Tag Archives: INIC

South American countries and others visit Iran’s Nanotechnology Initiative Council

The Iran Nanotechnology Initiative Council (INIC) news release states eight South American countries visited. By my count there were six South American countries (Argentina, Brazil, Ecuador, Bolivia, Venezuela, and Uruguay,), one North American country (Mexico), and one Caribbean country (Cuba). All eight can be described as Latin American countries.

An easy to understand error (I once forgot Mexico is part of North America and, for heaven sakes, I live in Canada and really should know better) as the designations can be confusing. That cleared up, here’s what the June 15, 2015 INIC news release had to say about the visit,

The ambassadors and charge d’affaires of 8 South American countries of Argentina, Brazil, Ecuador, Bolivia, Cuba, Venezuela, Uruguay and Mexico paid a visit to Iran Nanotechnology Initiative Council (INIC) to become familiar with its activities.

Among the objectives of the visit, which was requested by the abovementioned countries, mention can be made of introduction with INIC and its activities, presentation of nanotechnology achievements and products in the country by the INIC, creation and modification of international cooperation and creation of appropriate environment for exporting nanotechnology-based products to these countries.

In this visit, the programs, achievements and objectives of nanotechnology development in Iran were explained by the authorities of INIC. In addition and due to the needs of the countries whose representatives were present in the visit, a number of experts from the Iranian knowledge-based companies presented their nanotechnology products in the fields of packaging of agricultural products with long durability and water purification.

As usual with something from INIC, I long for more detail, e.g., when did the visit take place?

H/t to Nanotechnology Now June 15, 2015 news item.

Using stevia to synthesize gold nanoparticles?

The research into using stevia as a greener alternative to synthesize gold nanoparticles is from Iran (from a June 2, 2015 news item on Nanotechology Now),

Iranian researchers suggested the extract of stevia plant as a replacement for chemical solvents and reducers in the synthesis of gold nanoparticles.

A May 31, 2015 Iran Nanotechnology Initiative Council news release, which originated the news item, provides a little more detail,

Various chemical methods have been proposed for the synthesis of gold nanoparticles as the application of these particles has increased. These methods cause some problems, including environmental pollution and difficulty in synthesis. This research studied the possibility of using stevia leaf extract to reduce gold ions into atomic nanoparticles.

According to the researchers, the extract of stevia plant is biocompatible and it acts as a reducing and stabilizing agent. In addition, the simplicity of the method easily makes possible the quick biosynthesis of gold nanoparticles in different sizes.

Since the antibacterial effect of gold nanoparticles has been proved, these materials can be used in the production of detergents, packaging industry and production of medical drugs.

Gold nanoparticles stabilized with stevia extract in this research are absorbed by cells more than nanoparticles coated with chemical stabilizers (polymers). The reason is that nanoparticles stabilized with herbal extract contain various proteins and fibers on their surface. Therefore, the nanoparticles are more probable to diffuse into the cells through the multiple receivers of protein in comparison with the dual receiver of protein and chemical polymer. Therefore, it is expected that the transfer of protein and drugs into the cells can be adjusted by changing the size and shape of the nanoparticles.

Here’s a link to and a citation for the paper,

GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity by Govindasamy Balasubramani, Rajendiran Ramkumar, Narayanaswamy Krishnaveni, Rajamani Sowmiya, Paramasivam Deepak, Dhayalan Arul, & Pachiappan Perumal. Journal of Photochemistry and Photobiology B: Biology Volume 148, July 2015, Pages 1–8  doi:10.1016/j.jphotobiol.2015.03.016

This paper is behind a paywall.

Detecting Ochratoxin A in agricultural products with gold nanoparticles

Iranian researchers have developed a fast, inexpensive way to test for a cancer-causing toxicant found in some agricultural products. From a Jan. 5, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Isfahan University of Technology used gold nanoparticles in the production of a detection kit to find cancerous toxicant in agricultural products (“Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products”).

The use of the kit increases speed, sensitivity and ease of application.

