Tag Archives: India Defence Research and Development Organisation (DRDO)

India’s S. R. Vadera and Narendra Kumar (Defence Laboratory, Jodhpur) review stealth and camouflage technology

Much of the military nanotechnology information I stumble across is from the US, Canada, and/or Europe and while S. R. Vadera and Narendra Kumar (of India’s Defence Laboratory, Jodhpur [DLJ]) do offer some information about India’s military nanotechnology situation, they focus largely on the US, Canada, and Europe. Happily, their Jan. 30, 2014 Nanowerk Spotlight 6 pp. article titled, Nanotechnology and nanomaterials for camouflage and stealth applications offers a comprehensive review of the field,

This article briefly describes how nanomaterials and nanotechnology can be useful in the strategic area of camouflage and stealth technology. …

The word camouflage has its origin in the French word camoufler which means to disguise. In English dictionary, the word meaning was initially referred to concealment or disguise of military objects in order to prevent detection by the enemy. In earlier days, specifically before 20th century, the only sensor available to detect was human eye and so camouflage was confined to the visible light only. The rapid development of sensor technology outside the visible range has forced to use new definition and terminologies for camouflage.

Modern definition of camouflage may be given as “delay or deny detection of a military target by detectors operating over multispectral wavelength region of electromagnetic spectrum or non-electromagnetic radiation e.g., acoustic, magnetic, etc. Multispectral camouflage, low-observability, countermeasures, signature management, and stealth technology are some of the new terminologies used now instead of camouflage.

In modern warfare, stealth technology is applied mostly to aircrafts and combat weapons. Stealth technology can improve the survivability and performance of aircrafts and weapons to gain the upper hand. Stealth technology involves the minimization of acoustic, optical, infra-red, and electromagnetic signatures. Among them, the minimization of electromagnetic signature, particularly in microwave region, is the most important. It can be realized in several ways which include stealth shaping design, radar absorbing material (RAM), and radar absorbing structures (RAS)1.

Unexpectedly, there are multiple reference to Canadian stealth and camouflage technology all of them courtesy of one company, HyperStealth Biotechnology Corp. based in Maple Ridge, BC, Canada. mentioned in my Jan. 7, 2013 post about an invisibility cloak.

Getting back to the article, the authors have this to say about the international ‘stealth scene’,

Today virtually every nation and many non-state military organizations have access to advanced tactical sensors for target acquisition (radar and thermal imagers) and intelligence gathering surveillance systems (ground and air reconnaissance). Precision-guided munitions exist that can be delivered by artillery, missiles, and aircraft and that can operate in the IR [infra red] region of the electromagnetic spectrum. These advanced imaging sights and sensors allow enemies to acquire and engage targets through visual smoke, at night, and under adverse weather conditions.

To combat these new sensing and detection technologies, camouflage paint, paint additives, tarps, nets and foams have been developed for visual camouflage and thermal and radar signature suppression. …

One comment, thermal and radar signature suppression sounds like another way of saying ‘invisibility cloak’.

The authors also had something to say about the application of nanomaterials/nanotechnology,

Nanotechnology has significant influence over a set of many interrelated core skills of land forces like protection, engagement, detection, movements, communications and information collection together with interrelated warfare strategies. Additionally, nanotechnology also has its role in the development of sensor for warfare agents, tagging and tracking and destruction of CBRN [chemical, biological, radiological and nuclear] warfare agents, besides many other possible applications.

There’s a very interesting passage on ‘stealth coatings’ which includes this,

These new coatings can be attached to a wide range of surfaces and are the first step towards developing ‘shape shifting clothing’ capable of adapting to the environment around it. …

In another example, an Israeli company, Nanoflight has claimed to develop a new nano paint, which can make it near impossible to detect objects painted with the material. The company is continuing their efforts to extend the camouflage action of these paints in infrared region as well. BASF, Germany (uses polyisocynate dendrimer nanoparticles) and Isotronic Corporation, USA are among the very few agencies coming up with chemical agent resistant and innovative camouflage (CARC) coatings using nanomaterials. In India, paints developed by Defence Laboratory, Jodhpur (DLJ) using polymeric nanocomposites, nanometals and nanometal complexes are perhaps the first examples of multispectral camouflage paints tested in VIS-NIR and thermal infrared regions of the electromagnetic spectrum at system level. The nanocomposites developed by DLJ provide excellent scope for the tuning of reflectance properties both in visible and near infrared region6 of electromagnetic spectrum leading to their applications on military targets (Fig. 4).

For anyone interested in this topic, I recommend reading the article in its entirety.

One final note, I found this Wikipedia entry about the DLJ, (Note: A link has been removed)

Defence Laboratory (DLJ) is westernmost located, an strategically important laboratory of the Defence Research and Development Organisation (DRDO).

Its mission is development of Radio Communication Systems, Data links, Satellite Communication Systems, Millimeter Wave Communication systems. There are two divisions in laboratory

NRMA (Nuclear Radiation’s Management and Applications) Division
Camouflage Division

That’s all folks!