Tag Archives: India

India and a National Seminar on Literature in the Emerging Contexts of Technology and Culture

I recently got a notice about an intriguing national seminar being held at Punjabi University (India). From a Dec. 12, 2014 notice,

The Department of English is pleased to invite you to the National Seminar on Literature in the Emerging Contexts of Technology and Culture being held on February 25 and 26, 2015.

There is an old, almost primal, bond between writing and technology. From the earliest tools of writing—probably a sharp-edged stone—to the stylus pen, from the clay tablet to the capacitive touch screen, this bond has proclaimed itself with all the force of technology’s materiality. However, the relatively rapid emergence and acceptance of the digital writing environment has foregrounded with unprecedented clarity how command and control are always already embedded in communication. Moreover, in the specific sphere of literary production, the opaqueness of creativity stands further complicated with the entry of the programmer, often in the very person of the writer. At the other end, reading struggles to break free from the constraints of both the verbal and the linear as it goes multimedia and hypertextual, making fresh demands upon the human sensorium. The result is that the received narratives of literary history face radical interruptions.

While cultures enfold and shape literatures and technologies, it must be admitted that they are also articulated and shaped by the latter. Technology in particular has advanced and proliferated so much in the last three decades that it has come to be regarded as a culture in its own right. It has come to acquire, particularly since the early decades of the twentieth century, a presence and authority it never really possessed before. With prosthetics, simulation and remote-sensing, for instance, it has brought within the horizon of realization the human aspiration for self-overcoming. Yet in spite of its numerous enabling, even liberating, tools, technology has also often tended to close off several modes of cognition and perception. While most of us would like to believe that we use technology, it is no less true that technology also uses us. Heidegger correctly warned of the potential, inherent in modern technology, to reduce the human beings to its resources and reserves. He also alerted us to its elusive ways, particularly the way it resists being thought and pre-empts any attempts to think beyond itself, thereby instituting itself as the exclusive horizon of thinking. Paradoxically, like a literary text or like thought itself, technology may have some chinks, certain gaps or spaces, through which it may be glimpsed against its larger, imposing tendencies.

The ostensible self-sufficiency and plenitude of the technological, as of the cultural, can be questioned and their nature examined probably most productively from a space which is structured self-reflexively, that is from the space of the literary. At the same time, the implications of the technological turn, especially in its digital avatar, for literature, as also for culture, demand thinking.

The proposed seminar will be an opportunity to reflect on these and related issues, with which a whole galaxy of thinkers have engaged — from Walter Benjamin, Martin Heidegger, Raymond Williams and Jean Baudrillard to Donna Haraway, George Landow, Lev Manovich, Bernard Steigler, Katherine Hayles, Henry Jenkins, Hubert Dreyfus, Mari-Laure Ryan, the Krokers, Manuel Castells, Fredrich Kittler, David J Bolter, Manuel De Landa, Nick Montfort, Noah Wardrip-Fruin and others. Among the areas on which papers/presentations for the seminar are expected are:

  • The Work of Literature/Art in the Digital Age
  • Cultures of Technology and Technologies of Culture
  • Resistance and Appropriation Online: Strategies and Subterfuges
  • Global Capitalism and Cyberspace
  • Posthumanist Culture and Its Literatures
  • Digital Humanities and the Literary Text
  • Reconsidering Literature: Between Technology and Theory
  • Virtuality and/as Fiction
  • Plotting the Mutating Networks: The Logics of Contingency
  • Writing Technologies and Literature
  • Reading Literature in the Digital Age
  • Literature and Gaming
  • After the Death of the Author: The Posthuman Authority
  • Cyberpunk Writing
  • Teaching Literature in the Post-Gutenberg Classroom

Submission of abstracts: By 20 January 2015
Submission of papers: By 10 February 2015
Registration Fee: Rs. 1000/- (Rs. 500 for Research Scholars/Students)

All submissions must be made through email to [email protected] and/or [email protected].

Lodging and hospitality shall be provided by the University to all outstation resource persons and, subject to availability, to paper presenters. In view of financial constraints, it may not be possible to reimburse travel expenses to all paper presenters.

Rajesh Sharma
Seminar Director
Professor and Head
Department of English
783 796 0942
0175-304 6246

Jaspreet Mander
Associate Professor of English
Seminar Coordinator
941 792 3373

I couldn’t agree with the sentiments more, applaud the organizers’ ambitious scope, and wish them the best!

PS: There is a Canada/India/Southeast Asia project, Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership, that’s starting up soon as per my Dec. 12, 2014 post and this seminar would seem like an opportunity for those academics to reach out. Finally, you can get more information about Punjabi University here.

Postdoctoral position for Cosmopolitanism in Science project in Halifax, Nova Scotia, Canada)

It seems to be the week for job postings. After months and months with nothing, I stumble across two in one week. The latest comes from the Situating Science research cluster (more about the research cluster after the job posting). From a Dec. 10, 2014 Situating Science announcement,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

Eligibility:
The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

Research:
While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Application:

Full applications will contain:
1.     Cover letter that includes a description of current research projects,
2.     Research plan for post-doctoral work. Include how the proposed research fits within the Cosmopolitanism project’s scope, and which co-applicant with whom you wish to work.
3.     Academic CV,
4.     Writing sample,
5.     Names and contact information of three referees.