A Jan. 5, 2015 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, describes Ochratoxin A and the kit,

Humans and animals are always threatened by various toxicants naturally produced in different food products. Ochratoxin A is a type of toxicant that is produced by some types of fungi, which has been classified in human cancerous materials (Group B2) by the International Agency for Research on Cancer (IARC).

There are many methods to detect this toxicant, but in addition to high costs, these methods are time-consuming and require skillful and expert people to carry out the tests. The fact is that in many places where the detection of ochratoxin A is a necessity, there is no equipment and the detection process fails.

Increasing the detection speed, ease of application, and reducing costs are among the advantages of the method proposed by the researchers. Obtaining technical knowledge for the production of various detection kits based on this method for different materials is another achievement of the researchers.

In this research, a fast and ultra-sensitive detection kit has been produced based on immunochromatography method. To this end, test tapes have been designed and produced by using gold nanoparticles markers, and the results are obtained by placing the sample on the tape after 15 minutes. Gold nanoparticles create red color after combining with the toxicant and the color is visible by naked eye too.

Here’s a link to and a citation for the published research,

Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products by Marjan Majdinasab, Mahmoud Sheikh-Zeinoddin, Sabihe Soleimanian-Zad, Peiwu Li, Qi Zhang, Xin Li, and Xiaoqian Tang. Journal of Chromatography B Volume 974, 1 January 2015, Pages 147–154. doi:10.1016/j.jchromb.2014.10.034

This paper is behind a paywall.

Producing cellulose nanoparticles from waste cotton

This nanocellulose item comes courtesy of Iran, from a July 29, 2014 news item on Nanowerk (Note: A link has been removed),

Researchers from Amir Kabir University of Technology succeeded in the synthesis of cellulose nanoparticles by using two environmentally-friendly processes (“Spherical cellulose nanoparticles preparation from waste cotton using a green method”).

The use of waste cotton fibers for the production of cellulose nanoparticles is among the interesting points in this research.

In addition to biodegradability and the ability to be recovered and re-used, cellulose nanoparticles are light and cheap, and they have very desirable mechanical properties. Therefore, they have high potential to be used in pharmaceutics, foodstuff, cosmetics, paper production and composite manufacturing.

A July 29, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, provides more detail about the research,

Dr. Tayyebeh Fattahi Mei-abadi, one of the researchers, explained about the advantages of this method over the usual methods, and said, “In this project, spherical cellulose nanoparticles were produced from waste cotton fibers through enzyme hydrolysis and ultrasound methods. Acidic hydrolysis is usually used in the majority of the researches on the production of cellulose nanoparticles. This method is not in agreement with environmental issues, and it leaves byproducts. But in this research, enzyme hydrolysis method was used, which enables the production of nanoparticles under mild condition without any environmental damage, and it does not require specific equipment. In addition, ultrasonic process was carried out with low energy in a short period, which makes cost-effective the production of cellulose nanoparticles through this method.”

In the production of the nanoparticles, various parts of cellulose enzyme were attached to cellulose chains, and they started to hydrolyze crystalline and amorphous areas. As hydrolysis goes on, particles with average size of 520 nm are formed. Then, ultrasound energy converts the hydrolyzed fibers into nanoparticles at about 70 nm in size.

Here’s a link to and a citation for the paper,

Spherical cellulose nanoparticles preparation from waste cotton using a green method by Tayebeh Fattahi Meyabadi, Fatemeh Dadashian, Gity Mir Mohamad Sadeghi, and Hamid Ebrahimi Zanjani Asl.Powder Technology Volume 261, July 2014, Pages 232–240 DOI: 10.1016/j.powtec.2014.04.039

This paper is behind a paywall.

