Tag Archives: indium tin oxide

Transparent silver

This March 21, 2017 news item on Nanowerk is the first I’ve heard of transparent silver; it’s usually transparent aluminum (Note: A link has been removed),

The thinnest, smoothest layer of silver that can survive air exposure has been laid down at the University of Michigan, and it could change the way touchscreens and flat or flexible displays are made (Advanced Materials, “High-performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications”).

It could also help improve computing power, affecting both the transfer of information within a silicon chip and the patterning of the chip itself through metamaterial superlenses.

A March 21, 2017 University of Michigan  news release, which originated the news item, provides details about the research and features a mention about aluminum,

By combining the silver with a little bit of aluminum, the U-M researchers found that it was possible to produce exceptionally thin, smooth layers of silver that are resistant to tarnishing. They applied an anti-reflective coating to make one thin metal layer up to 92.4 percent transparent.

The team showed that the silver coating could guide light about 10 times as far as other metal waveguides—a property that could make it useful for faster computing. And they layered the silver films into a metamaterial hyperlens that could be used to create dense patterns with feature sizes a fraction of what is possible with ordinary ultraviolet methods, on silicon chips, for instance.

Screens of all stripes need transparent electrodes to control which pixels are lit up, but touchscreens are particularly dependent on them. A modern touch screen is made of a transparent conductive layer covered with a nonconductive layer. It senses electrical changes where a conductive object—such as a finger—is pressed against the screen.

“The transparent conductor market has been dominated to this day by one single material,” said L. Jay Guo, professor of electrical engineering and computer science.

This material, indium tin oxide, is projected to become expensive as demand for touch screens continues to grow; there are relatively few known sources of indium, Guo said.

“Before, it was very cheap. Now, the price is rising sharply,” he said.

The ultrathin film could make silver a worthy successor.

Usually, it’s impossible to make a continuous layer of silver less than 15 nanometers thick, or roughly 100 silver atoms. Silver has a tendency to cluster together in small islands rather than extend into an even coating, Guo said.

By adding about 6 percent aluminum, the researchers coaxed the metal into a film of less than half that thickness—seven nanometers. What’s more, when they exposed it to air, it didn’t immediately tarnish as pure silver films do. After several months, the film maintained its conductive properties and transparency. And it was firmly stuck on, whereas pure silver comes off glass with Scotch tape.

In addition to their potential to serve as transparent conductors for touch screens, the thin silver films offer two more tricks, both having to do with silver’s unparalleled ability to transport visible and infrared light waves along its surface. The light waves shrink and travel as so-called surface plasmon polaritons, showing up as oscillations in the concentration of electrons on the silver’s surface.

Those oscillations encode the frequency of the light, preserving it so that it can emerge on the other side. While optical fibers can’t scale down to the size of copper wires on today’s computer chips, plasmonic waveguides could allow information to travel in optical rather than electronic form for faster data transfer. As a waveguide, the smooth silver film could transport the surface plasmons over a centimeter—enough to get by inside a computer chip.

Here’s a link to and a citation for the paper,

High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications by Cheng Zhang, Nathaniel Kinsey, Long Chen, Chengang Ji, Mingjie Xu, Marcello Ferrera, Xiaoqing Pan, Vladimir M. Shalaev, Alexandra Boltasseva, and Jay Guo. Advanced Materials DOI: 10.1002/adma.201605177 Version of Record online: 20 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Foldable glass (well, there’s some plastic too)

Michael Berger has written a fascinating Aug. 11, 2015 Nanowerk Spotlight article on folding glass,

Have you ever heard about foldable glass?


Glass is notorious for its brittleness. Although industry has developed ultra-thin (∼0.1 mm), flexible glass (like Corning’s Willow® Glass) that can be bent for applications liked curved TV and smartphone displays, fully foldable glass had not been demonstrated. Until now.

Khang [Dahl-Young Khang, an Associate Professor in the Department of Materials Science and Engineering at Yonsei University] and his group have now demonstrated substrate platforms of glass and plastics, which can be reversibly and repeatedly foldable at pre designed location(s) without any mechanical failure or deterioration in device performances.

“We have engineered the substrates to have thinned parts on which the folding deformation should occur,” Moon Jong Han, first author of the paper a graduate student in Khang’s lab, says. “This localizes the deformation strain on those thinned parts only.”

He adds that this approach to engineering substrates has another advantage regarding device materials: “There is no need to adopt any novel materials such as nanowires, carbon nanotubes, graphene, etc. Rather, all the conventional materials that have been used for high-performance devices can be directly applied on our engineered substrates.”

Intriguingly, even ITO (indium tin oxide), a very brittle transparent conducting oxide, can be used as electrode on this novel foldable glass platform.

What makes the approach especially intriguing is the ability to reverse the fold and that it doesn’t require special nanomaterials, such as carbon nanotubes, etc. From Berger’s Aug. 11, 2015 article,

The width of the thinned parts, the gap width, plays the key role in implementing dual foldability. The other key element is the asymmetric design of the gap width for the second folding.

The researchers achieved foldability, in part, by copying a technique used for folding mats and oriental hinge-less screens which have thinned areas to allow folding.

Here’s a link to and a citation for the paper,

Glass and Plastics Platforms for Foldable Electronics and Displays by Moon Jung Han and Dahl-Young Khang. Advanced Materials DOI: 10.1002/adma.201501060 First published: 21 July 2015

This paper is behind a paywall.

Berger’s article is not only fascinating, it is also illustrated with some images provided by the researchers.