Applications can be submitted in either hardcopy or emailed as PDF documents:

Hardcopy:
Dr. Gordon McOuat
Cosmopolitanism and the Local Project
University of King’s College
6350 Coburg Road
Halifax, NS.  B3H 2A1
CANADA

News of this partnership is exciting especially in light of the objectives as described on the Cosmopolitanism & the Local in Science & Nature website’s About Us page,

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods, [emphasis mine]
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

I’m not sure ‘expose’ is the verb I’d use here since it’s perfectly obvious that the Canadian scholarly community is eurocentric. For confirmation all you have to do is look at the expert panels convened by the Council of Canadian Academies for their various assessments (e.g. The Expert Panel on the State of Canada’s Science Culture). Instead of ‘expose’, I’d use ‘Shift conscious and unconscious assumptions within a largely eurocentric Canadian scholarly community to widening perspectives’.

As for Situating Science, there is this (from its About Us page; Note: Links have been removed),

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

At the end of our 7 years, we can boast a number of collaborative successes. We helped organize and support over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Our network helped facilitate the development of 4 new programs of study at partner institutions. We leveraged more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. We hired over 30 students and 9 postdoctoral fellows. The events resulted in over 60 videos and podcasts as well as dozens of student blogs and over 50 publications.

I see the Situating Science project is coming to an end and I’m sorry to see it go. I think I will write more about Situating Science in one of my end-of-year posts. Getting back to the postdoc position, good luck to all the applicants!

India, Lockheed Martin, and canal-top solar power plants

Apparently the state of Gujarat (India) has inspired at least one other state, Punjab, to build (they hope) a network of photovoltaic (solar energy) plants over top of their canal system (from a Nov. 16, 2014 article by Mridul Chadha for cleantechnica.com),

India’s northern state of Punjab plans to set up 1,000 MW of solar PV projects to cover several kilometres of canals over the next three years. The state government has announced a target to cover 5,000 km of canals across the state. Through this program, the government hopes to generate 15% of the state’s total electricity demand.

Understandably, the construction of canal-top power plants is technically and structurally very different from rooftop or ground-based solar PV projects. The mounting structures for the solar PV modules cannot be heavy, as it could adversely impact the structural integrity of the canal itself. The structures should be easy to work with, as they are to be set up over a slope.

This is where the Punjab government has asked Lockheed Martin for help. The US-based company has entered into an agreement with the Punjab government to develop lightweight mounting structures for solar panels using nanotechnology.

Canal and rooftop solar power projects are the only viable options for Punjab as it is an agricultural state and land availability for large-scale ground-mounted projects remains an issue. As a result, the state government has a relatively lower (compared to other states) capacity addition target of 2 GW.

There’s more about the Punjab and current plans to increase its investment in solar photovoltaics in the article.

Here’s an image of a canal-top solar plant near Kadi (Gujarat),

Canal_Top_Solar_Power_PlantImage Credit: Hitesh vip | CC BY-SA 3.0

A Nov. 15, 2014 news item by Kamya Kandhar for efytimes.com provides a few more details about this Memorandum of Understanding (MOU),

Punjab government had announced its tie up with U.S. aerospace giant Lockheed Martin to expand the solar power generation and overcome power problems in the State. As per the agreement, the state will put in 1,000 MW solar power within the next three years. Lockheed Martin has agreed to provide plastic structures for solar panels on canals by using nano technology.

While commenting upon the agreement, a spokesperson said, “The company would also provide state-of-the-art technology to convert paddy straw into energy, solving the lingering problem of paddy straw burning in the state. The Punjab government and Lockheed Martin would ink a MoU in this regard [on Friday, Nov. 14, 2014].”

The decision was taken during a meeting between three-member team from Lockheed Martin, involving the CEO Phil Shaw, Chief Innovation Officer Tushar Shah and Regional Director Jagmohan Singh along with Punjab Non-Conventional Energy Minister Bikram Singh Majithia and other senior Punjab officials.

As for paddy straw and its conversion into energy, there’s this from a Nov. 14, 2014 news item on India West.com,

Shaw [CEO Phil Shaw] said Lockheed has come out with waste-to-energy conversion solutions with successful conversion of waste products to electricity, heat and fuel by using gasification processes. He said it was an environmentally friendly green recycling technology, which requires little space and the plants are fully automated.

Getting back to the nanotechnology, I was not able to track down any information about nanotechnology-enabled plastics and Lockheed Martin. But, there is a Dec. 11, 2013 interview with Travis Earles, Lockheed Martin Advanced materials and nanotechnology innovation executive and policy leader, written up by Kris Walker for Azonano. Note: this is a general interview and focuses largely on applications for carbon nanotubes and graphene.