 

Fewer silver nanoparticles washed off coated textiles

This time I have two complementary tidbits about silver nanoparticles, their use in textiles, and washing. The first is a June 30, 2014 news item on Nanowerk, with the latest research from Empa (Swiss Federal Laboratories for Materials Science and Technology) on silver nanoparticles being sloughed off textiles when washing them,

The antibacterial properties of silver-coated textiles are popular in the fields of sport and medicine. A team at Empa has now investigated how different silver coatings behave in the washing machine, and they have discovered something important: textiles with nano-coatings release fewer nanoparticles into the washing water than those with normal coatings …

A June 30,  2014 Empa news release, which originated the news item, describes the findings in more detail,

If it contains ‘nano’, it doesn’t primarily leak ‘nano’: at least that’s true for silver-coated textiles, explains Bernd Nowack of the «Technology and Society» division at Empa. During each wash cycle a certain amount of the silver coating is washed out of the textiles and ends up in the waste water. [emphasis mine] Empa analysed this water; it turned out that nano-coated textiles release hardly any nano-particles. That’s quite the opposite to ordinary coatings, where a lot of different silver particles were found. Moreover, nano-coated silver textiles generally lose less silver during washing. This is because considerably less silver is incorporated into textile fabrics with nano-coating, and so it is released in smaller quantities for the antibacterial effect than is the case with ordinary coatings. A surprising result that has a transformative effect on future analyses and on the treatment of silver textiles. «All silver textiles behave in a similar manner – regardless of whether they are nano-coated or conventionally-coated,» says Nowack. This is why nano-textiles should not be subjected to stricter regulation than textiles with conventional silver-coatings, and this is relevant for current discussions concerning possible special regulations for nano-silver.

But what is the significance of silver particles in waste water? Exposed silver reacts with the (small quantities of) sulphur in the air to form silver sulphide, and the same process takes place in the waste water treatment plant. The silver sulphide, which is insoluble, settles at the bottom of the sedimentation tank and is subsequently incinerated with the sewage sludge. So hardly any of the silver from the waste water remains in the environment. Silver is harmless because it is relatively non-toxic for humans. Even if silver particles are released from the textile fabric as a result of strong sweating, they are not absorbed by healthy skin.

I’ve highlighted Nowack’s name as he seems to have changed his opinions since I first wrote about his work with silver nanoparticles in textiles and washing in a Sept. 8, 2010 posting,

“We found that the total released varied considerably from less than 1 to 45 percent of the total nanosilver in the fabric and that most came out during the first wash,” Bernd Nowack, head of the Environmental Risk Assessment and Management Group at the Empa-Swiss Federal Laboratories for Materials Testing and Research, tells Nanowerk. “These results have important implications for the risk assessment of silver textiles and also for environmental fate studies of nanosilver, because they show that under certain conditions relevant to washing, primarily coarse silver-containing particles are released.”

How did the quantity of silver nanoparticles lost in water during washing change from “less than 1 to 45 percent of the total nanosilver in the fabric” in a 2010 study to “Empa analysed this water; it turned out that nano-coated textiles release hardly any nano-particles” in a 2014 study? It would be nice to find out if there was a change in the manufacturing process and whether or not this is global change or one undertaken in Switzerland alone.

Here’s a link to and a citation for the Empa paper,

Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles by Denise M. Mitrano, Elisa Rimmele, Adrian Wichser, Rolf Erni, Murray Height, and Bernd Nowack. ACS Nano, Article ASAP DOI: 10.1021/nn502228w Publication Date (Web): June 18, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

The second tidbit is from Iran and may help to answer my questions about the Empa research. According to a July 7, 2014 news item on Nanowerk (Note: A link has been removed),

Writing in The Journal of The Textile Institute (“Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics”), researchers from Islamic Azad University in Iran, describe the best arrangement for increasing the antibacterial properties of textile products by studying various structures of silver nanoparticles.

A July 7, 2014 news release from the Iran Nanotechnology Initiative Council (INIC), which originated the news item, provides more details,

By employing the structure presented by the researchers, the amount of nanoparticles stabilization on the fabric and the durability of its antibacterial properties increase after washing and some problems are solved, including the change in the fabric color.

