Tag Archives: INIC

Green chemistry and zinc oxide nanoparticles from Iran (plus some unhappy scoop about Elsevier and access)

It’s been a while since I’ve featured any research from Iran partly due to the fact that I find the information disappointingly scant. While the Dec. 22, 2013 news item on Nanowerk doesn’t provide quite as much detail as I’d like it does shine a light on an aspect of Iranian nanotechnology research that I haven’t previously encountered, green chemistry (Note: A link has been removed),

Researchers used a simple and eco-friendly method to produce homogenous zinc oxide (ZnO) nanoparticles with various applications in medical industries due to their photocatalytic and antibacterial properties (“Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth”).

Zinc oxide nanoparticles have numerous applications, among which mention can be made of photocatalytic issues, piezoelectric devices, synthesis of pigments, chemical sensors, drug carriers in targeted drug delivery, and the production of cosmetics such as sunscreen lotions.

The Dec. 22, 2013 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, provides a bit more detail (Note: Links have been removed),

By using natural materials found in the geography of Iran and through sol-gel technique, the researchers synthesized zinc oxide nanoparticles in various sizes. To this end, they used zinc nitrate hexahydrate and gum tragacanth obtained from the Northern parts of Khorassan Razavi Province as the zinc-providing source and the agent to control the size of particles in aqueous solution, respectively.

Among the most important characteristics of the synthesis method, mention can be made of its simplicity, the use of cost-effective materials, conservation of green chemistry principals to prevent the use of hazardous materials to human safety and environment, production of nanoparticles in homogeneous size and with high efficiency, and most important of all, the use of native materials that are only found in Iran and its introduction to the world.

Here’s a link to and a citation for the paper,

Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth by Majid Darroudi, Zahra Sabouri, Reza Kazemi Oskuee, Ali Khorsand Zak, Hadi Kargar, and Mohamad Hasnul Naim Abd Hamidf. Ceramics International, Volume 39, Issue 8, December 2013, Pages 9195–9199

There’s a bit more technical information in the paper’s abstract,

The use of plant extract in the synthesis of nanomaterials can be a cost effective and eco-friendly approach. In this work we report the “green” and biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using gum tragacanth. Spherical ZnO-NPs were synthesized at different calcination temperatures. Transmission electron microscopy (TEM) imaging showed the formation most of nanoparticles in the size range of below 50 nm. The powder X-ray diffraction (PXRD) analysis revealed wurtzite hexagonal ZnO with preferential orientation in (101) reflection plane. In vitro cytotoxicity studies on neuro2A cells showed a dose dependent toxicity with non-toxic effect of concentration below 2 µg/mL. The synthesized ZnO-NPs using gum tragacanth were found to be comparable to those obtained from conventional reduction methods using hazardous polymers or surfactants and this method can be an excellent alternative for the synthesis of ZnO-NPs using biomaterials.

I was not able to find the DOI (digital object identifier) and this paper is behind a paywall.

Elsevier and access

On a final note, Elsevier, the company that publishes Ceramics International and many other journals, is arousing some ire with what appears to be its latest policies concerning access according to a Dec. 20, 2013 posting by Mike Masnick for Techdirt Note: Links have been removed),

We just recently wrote about the terrible anti-science/anti-knowledge/anti-learning decision by publishing giant Elsevier to demand that Academia.edu take down copies of journal articles that were submitted directly by the authors, as Elsevier wished to lock all that knowledge (much of it taxpayer funded) in its ridiculously expensive journals. Mike Taylor now alerts us that Elsevier is actually going even further in its war on access to knowledge. Some might argue that Elsevier was okay in going after a “central repository” like Academia.edu, but at least it wasn’t going directly after academics who were posting pdfs of their own research on their own websites. While some more enlightened publishers explicitly allow this, many (including Elsevier) technically do not allow it, but have always looked the other way when authors post their own papers.

That’s now changed. As Taylor highlights, the University of Calgary sent a letter to its staff saying that a company “representing” Elsevier, was demanding that they take down all such articles on the University’s network.

While I do feature the topic of open access and other issues with intellectual property from time to time, you’ll find Masnick’s insights and those of his colleagues are those of people who are more intimately familiar (albeit firmly committed to open access) with the issues should you choose to read his Dec. 20, 2013 posting in its entirely.