Wonders of curcumin: wound healing; wonders of aromatic-turmerone: stem cells

Both curcumin and turmerone are constituents of turmeric which has been long lauded for its healing properties. Michael Berger has written a Nanowerk Spotlight article featuring curcumin and some recent work on burn wound healing. Meanwhile, a ScienceDaily news item details information about a team of researchers focused on tumerone as a means for regenerating brain stem cells.

Curcumin and burn wounds

In a Sept. 22, 2014 Nanowerk Spotlight article Michael Berger sums up the curcumin research effort (referencing some of this previous articles on the topic) in light of a new research paper about burn wound healing (Note: Links have been removed),

Despite significant progress in medical treatments of severe burn wounds, infection and subsequent sepsis persist as frequent causes of morbidity and mortality for burn victims. This is due not only to the extensive compromise of the protective barrier against microbial invasion, but also as a result of growing pathogen resistance to therapeutic options.

… Dr Adam Friedman, Assistant Professor of Dermatology and Director of Dermatologic research at the Montefiore-Albert Einstein College of Medicine, tells Nanowerk. “For me, this gap fuels innovation, serving as the inspiration for my research with broad-spectrum, multi-mechanistic antimicrobial nanomaterials.”

In new work, Friedman and a team of researchers from Albert Einstein College of Medicine and Oregon State University have explored the use of curcumin nanoparticles for the treatment of infected burn wounds, an application that resulted in reduced bacterial load and enhancing wound healing.

It certainly seems promising as per the article abstract,

Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent by Aimee E. Krausz, Brandon L. Adler, Vitor Cabral, Mahantesh Navati, Jessica Doerner, Rabab Charafeddine, Dinesh Chandra, Hongying Liang, Leslie Gunther, Alicea Clendaniel, Stacey Harper, Joel M. Friedman, Joshua D. Nosanchuk, & Adam J. Friedman. Nanomedicine: Nanotechnology, Biology and Medicine (article in press) published online 19 September 2014.http://www.nanomedjournal.com/article/S1549-9634%2814%2900527-9/abstract Uncorrected Proof

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria.

Curcumin’s poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin.

In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.

Two things: This paper is behind a paywall and note the use of the term ‘in vivo’ which means they have tested on animals such as rats and mice for example, but not humans. Nonetheless, it seems a promising avenue for further exploration.

Interestingly, there was an attempt in 1995 to patent turmeric for use in wound healing as per my Dec. 26, 2011 posting which featured then current research on turmeric,

There has already been one court case regarding a curcumin patent,

Recently, turmeric came into the global limelight when the controversial patent “Use of Turmeric in Wound Healing” was awarded, in 1995, to the University of Mississippi Medical Center, USA. Indian Council of Scientific and Industrial Research (CSIR) aggressively contested this award of the patent. It was argued by them that turmeric has been an integral part of the traditional Indian medicinal system over several centuries, and therefore, is deemed to be ‘prior art’, hence is in the public domain. Subsequently, after protracted technical/legal battle USPTO decreed that turmeric is an Indian discovery and revoked the patent.

One last bit about curcumin, my April 22, 2014 posting featured work in Iran using curcumin for cancer-healing.

Tumerone

This excerpt from a Sept. 25, 2014, news item in ScienceDaily represents the first time that tumerone has been mentioned here,

A bioactive compound found in turmeric promotes stem cell proliferation and differentiation in the brain, reveals new research published today in the open access journal Stem Cell Research & Therapy. The findings suggest aromatic turmerone could be a future drug candidate for treating neurological disorders, such as stroke and Alzheimer’s disease.

A Sept. 25, 2014 news release on EurekAlert provides more information,

The study looked at the effects of aromatic (ar-) turmerone on endogenous neutral stem cells (NSC), which are stem cells found within adult brains. NSC differentiate into neurons, and play an important role in self-repair and recovery of brain function in neurodegenerative diseases. Previous studies of ar-turmerone have shown that the compound can block activation of microglia cells. When activated, these cells cause neuroinflammation, which is associated with different neurological disorders. However, ar-turmerone’s impact on the brain’s capacity to self-repair was unknown.

Researchers from the Institute of Neuroscience and Medicine in Jülich, Germany, studied the effects of ar-turmerone on NSC proliferation and differentiation both in vitro and in vivo. Rat fetal NSC were cultured and grown in six different concentrations of ar-turmerone over a 72 hour period. At certain concentrations, ar-turmerone was shown to increase NSC proliferation by up to 80%, without having any impact on cell death. The cell differentiation process also accelerated in ar-turmerone-treated cells compared to untreated control cells.

To test the effects of ar-turmerone on NSC in vivo, the researchers injected adult rats with ar-turmerone. Using PET imaging and a tracer to detect proliferating cells, they found that the subventricular zone (SVZ) was wider, and the hippocampus expanded, in the brains of rats injected with ar-turmerone than in control animals. The SVZ and hippocampus are the two sites in adult mammalian brains where neurogenesis, the growth of neurons, is known to occur.

Lead author of the study, Adele Rueger, said: “While several substances have been described to promote stem cell proliferation in the brain, fewer drugs additionally promote the differentiation of stem cells into neurons, which constitutes a major goal in regenerative medicine. Our findings on aromatic turmerone take us one step closer to achieving this goal.”