Using the results of this research creates diversity in the application of various structures of nanoparticles in the complementary process of cotton products. Moreover, the color of the fabric does not change as the amount of consumed materials decreases, because the excess use of silver was the cause of this problem. On the other hand, the stability and durability of nanoparticles increase against standard washing. All these facts result in the reduction in production cost and increase the satisfaction of the customers.

The researchers have claimed that in comparison with other structures, hierarchical structure has much better antibacterial activity (more than 91%) even after five sets of standard washing.

This work on morphology would seem to answer my question about the big difference in Nowack’s description of the quantity of silver nanoparticles lost due to washing. I am assuming, of course, that something has changed with regard to the structure and/or shape of the silver nanoparticles coating the textiles used in the Empa research.

Getting back to the work in Iran, here’s a link to and a citation for the paper,

Effect of silver nanoparticles morphologies on antimicrobial properties of cotton fabrics by Mohammad Reza Nateghia & Hamed Hajimirzababa. The Journal of The Textile Institute Volume 105, Issue 8, 2014 pages 806-813 DOI: 10.1080/00405000.2013.855377 Published online: 21 Jan 2014

This paper is behind a paywall.

Overview of journal publications on topic of nanotechnology offers a surprise or two

The Iran National Nanotechnology Initiative (INIC) has released a report on the number of nanotechnology articles published in ISI (Institute for Scientific Information)-indexed journals, according to a May 28, 2014 news item on Nanowerk,

This report studies the number of nanotechnology articles published in ISI-indexed journals, and investigates the ascending or descending trend of the publication of such articles in ISI-indexed journals. The report then presents a list of conferences in which the highest number of nanotechnology articles have been presented.

A May 29, 2014 INIC news release offers some insight into the reasons for the report,

Scientific journals have always been among the most important tools in the development of science and technology, because by publishing scientific reports and articles, they demonstrate the movement of science borders. Like reliable references, the journals provide researchers with the latest scientific findings and help them achieve their research objects. The philosophy behind the publication of articles at the international level is to take out human discoveries from laboratories and scientific centers and to help the development of science by publishing them. Journals create an atmosphere to share scientific achievements and they prevent the loss or uselessness of the finding.

After less than two decades since the appearance of nanotechnology, this technology has penetrated all scientific aspects. Therefore, various journals in all sciences publish nanotechnology-related articles and reports. No comprehensive research has so far been carried out to determine the share of journals in the publication of nanotechnology articles. Introduction to nanotechnology penetration in the ISI-indexed journals is the main objective of the present study. Therefore, the following report studies the share of ISI-indexed journals in the publication of nanotechnology-related articles.

ISI Web of Knowledge includes 22,000 journals, 23 million patents, 192,000 articles presented in conferences, 5,500 websites and 5,000 volumes of books. Master Journal List includes the titles of all journals that are licensed by various products of Thomson Scientific Institute. The journals are annually evaluated, and according to the evaluation, approximately 8,000 to 9,000 of the journals acquire impact factor (IF) and are indexed in Journal Citation Report (JCR). JCR is in fact a databank of ISI-indexed journals. Only the articles that are published in the journals of this databank are indexed in Web of Science (WoS).

Here are some of the findings, from the news release,

Figure 1: Top 30 journals in publication of nanotechnology articles in 2001-2013  [downloaded from http://irannano.org/nano/index.php?ctrl=news&actn=news_view&id=46553&lang=2]

Figure 1: Top 30 journals in publication of nanotechnology articles in 2001-2013 [downloaded from http://irannano.org/nano/index.php?ctrl=news&actn=news_view&id=46553&lang=2]

Figure 1 demonstrates the top 30 journals that have published the highest number of nanotechnology articles in 2001-2013. APPLIED PHYSICS LETTERS and PHYSICAL REVIEW B have ranked first and second by publishing 24,382 and 23,717 articles, respectively. These two journals have published respectively 2.9% and 2.82% of all nanotechnology-related articles in the past 13 years. The two journals are the only ones that possess a share of nanotechnology articles publication higher than 2%, and other journals are far behind them. For instance, the JOURNAL OF APPLIED PHYSICS, which ranks third in the following chart, has published 1.95% of nanotechnology-related articles in the past 13 years.Among the top 30 journals, there are only four nanotechnology specific journals classified in Nanoscience and Nanotechnology category of ISI categories. The four journals are as follows: Nanotechnology, Journal of Nanoscience and Nanotechnology, Nano Letters and ACS Nano.

