) from home institutions or funding agencies. This will not affect the selection process. Acceptance letters will include more information on travel support.

Students from outside Canada, India and Southeast Asia:
Students from outside Canada, India and Southeast Asia will be expected to provide their own funding.

Students at home institutions of “Cosmopolitanism and the Local in Science and Nature” team members are strongly encouraged to contact the local team member to discuss funding options. Information on the project’s partners and team members is available on the project’s “About Us” page: www.CosmoLocal.org/about-us.

Any travel support will be considered as co-sponsorship to this international training event and acknowledged accordingly. Further information on funding will be included with acceptance letters.

Deadline for applications: March 23, 2015
Notification of acceptance: Week of April 6, 2015
Deadline for registration forms: May 11, 2015

Applications should include the following, preferably sent as PDFs:
1. Description of research interests and their relevance to the school (max. 300 words)
2. Brief Curriculum Vitae / resume highlighting relevant skills, experience and training,
3. One signed letter of recommendation from a supervisor, director of graduate studies, or other faculty member familiar with applicant’s research interests.

Applications should be sent to:
MCPH Office, mcphoffice@gmail.com
with a copy to
Varun Bhatta, varunsbhatta@gmail.com

For more information, please contact :
Greta Regan
Project Manager
Cosmopolitanism and the Local
University of King’s College


Dr. Gordon McOuat, History of Science and Technology Programme,
University of King’s College

The last bit of information for this post concerns the Situating Science research cluster mentioned here many times. Situating Science was a seven-year project funded by the Social Sciences and Humanities Research Council (SSHRC) which has become the Canadian Consortium for Situating Science and Technology (CCSST) and has some sort of a relationship (some of the Situating Science organizers have moved over) to the Cosmopolitanism project. The consortium seems to be a somewhat diminished version of the cluster so you may want to check it out now while some of the information is still current.