Ar-turmerone is the lesser-studied of two major bioactive compounds found in turmeric. The other compound is curcumin, which is well known for its anti-inflammatory and neuroprotective properties

Here’s a link to and a citation for the paper,

Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo by Joerg Hucklenbroich, Rebecca Klein, Bernd Neumaier, Rudolf Graf, Gereon Rudolf Fink, Michael Schroeter, and Maria Adele Rueger. Stem Cell Research & Therapy 2014, 5:100  doi:10.1186/scrt500

This is an open access paper.

Canada’s Situating Science in Fall 2014

Canada’s Situating Science cluster (network of humanities and social science researchers focused on the study of science) has a number of projects mentioned and in its Fall 2014 newsletter,

1. Breaking News
It’s been yet another exciting spring and summer with new developments for the Situating Science SSHRC Strategic Knowledge Cluster team and HPS/STS [History of Philosophy of Science/Science and Technology Studies] research. And we’ve got even more good news coming down the pipeline soon…. For now, here’s the latest.

1.1. New 3 yr. Cosmopolitanism Partnership with India and Southeast Asia
We are excited to announce that the Situating Science project has helped to launch a new 3 yr. 200,000$ SSHRC Partnership Development Grant on ‘Cosmopolitanism and the Local in Science and Nature’ with institutions and scholars in Canada, India and Singapore. Built upon relations that the Cluster has helped establish over the past few years, the project will closely examine the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. A recent workshop on Globalizing History and Philosophy of Science at the Asia Research Institute at the National University of Singapore helped to mark the soft launch of the project (see more in this newsletter).

ARI along with Manipal University, Jawaharlal Nehru University, University of King’s College, Dalhousie University, York University, University of Toronto, and University of Alberta, form the partnership from which the team will seek new connections and longer term collaborations. The project’s website will feature a research database, bibliography, syllabi, and event information for the project’s workshops, lecture series, summer schools, and artifact work. When possible, photos, blogs, podcasts and videos from events will be posted online as well. The project will have its own mailing list so be sure to subscribe to that too. Check it all out: www.CosmoLocal.org

2.1. Globalizing History and Philosophy of Science workshop in Singapore August 21-22 2014
On August 21 and 22, scholars from across the globe gathered at the Asia Research Institute at the National University of Singapore to explore key issues in global histories and philosophies of the sciences. The setting next to the iconic Singapore Botanical Gardens provided a welcome atmosphere to examine how and why globalizing the humanities and social studies of science generates intellectual and conceptual tensions that require us to revisit, and possibly rethink, the leading notions that have hitherto informed the history, philosophy and sociology of science.

The keynote by Sanjay Subrahmanyam (UCLA) helped to situate discussions within a larger issue of paradigms of civilization. Workshop papers explored commensurability, translation, models of knowledge exchange, indigenous epistemologies, commercial geography, translation of math and astronomy, transmission and exchange, race, and data. Organizer Arun Bala and participants will seek out possibilities for publishing the proceedings. The event partnered with La Trobe University and Situating Science, and it helped to launch a new 3 yr. Cosmopolitanism project. For more information visit: www.CosmoLocal.org

2.2. Happy Campers: The Summer School Experience

We couldn’t help but feel like we were little kids going to summer camp while our big yellow school bus kicked up dust driving down a dirt road on a hot summer’s day. In this case it would have been a geeky science camp. We were about to dive right into day-long discussions of key pieces from Science and Technology Studies and History and Philosophy of Science and Technology.

Over four and a half days at one of the Queen’s University Biology Stations at the picturesque Elbow Lake Environmental Education Centre, 18 students from across Canada explored the four themes of the Cluster. Each day targeted a Cluster theme, which was introduced by organizer Sergio Sismondo (Sociology and Philosophy, Queen’s). Daryn Lehoux (Classics, Queen’s) explained key concepts in Historical Epistemology and Ontology. Using references of the anti-magnetic properties of garlic (or garlic’s antipathy with the loadstone) from the ancient period, Lehoux discussed the importance and significance of situating the meaning of a thing within specific epistemological contexts. Kelly Bronson (STS, St. Thomas University) explored modes of science communication and the development of the Public Engagement with Science and Technology model from the deficit model of Public Understanding of Science and Technology during sessions on Science Communication and its Publics. Nicole Nelson (University of Wisconsin-Madison) explained Material Culture and Scientific/Technological Practices by dissecting the meaning of animal bodies and other objects as scientific artifacts. Gordon McOuat wrapped up the last day by examining the nuances of the circulation and translation of knowledge and ‘trading zones’ during discussions of Geographies and Sites of Knowledge.