I find it surprising that Nature Nanotechnology is not on the list of the top 30 journals. I’m not arguing their results, it’s just that given a specific journal dedicated to nanotechnology topics, it’s unexpected.

You can find more in the May 29, 2014 INIC news release or here at:  http://statnano.com/searchstring.

Nanocellulose from sugarcane?

Iran adds to this blog’s growing catalogue of plant materials from which nanocellulose can be derived. From an April 27, 2014 news item on Nanowerk,

Researchers from University of Tehran utilized sugarcane waste to produce nanocomposite film (“All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application”).

The product has unique physical and mechanical properties and has many applications in packaging, glue making, medicine and electronic industries.

An April 28, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, describes the advantages of this potential product and the research that led to it,

These nanofibers have simpler, faster and more cost-effective production method in comparison with other production methods. The size of the produced cellulose nanofiber has been reported about 39±13 nm while tension resistant of the nanocomposite produced from the nanofibers has been reported about 140 MPa. The produced nanocomposite has higher strength in comparison with the majority of biodegradable and non-biodegradable films. It seems that the produced nanocomposite can be considered an appropriate option for the elimination of artificial polymers and oil derivatives from packaging materials.

In order to produce the product, cellulose fibers were produced through mechanical milling method after separation and purification of cellulose from sugarcane bagasse, and then nanopapers were produced. Next, full cellulose nanocomposite was produced through partial dissolving method, and its characteristics were evaluated.

Results showed that as the time of partial dissolving increases, the diffusivity of the nanocomposite into vapor decreases due to the increase in glassy part (amorphous) to crystalline part. However, thermal resistant decreases as the time of partial dissolving increases because a decrease is observed in the crystalline part.

In addition, when cellulose microfibers turn into nanofibers, resistance against the tension of the produced films increases. The researchers believe that the reason for the increase is the reduction in fault points (points that lead to the fracture in cellulose fibers), increase in specific area, and integrity of nanofibers. Transparency of samples significantly increases as the size of particles decreases to nanometric scale.

Here’s a link to and a citation for the paper,

All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application by Moein Ghaderi, Mohammad Mousavi, Hossein Yousefi, & Mohsen Labbafi. Carbohydrate Polymers, vol. 104, issue 1, January 2014, pp. 59-65 http://dx.doi.org/10.1016/j.carbpol.2014.01.013

This paper is behind a paywall.

Iran’s work on turmeric (curcumin) as an anti-cancer drug

It’s been a while since I’ve mentioned either Iran or curcumin (a constituent of turmeric) but an April 15, 2014 news item on Nanowerk has given me an opportunity to do both,

Nanotechnology researchers from Tarbiat Modarres University [Iran] produced a new drug capable of detecting and removing cancer cells using turmeric …

The compound is made of curcumin found in the extract of turmeric, and has desirable physical and chemical stability and prevents the proliferation of cancer cells.

An April 16, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which despite its date appears to have originated the news item, fills in details about the research,

In this drug, curcumin with high efficiency (approximately 87%) was loaded in the polymeric nanocarrier, and it created a spherical structure with the size of 140 nm. The drug has high physical and chemical stability. The drug was used successfully in laboratory conditions in the treatment of a type of aggressive tumor in the central nervous system, called glioblastoma (GBM).

The interesting point is that the fatal effect of nanocurcumin on mature stem cells derived from marrow and natural cells of skin fibroblast is observed at a concentration higher than a concentration that is effective on cancer cells. In other words, no fatal effect on natural cells is observed at concentrations that are fatal to cancer cells. It shows that curcumin prefers to enter cancer cells.