Silver nanowires have a surprising ability to self-heal

It seems there could be a new member of the flexible electronics materials community, silver nanowires, according to a Jan. 23, 2015 news item on ScienceDaily,

Wth its high electrical conductivity and optical transparency, indium tin oxide is one of the most widely used materials for touchscreens, plasma displays, and flexible electronics. But its rapidly escalating price has forced the electronics industry to search for other alternatives.

One potential and more cost-effective alternative is a film made with silver nanowires–wires so extremely thin that they are one-dimensional–embedded in flexible polymers. Like indium tin oxide, this material is transparent and conductive. But development has stalled because scientists lack a fundamental understanding of its mechanical properties.

A Jan. 23, 2015 Northwestern University news release (also on EurekAlert), which originated the news item, explains what makes silver nanowires a candidate as an alternative to indium tin oxide for use in flexible electronics,

… Horacio Espinosa, the James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at Northwestern University’s McCormick School of Engineering, has led research that expands the understanding of silver nanowires’ behavior in electronics.

Espinosa and his team investigated the material’s cyclic loading, which is an important part of fatigue analysis because it shows how the material reacts to fluctuating loads of stress.

“Cyclic loading is an important material behavior that must be investigated for realizing the potential applications of using silver nanowires in electronics,” Espinosa said. “Knowledge of such behavior allows designers to understand how these conductive films fail and how to improve their durability.”

By varying the tension on silver nanowires thinner than 120 nanometers and monitoring their deformation with electron microscopy, the research team characterized the cyclic mechanical behavior. They found that permanent deformation was partially recoverable in the studied nanowires, meaning that some of the material’s defects actually self-healed and disappeared upon cyclic loading. These results indicate that silver nanowires could potentially withstand strong cyclic loads for long periods of time, which is a key attribute needed for flexible electronics.

“These silver nanowires show mechanical properties that are quite unexpected,” Espinosa said. “We had to develop new experimental techniques to be able to measure this novel material property.”

The findings were recently featured on the cover of the journal Nano Letters. Other Northwestern coauthors on the paper are Rodrigo Bernal, a recently graduated PhD student in Espinosa’s lab, and Jiaxing Huang, associate professor of materials science and engineering in McCormick.

“The next step is to understand how this recovery influences the behavior of these materials when they are flexed millions of times,” said Bernal, first author of the paper.

Here’s a link to and citation for the paper,

Intrinsic Bauschinger Effect and Recoverable Plasticity in Pentatwinned Silver Nanowires Tested in Tension by Rodrigo A. Bernal, Amin Aghaei, Sangjun Lee, Seunghwa Ryu, Kwonnam Sohn, Jiaxing Huang, Wei Cai, and Horacio Espinosa. Nano Lett., 2015, 15 (1), pp 139–146 DOI: 10.1021/nl503237t Publication Date (Web): October 3, 2014
Copyright © 2014 American Chemical Society

This particular version of the paper is behind a paywall. However, access to the paper is possible although I make no claims as to which version it is or whether it will continue to be freely accessible.

Graphene dreams of the Morph

For anyone who’s not familiar with the Morph, it’s an idea that Nokia and the University of Cambridge’s Nanoscience Centre have been working on for the last few years. Originally announced as a type of flexible phone that you could wrap around your wrist, the Morph is now called a concept.  Here’s an animation illustrating some of the concepts which include flexibility and self-cleaning,

There have been very few announcements of any kind about the Morph or the technology that will support this concept. A few months ago, they did make an announcement about researching graphene as a means of actualizing the concept (noted in my May 6, 2011 posting [scroll down about 1/2 way]).

Interestingly the latest research published  on graphene and the flexible, transparent screens that are necessary to making something like the Morph a reality has come from a lab at Rice University. From the August 1, 2011 news item on Nanowerk,

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano (“Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes”).

Flexible, see-through video screens may be the “killer app” that finally puts graphene — the highly touted single-atom-thick form of carbon — into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything. [emphasis mine]

The lab’s hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It’s the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

Here’s James Tour and Yu Zhu, the paper’s lead author, explaining how the flexible screen was developed,

There are other flexible screens and competitors to the Morph notably the PaperPhone mentioned in my May 6,2011 posting (scroll down about 2/3 of the way) and in my May 12, 2011 posting featuring an interview with Roel Vertegaal of Queen’s University, Ontario, Canada, about the PaperPhone. (We did not discuss the role that graphene might or might not play in the development of the Paperphone’s screens.)

I wonder what impact this work at Rice will have not only for the Morph and the PaperPhone but on the European Union’s pathfinder research competition (the prize is $1B Euros), mentioned in my June 13, 2011 posting about graphene (scroll down about 1/3 of the way). Graphene is one of the research areas being considered for the prize.

ETA Aug. 5, 2011: Tour’s team just published another paper on graphene, one that proves you can make it from anything containing carbon according the Aug. 4, 2011 news item, One Box of Girl Scout Cookies Worth $15 Billion: Lab Shows Troop How Any Carbon Source Can Become Valuable Graphene, on Science Daily,

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

“I said we could grow it from any carbon source — for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time,” Tour recalled. “So one of the people in the room said, ‘Yes, please do it. … Let’s see that happen.'”

Members of Girl Scouts of America Troop 25080 came to Rice’s Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene — $250 for a two-inch square — a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

Here’s the full reference for this second paper,

Gedeng Ruan, Zhengzong Sun, Zhiwei Peng, James M. Tour. Growth of Graphene from Food, Insects and Waste. ACS Nano, 2011; 110729113834087 DOI: 10.1021/nn202625c

The article is behind a paywall.