2.3. Doing Science in and on the Oceans
From June 14 to June 17, U. King’s College hosted an international workshop on the place and practice of oceanography in celebration of the work of Dr. Eric Mills, Dalhousie Professor Emeritus in Oceanography and co-creator of the History of Science and Technology program. Leading ocean scientists, historians and museum professionals came from the States, Europe and across Canada for “Place and Practice: Doing Science in and on the Ocean 1800-2012”. The event successfully connected different generations of scholars, explored methodologies of material culture analysis and incorporated them into mainstream historical work. There were presentations and discussions of 12 papers, an interdisciplinary panel discussion with keynote lecture by Dr. Mills, and a presentation at the Maritime Museum of the Atlantic by Canada Science and Technology Museum curator, David Pantalony. Paper topics ranged from exploring the evolving methodology of oceanographic practice to discussing ways that the boundaries of traditional scientific writing have been transcended. The event was partially organized and supported by the Atlantic Node and primary support was awarded by the SSHRC Connection Grant.

2.4. Evidence Dead or Alive: The Lives of Evidence National Lecture Series

The 2014 national lecture series on The Lives of Evidence wrapped up on a high note with an interdisciplinary panel discussion of Dr. Stathis Psillos’ exploration of the “Death of Evidence” controversy and the underlying philosophy of scientific evidence. The Canada Research Chair in Philosophy of Science spoke at the University of Toronto with panelists from law, philosophy and HPS. “Evidence: Wanted Dead of Alive” followed on the heels of his talk at the Institute for Science, Society and Policy “From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value”.

In 6 parts, The Lives of Evidence series examined the cultural, ethical, political, and scientific role of evidence in our world. The series formed as response to the recent warnings about the “Death of Evidence” and “War on Science” to explore what was meant by “evidence”, how it is interpreted, represented and communicated, how trust is created in research, what the relationship is between research, funding and policy and between evidence, explanations and expertise. It attracted collaborations from such groups as Evidence for Democracy, the University of Toronto Evidence Working Group, Canadian Centre for Ethics in Public Affairs, Dalhousie University Health Law Institute, Rotman Institute of Philosophy and many more.

A December [2013] symposium, “Hype in Science”, marked the soft launch of the series. In the all-day public event in Halifax, leading scientists, publishers and historians and philosophers of science discussed several case studies of how science is misrepresented and over-hyped in top science journals. Organized by the recent winner of the Gerhard Herzberg Canada Gold Medal for Science and Engineering, Ford Doolittle, the interdisciplinary talks in “Hype” explored issues of trustworthiness in science publications, scientific authority, science communication, and the place of research in the broader public.

The series then continued to explore issues from the creation of the HIV-Crystal Meth connection (Cindy Patton, SFU), Psychiatric Research Abuse (Carl Elliott, U. Minnesota), Evidence, Accountability and the Future of Canadian Science (Scott Findlay, Evidence for Democracy), Patents and Commercialized Medicine (Jim Brown, UofT), and Clinical Trials (Joel Lexchin, York).

All 6 parts are available to view on the Situating Science YouTube channel.You can read a few blogs from the events on our website too. Some of those involved are currently discussing possibilities of following up on some of the series’ issues.

2.5. Other Past Activities and Events
The Frankfurt School: The Critique of Capitalist Culture (July, UBC)

De l’exclusion à l’innovation théorique: le cas de l’éconophysique ; Prosocial attitudes and patterns of academic entrepreneurship (April, UQAM)

Critical Itineraries Technoscience Salon – Ontologies (April, UofT)

Technologies of Trauma: Assessing Wounds and Joining Bones in Late Imperial China (April, UBC)

For more, check out: www.SituSci.ca

You can find some of the upcoming talks and the complete Fall 2014 Situating Science newsletter here.

About one week after receiving the newsletter, I got this notice (Sept. 11, 2014),

We are ecstatic to announce that the Situating Science SSHRC Strategic Knowledge Cluster is shortlisted for a highly competitive SSHRC Partnership Impact Award!

And what an impact we’ve had over the past seven years: Organizing and supporting over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Facilitating the development of 4 new programs of study at partner institutions. Leveraging more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. Hiring over 30 students and 9 postdoctoral fellows. Over 60 videos and podcasts as well as dozens of student blogs and over 50 publications. Launching a new Partnership Development Grant between Canada, India and Southeast Asia. Developing a national consortium…And more!

The winners will be presented with their awards at a ceremony in Ottawa on Monday, November 3, 2014.

From the Sept. 11, 2014 Situating Science press release:

University of King’s College [Nova Scotia, Canada] professor Dr. Gordon McOuat has been named one of three finalists for the Social Sciences and Humanities Research Council of Canada’s (SSHRC) Partnership Award, one of five Impact Awards annually awarded by SSHRC.

Congratulations on the nomination and I wish Gordon McQuat and Situating Science good luck in the competition.

Russians and Chinese get cozy and talk nano

The Moscow Times has a couple of interesting stories about China and Russia. The first one to catch my eye was this one about Rusnano (Russian Nanotechnologies Corporation) and its invitation to create a joint China-Russian nanotechnology investment fund. From a Sept. 9, 2014 Moscow Times news item,

Rusnano has invited Chinese partners to create a joint fund for investment in nanotechnology, Anatoly Chubais, head of the state technology enterprise, was quoted as saying Tuesday [Sept. 9, 2014] by Prime news agency.

Russia is interested in working with China on nanotechnology as Beijing already invests “gigantic” sums in that sphere, Chubais said.