The size range of the nanocarrier used in this research is 15-100 nm. Physical and chemical stability, non-toxicity, and biodegradability are among the main characteristics of the nanocarriers. Based on the results, the nanocarrier used in this research has no toxic effect on cells. In other words, all the death in the cells is caused by curcumin, and dendrosome only results in bioavailability and transference of the drug into the cells.

“The drug has the potential to affect a number of message delivery paths in the cells, one of which is cell proliferation path. Therefore, the drug prefers to enter cancer cells rather than various types of natural cells,” the researchers said.

Here’s a link to and a citation for the paper,

Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells by Maryam Tahmasebi Mirgani, Benedetta Isacchi, Majid Sadeghizadeh, Fabio Marra, Anna Rita Bilia, Seyed Javad Mowla, Farhood Najafi, & Esmael Babaei. International Journal of Nanomedicine, vol. 9, issue 1, January 2014, pp. 403-417.DOI: http://dx.doi.org/10.2147/IJN.S48136

This is an open access paper.

I last wrote about turmeric or more specifically curcumin in a December 25, 2011 posting about research at UCLA (University of California at Los Angeles).

Green chemistry and zinc oxide nanoparticles from Iran (plus some unhappy scoop about Elsevier and access)

It’s been a while since I’ve featured any research from Iran partly due to the fact that I find the information disappointingly scant. While the Dec. 22, 2013 news item on Nanowerk doesn’t provide quite as much detail as I’d like it does shine a light on an aspect of Iranian nanotechnology research that I haven’t previously encountered, green chemistry (Note: A link has been removed),

Researchers used a simple and eco-friendly method to produce homogenous zinc oxide (ZnO) nanoparticles with various applications in medical industries due to their photocatalytic and antibacterial properties (“Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth”).

Zinc oxide nanoparticles have numerous applications, among which mention can be made of photocatalytic issues, piezoelectric devices, synthesis of pigments, chemical sensors, drug carriers in targeted drug delivery, and the production of cosmetics such as sunscreen lotions.

The Dec. 22, 2013 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, provides a bit more detail (Note: Links have been removed),

By using natural materials found in the geography of Iran and through sol-gel technique, the researchers synthesized zinc oxide nanoparticles in various sizes. To this end, they used zinc nitrate hexahydrate and gum tragacanth obtained from the Northern parts of Khorassan Razavi Province as the zinc-providing source and the agent to control the size of particles in aqueous solution, respectively.

Among the most important characteristics of the synthesis method, mention can be made of its simplicity, the use of cost-effective materials, conservation of green chemistry principals to prevent the use of hazardous materials to human safety and environment, production of nanoparticles in homogeneous size and with high efficiency, and most important of all, the use of native materials that are only found in Iran and its introduction to the world.

Here’s a link to and a citation for the paper,

Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth by Majid Darroudi, Zahra Sabouri, Reza Kazemi Oskuee, Ali Khorsand Zak, Hadi Kargar, and Mohamad Hasnul Naim Abd Hamidf. Ceramics International, Volume 39, Issue 8, December 2013, Pages 9195–9199

There’s a bit more technical information in the paper’s abstract,

The use of plant extract in the synthesis of nanomaterials can be a cost effective and eco-friendly approach. In this work we report the “green” and biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using gum tragacanth. Spherical ZnO-NPs were synthesized at different calcination temperatures. Transmission electron microscopy (TEM) imaging showed the formation most of nanoparticles in the size range of below 50 nm. The powder X-ray diffraction (PXRD) analysis revealed wurtzite hexagonal ZnO with preferential orientation in (101) reflection plane. In vitro cytotoxicity studies on neuro2A cells showed a dose dependent toxicity with non-toxic effect of concentration below 2 µg/mL. The synthesized ZnO-NPs using gum tragacanth were found to be comparable to those obtained from conventional reduction methods using hazardous polymers or surfactants and this method can be an excellent alternative for the synthesis of ZnO-NPs using biomaterials.

I was not able to find the DOI (digital object identifier) and this paper is behind a paywall.

Elsevier and access

On a final note, Elsevier, the company that publishes Ceramics International and many other journals, is arousing some ire with what appears to be its latest policies concerning access according to a Dec. 20, 2013 posting by Mike Masnick for Techdirt Note: Links have been removed),

We just recently wrote about the terrible anti-science/anti-knowledge/anti-learning decision by publishing giant Elsevier to demand that Academia.edu take down copies of journal articles that were submitted directly by the authors, as Elsevier wished to lock all that knowledge (much of it taxpayer funded) in its ridiculously expensive journals. Mike Taylor now alerts us that Elsevier is actually going even further in its war on access to knowledge. Some might argue that Elsevier was okay in going after a “central repository” like Academia.edu, but at least it wasn’t going directly after academics who were posting pdfs of their own research on their own websites. While some more enlightened publishers explicitly allow this, many (including Elsevier) technically do not allow it, but have always looked the other way when authors post their own papers.

That’s now changed. As Taylor highlights, the University of Calgary sent a letter to its staff saying that a company “representing” Elsevier, was demanding that they take down all such articles on the University’s network.

While I do feature the topic of open access and other issues with intellectual property from time to time, you’ll find Masnick’s insights and those of his colleagues are those of people who are more intimately familiar (albeit firmly committed to open access) with the issues should you choose to read his Dec. 20, 2013 posting in its entirely.

2014 Internatonal NanoSafety Congress in Iran extends deadline for submissions to Dec. 15, 2013

A Nov. 11, 2013 news item on Nanowerk highlights the 2014 Iran International NanoSafety Congress and the deadline extension,

The deadline for paper submission to Iran International Nanosafety Congress was extended to 15 December 2013.
Iran Nanosafety Congress will be held in Tehran University of Medical Sciences in association with Iran Nanosafety Network (INSN) of Iran Nanotechnology Initiative Council on 19-20 February [2014] to guarantee the safe and continuous development of nanotechnology, give correct information about nanosafety, identify active bodies in the field of nanosaftey and develop cooperation with other countries.
The scope of the congress is as follows:
– Exposure assessment
– Methodology: characterization, detection, and monitoring
– Occupational and environmental interactions
– Toxicology
– Ecotoxicology and life cycle analysis
– Standardization and regulations

The homepage for the Iran International NanoSafety Congress provides more information,

Dear Colleagues,
On behalf of the scientific and executive committees, it is our great pleasure to cordially invite you to attend the Iran NanoSafety Congress 2014 (INSC 2014) which will be held at the Ghods Auditorium in Tehran University of Medical Sciences, on 19-20 February 2014.

This Congress is jointly organized by the Iran Nanosafety Network (INSN) of Iran Nanotechnology Initiative Council (INIC) and Tehran University of Medical Sciences (TUMS), supported by Iran Nanohealth Committee of Food & Drug Organization (INC), Iranian Environmental Mutagen Society (IrEMS) and Iranian Society of Nanomedicine (ISNM).  The “Iran NanoSafety Congress 2014” aims to cover all safety aspects of nanomaterials in human and environment. This Congress is focused on novel approaches and technologies being used to properly assess the safety, toxicity, and risk of nanomaterial for occupational and environmental health. The scientific program will consist of keynote/distinguished lectures, symposia, workshops, discussion panels and poster sessions. This congress will provide attendees good opportunities to meet scientists from all over the world to exchange the ideas and to launch national and international collaborations in different aspects of  Nanosafety. The organizing committee is also planning a variety of unique social programs to provide the chance for participants to enjoy from fascinating Iranian culture and warm spirit of friendship.

We look forward to welcoming you and your active participation in the INSC 2014 in Tehran, I.R. Iran.

Good luck with getting your submission in on time.