Perhaps the most interesting piece of news was in the last paragraph of that news item,

Moscow is pivoting toward the east to soften the impact of Western sanctions imposed on Russia over its role in Ukraine. …

Another Sept. 9, 2014 Moscow Times news item expands on the theme of Moscow pivoting east,

Russia and China pledged on Tuesday [Sept. 9, 2014] to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions [as a consequence of the situation in the Ukraine].

Russia and China pledged on Tuesday to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions.

For China, curtailing [the] dollar’s influence fits well with its ambitions to increase the clout of the yuan and turn it into a global reserve currency one day. With 32 percent of its $4 trillion foreign exchange reserves invested in U.S. government debt, Beijing wants to curb investment risks in dollars.

….

China and Russia signed a $400 billion gas supply deal in May [2014], securing the world’s top energy user a major source of cleaner fuel and opening a new market for Moscow as it risks losing European clients over the Ukraine crisis.

This is an interesting turn of events given that China and Russia (specifically the entity known as Soviet Union) have not always had the friendliest of relations almost going to war in 1969 over territorial disputes (Wikipedia entries: Sino-Soviet border conflict and China-Russian Border).

In any event, China may have its own reasons for turning to Russia at this time. According to Jack Chang of Associated Press (Sept. 11, 2014 article on the American Broadcasting News website), there is a major military buildup taking place in Asia as the biggest defence budget in Japan’s history has been requested, Vietnam doubles military spending, and the Philippines assembles a larger naval presence. In addition, India and South Korea are also investing in their military forces. (I was at a breakfast meeting [scroll down for the speaker’s video] in Jan. 2014 about Canada’s trade relations with Asia when a table companion [who’d worked for the Canadian International Development Agency, knew the Asian region very well, and had visited recently] commented that many countries such as Laos and Cambodia were very tense about China’s resurgence and its plans for the region.)

One final tidbit, this comes at an interesting juncture in the US science enterprise. After many years of seeing funding rise, the US National Nanotechnology Initiative (NNI) saw its 2015 budget request shrink by $200M US from its 2014 budget allotment (first mentioned here in a March 31, 2014 posting).

Sometimes an invitation to create a joint investment fund isn’t just an invitation.

First ever Nanoscience and Nanotechnology Symposium in English-speaking Caribbean

A July 12, 2014 news item on Nanowerk heralds this new International symposium on nanoscience and nanotechnology,

The ‘International Symposium on Nanoscience and Nanotechnology’ will be hosted at The University of the West Indies (UWI), St. Augustine [in Trinidad and Tobago], from July 15-17, 2014. The symposium, focused on the frontier areas of science, medicine and technology, is the first of its kind in the English-speaking Caribbean and is organised jointly by CARISCIENCE, The UWI and the University of Trinidad and Tobago. The symposium consists of a Public Lecture on Day 1 and Scientific Sessions over Days 2 and 3.

This international symposium is important and ground-breaking since these are widely viewed as revolutionary fields. Nanoscience and nanotechnology are considered to have huge potential to bring benefits to many areas of research and application and are attracting rapidly increasing investments from governments and businesses in many parts of the world.

Despite developments in nanoscience and nanotechnology, the Caribbean as a region has not been involved to the extent that more advanced countries have. As such, this symposium aims to provide a stronger focus on the impact and implications of developments in nanoscience/nanotechnology for stakeholders within the Caribbean region, including researchers, academics, university students, government and policy makers, industry partners and the wider public. The symposium will explore various topics under the following themes:

Nanotechnology for Sustainable Energy and Industrial Applications
Nanotechnology for Electronic Device and Sensor Applications
Nanotechnology in Biology, Medicine and Pharmaceuticals
Nanoscale Synthesis, Nanofabrication and Characterization

A July 11, 2014 UWI news release, which originated the news item, provides details about the speakers and more,

An impressive line-up of leading, globally recognised experts from world-class international and regional institutes awaits, including the Public Lecture titled “Science and the Elements of Daily Life,” to be delivered by world-renowned scientist, Professor Anthony K. Cheetham FRS, University of Cambridge, Vice President and Treasurer of The Royal Society. Additionally, the Keynote Address at the Opening Ceremony will be delivered by The Right Honourable Keith Mitchell, Prime Minister of Grenada, with responsibility for Science and Technology in CARICOM.

Speakers at the scientific sessions include Professor Fidel Castro Díaz-Balart (Scientific Advisor to the President of the Republic of Cuba and Vice President of The Academy of Science, Cuba); Professor Frank Gu (University of Waterloo, Canada); Professor Christopher Backhouse (former Director of the Waterloo Institute of Nanotechnology, University of Waterloo, Canada); Professor G. U. Kulkarni (JNCASR, India) and Professor Masami Okamoto (Toyota Technology Institute, Japan).

Students, teachers, academics and the wider public, are all invited and encouraged to attend and use this unique opportunity to engage these leading scientists.

The free Public Lecture is scheduled for Tuesday July 15, 2014, from 5pm-7.30pm, at the Daaga Auditorium, The UWI, St. Augustine Campus. [emphasis mine] The Scientific Sessions take place on Wednesday and Thursday July 16 and 17, 2014, from 8.30am-5pm, at Lecture Theatre A1, UWI Teaching and Learning Complex, Circular Road, St. Augustine. There will also be a small Poster Session to highlight some research done in the areas of Nanoscience and nanotechnology in the Caribbean.

All attendees (to the scientific sessions) must complete and send registration forms to the email address [email protected] by Sunday, July 13, 2014. Registration forms may be downloaded at the Campus Events Calendar entry by visiting www.sta.uwi.edu/news/ecalendar.

A registration fee must be paid in cash at the registration desk on Wednesday July 16, 2014, Day 2, at the start of the scientific sessions.

  • Academic and non-academic:  TT$ 600
  • Graduate student: TT$ 150
  • Undergraduate student: no cost

For further information on the symposium, please visit the Campus Events Calendar at www.sta.uwi.edu/news/ecalendar

I wish them all the best. They seem (judging by the institutions represented) to have attracted a stellar roster of speakers.

Bringing the Nanoworld Together Workshop in Beijing, China, Sept. 24 – 25, 2014

The speakers currently confirmed for the ‘Bringing the Nanoworld Together Workshop organized by Oxford Instruments are from the UK, China, Canada, the US, and the Netherlands as per a July 2, 2014 news item on Nanowerk (Note: A link has been removed),

‘Bringing the Nanoworld Together’ is an event organised by Oxford Instruments to share the expertise of scientists in the field of Nanotechnology. It will be hosted at the IOS-CAS [Institute of Semiconductors-Chinese Academy of Sciences] Beijing.

Starting with half day plenary sessions on 2D materials with guest plenary speaker Dr Aravind Vijayaraghavan from the National Graphene Institute in Manchester, UK, and on Quantum Information Processing with guest plenary speaker Prof David Cory from the Institute for Quantum Computing, University of Waterloo, Canada, Oxford Instruments’ seminar at the IOP in Beijing from 24-25th September [2014] promises to discuss cutting edge nanotechnology solutions for multiple applications.

A July 1, 2014 Oxford Instruments press release, which originated the news item, describes the sessions and provides more details about the speakers,

Two parallel sessions will focus on thin film processing, & materials characterisation, surface science and cryogenic environments and a wide range of topics will be covered within each technical area. These sessions will include guest international and Chinese speakers from renowned research institutions, speakers from the host institute, and technical experts from Oxford Instruments. This will also present an excellent opportunity for networking between all participants.

Confirmed speakers include the following, but more will be announced soon:

Dr. Aravind Vijayaraghavan, National Graphene Institute, Manchester, UK
Prof David Cory, Institute for Quantum Computing, University of Waterloo, Canada
Prof Guoxing Miao, Institute for Quantum Computing, University of Waterloo, Canada
Prof. HE Ke, Tsinghua University, Institute of Physics, CAS, China
Dr. WANG Xiaodong, Institute of Semiconductors, CAS, China
Prof Erwin Kessels, Tue Eindhoven, Netherlands
Prof. ZENG Yi, Institute of Semiconductor, CAS, China
Prof Robert Klie, University of Illinois Chicago, USA
Prof. Xinran WANG, Nanjing University, China
Prof. Zhihai CHENG, National Centre for Nanoscience and Technology, China
Prof. Yeliang WANG, Institute of Physics, CAS, China

The thin film processing sessions will review latest etch and deposition technological advances, including: ALD, Magnetron Sputtering, ICP PECVD, Nanoscale Etch, MEMS, MBE and more.

Materials characterisation, Surface Science and Cryogenic Environment sessions will cover multiple topics and technologies including: Ultra high vacuum SPM, Cryo free low temperature solutions, XPS/ESCA, an introduction to atomic force microscopy (AFM) and applications such as nanomechanics, In-situ heating and tensile characterisation using EBSD, Measuring Layer thicknesses and compositions using EDS, Nanomanipulation and fabrication within the SEM / FIB.

The host of last year’s Nanotechnology Tools seminar in India, Prof. Rudra Pratap, Chairperson at the Centre for Nano Science and Engineering, Indian Institute of Science, IISC Bangalore commented, “This seminar has been extremely well organised with competent speakers covering a variety of processes and tools for nanofabrication. It is great to have practitioners of the art give talks and provide tips and solutions based on their experience, something that cannot be found in text books.”

“This workshop is a great opportunity for a wide range of scientists in research and manufacturing to discover practical aspects of many new and established processes, technologies and applications, directly from renowned scientists and a leading manufacturer with over 50 years in the industry”, comments Mark Sefton, Sector Head of Oxford Instruments NanoSolutions, “Delegates appreciate the informal workshop atmosphere of these events, encouraging delegates to participate through open discussion and sharing their questions and experiences.”

This seminar is free of charge but prior booking is essential.

You can register on the Oxford Instruments website’s Bringing the Nanoworld Together Workshop webpage,

Nano and India’s pulp and paper industry

PaperTech 2014 is the latest version of a pulp and paper industry conference held annually (?) in Hyderabad, India. A May 26, 2014 news item on Azonano describes an upcoming session at the conference being held June 20 – 21, 2014,

Industrial Nanotech, Inc., an emerging global leader in nanotechnology based energy saving solutions, is pleased to announce that they have received and accepted an invitation from the steering committee to present at PaperTech 2014, the annual conference that focuses on improvements and new technologies for use in India’s pulp and paper industry.

An Industrial Nanotech May 23, 2014 news release on Stockhouse.com,  which originated the news item, describes the current situation for India’s pulp and paper industry,

There is an increased focus in India by pulp and paper and other manufacturers on energy savings as liquid natural gas prices increase. According to Bloomberg News, India’s cabinet agreed to a price increase to double the $4.2 per million Btu price to $8.4 per million Btu starting April 2014. Conservation of energy is vital to the pulp and paper industry in India, which is expected to grow at the CAGR (Compounded Annual Growth Rate) of around 9.6% during 2012-2017, which will make their revenues reach up to USD 11.83 Billion by 2017.

The company, Industrial Nanotech, provides information on its website about energy-saving products in various industry sectors including pulp and paper on their Nansulate®
webpage, Scroll down about 1/4 of the way to find a summary of the Seshasayee Paper & Boards Ltd. case study/presentation at PaperTech 2011 (PDF of the full case study here).

I was not able to find a dedicated PaperTech 2014 conference site but I did find this conference registration/info page on 10times.com.

Silky smooth tissue engineering

Virginia Commonwealth University (VCU) researchers have announced a new technique for tissue engineering that utilizes silk proteins. From a May 13, 2014 news item on Nanowerk,

When most people think of silk, the idea of a shimmering, silk scarf, or luxurious gown comes to mind.

But few realize, in its raw form, this seemingly delicate fiber is actually one of the strongest natural materials around – often compared to steel.

Silk, made up of the proteins fibroin and sericin, comes from the silkworm, and has been used in textiles and medical applications for thousands of years. The [US] Food and Drug Administration has classified silk as an approved biomaterial because it is nontoxic, biodegradable and biocompatible.

Those very properties make it an attractive candidate for use in widespread applications in tissue engineering. One day, silk could be an exciting route to create environmentally sound devices called “green devices,” instead of using plastics. However, forming complex architectures at the microscale or smaller, using silk proteins and other biomaterials has been a challenge for materials experts.

Now, a team of researchers from the Virginia Commonwealth University School of Engineering has found a way to fabricate precise, biocompatible architectures of silk proteins at the microscale.

A May 12, 2014 VCU news release by Sathya Achia Abraham, which originated the news item, describes the research underlying two recently published papers by the research team

    Kurland [Nicholas Kurland, Ph.D.] and Yadavalli [Vamsi Yadavalli, Ph.D., associate professor of chemical and life science engineering] successfully combined silk proteins with the technique of photolithography in a process they term “silk protein lithography” (SPL). Photolithography, or “writing using light,” is the method used to form circuits used in computers and smartphones, Yadavalli said.

According to Yadavalli, SPL begins by extracting the two main proteins from silk cocoons. These proteins are chemically modified to render them photoactive, and coated on glass or silicon surfaces as a thin film. As ultraviolet light passes through a stencil-like patterned mask, it crosslinks light-exposed proteins, turning them from liquid to solid.

The protein in unexposed areas is washed away, leaving behind patterns controllable to 1 micrometer. In comparison, a single human hair is 80-100 micrometers in diameter.

“These protein structures are high strength and excellent at guiding cell adhesion, providing precise spatial control of cells,” Yadavalli said.

“One day, we can envision implantable bioelectronic devices or tissue scaffolds that can safely disappear once they perform their intended function,” he said.

The team’s current research focuses on combining the photoreactive material with techniques such as rapid prototyping, and developing flexible bioelectronic scaffolds.

Study collaborators included S.C. Kundu, Ph.D., professor of biotechnology at the Indian Institute of Technology Kharagpur in India, and Tuli Dey, Ph.D., postdoctoral associate, at the Indian Institute of Technology Kharagpur in India, who provided the silk cocoons used in the study and assisted with cell culture experiments. VCU has recently filed a patent on this work.

Here’s a link to and a citation for both papers,

Silk Protein Lithography as a Route to Fabricate Sericin Microarchitectures by Nicholas E. Kurland, Tuli Dey, Congzhou Wang, Subhas C. Kundu and Vamsi K. Yadavalli. Article first published online: 16 APR 2014 DOI: 10.1002/adma.201400777

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Precise Patterning of Silk Microstructures Using Photolithography by Nicholas E. Kurland, Tuli Dey, Subhas C. Kundu, and Vamsi K. Yadavalli. Advanced Materials Volume 25, Issue 43, pages 6207–6212, November 20, 2013 Article first published online: 20 AUG 2013 DOI: 10.1002/adma.201302823

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Both papers are behind a paywall.

I have written about silk proteins in a Nov. 28, 2012 post (Producing stronger silk musically) that briefly mentioned tissue engineering with regard to a new technique for biosynthesising  materials.