2014 Internatonal NanoSafety Congress in Iran extends deadline for submissions to Dec. 15, 2013

A Nov. 11, 2013 news item on Nanowerk highlights the 2014 Iran International NanoSafety Congress and the deadline extension,

The deadline for paper submission to Iran International Nanosafety Congress was extended to 15 December 2013.
Iran Nanosafety Congress will be held in Tehran University of Medical Sciences in association with Iran Nanosafety Network (INSN) of Iran Nanotechnology Initiative Council on 19-20 February [2014] to guarantee the safe and continuous development of nanotechnology, give correct information about nanosafety, identify active bodies in the field of nanosaftey and develop cooperation with other countries.
The scope of the congress is as follows:
– Exposure assessment
– Methodology: characterization, detection, and monitoring
– Occupational and environmental interactions
– Toxicology
– Ecotoxicology and life cycle analysis
– Standardization and regulations

The homepage for the Iran International NanoSafety Congress provides more information,

Dear Colleagues,
On behalf of the scientific and executive committees, it is our great pleasure to cordially invite you to attend the Iran NanoSafety Congress 2014 (INSC 2014) which will be held at the Ghods Auditorium in Tehran University of Medical Sciences, on 19-20 February 2014.

This Congress is jointly organized by the Iran Nanosafety Network (INSN) of Iran Nanotechnology Initiative Council (INIC) and Tehran University of Medical Sciences (TUMS), supported by Iran Nanohealth Committee of Food & Drug Organization (INC), Iranian Environmental Mutagen Society (IrEMS) and Iranian Society of Nanomedicine (ISNM).  The “Iran NanoSafety Congress 2014” aims to cover all safety aspects of nanomaterials in human and environment. This Congress is focused on novel approaches and technologies being used to properly assess the safety, toxicity, and risk of nanomaterial for occupational and environmental health. The scientific program will consist of keynote/distinguished lectures, symposia, workshops, discussion panels and poster sessions. This congress will provide attendees good opportunities to meet scientists from all over the world to exchange the ideas and to launch national and international collaborations in different aspects of  Nanosafety. The organizing committee is also planning a variety of unique social programs to provide the chance for participants to enjoy from fascinating Iranian culture and warm spirit of friendship.

We look forward to welcoming you and your active participation in the INSC 2014 in Tehran, I.R. Iran.

Good luck with getting your submission in on time.

Honey nanofibres tested as scaffolding for wound dressing in an Iran-Netherlands collaboration

It’s taken me a while to get to this one but I can’t resist this honey-enabled technology any longer. According to a Sept. 19, 2013 news item on Nanowerk, honey, a well known antibiotic, has been used in a new technique for wound dressings (Note: A link has been removed),

Researchers applied electrospinning process and produced a drug-carrying nanofibrous web to be used in wound dressing by using an artificial and biodegradable polymer and honey as a natural polymer (“A novel honey-based nanofibrous scaffold for wound dressing application”).

A wide range of biological and biodegradable materials have been electrospun in recent years to produce nanofibers. In this research, a drug carrying nanofibrous web was produced to be used in wound dressing by using an artificial and biodegradable polymer and a natural polymer through electrospinning method.

The Sept. 19, 2013 Iran National Nanotechnology Initiative Council (INIC) news release, which originated the news item, mentions honey’s antibiotic properties and explains how its application in this new technique for wound dressing,

Honey has antibacterial and anti-inflammation properties. Many studies have been published on the effects of honey in the treatment of infections and in prevention of the wound from being infected. Therefore, the combination of the unique properties of nanofibers and the natural properties of honey in the production of wound dressing is the most important characteristic of this research.

SEM [scanning electron microscope] and AFM [atomic force microscope] results showed that the fibers were completely homogenous with relatively smooth surface. However, spindle-like beads were observed in nanofibers containing 60% honey. As the concentration of honey increased in the mixture, a decrease was observed in the diameter of nanofibers. Drug-loaded nanofibers, too, had relatively smooth and homogenous surface, and as the amount of drug increases, the diameter of the nanofibers decreased. Drug release behavior studies demonstrated a sudden initial release. Statistical analyses showed that the presence of honey did not have significant effect on the process or on the behavior of drug release. Therefore, electrospun nanofibers that contain honey are appropriate option to be used in wound dressing.

Wounds can be dressed faster by using the achievements of this research. Honey is considered as a well-known drug in traditional medical sciences, which has been loaded with drugs in this research.

The research paper’s (a link and citation will be provided further down) abstract provides a bit more detail,

In this study, nanofiber meshes were produced from aqueous mixtures of poly(vinyl alcohol) (PVA) and honey via electrospinning. The Electrospinning process was performed at different PVAs to honey ratios (100/0, 90/10, 80/20, 70/30, and 60/40). Dexamethasone sodium phosphate was selected as an anti-inflammatory drug and incorporated in the electrospinning solutions. Its release behavior was determined. Uniform and smooth nanofibers were formed, independent of the honey content. In case honey content increased up to 40%, some spindle-like beads on the fibers were observed. The diameter of electrospun fibers decreased as the ratio of honey increased. The release characteristics of the model drug from both the PVA and PVA/honey (80/20) nanofibrous mats were studied and statistical analysis was performed. All electrospun fibers exhibited a large initial burst release at a short time after incubation. The release profile was similar for both PVA and PVA/honey (80/20) drug-loaded nanofibers. This study shows that an anti-inflammatory drug can be released during the initial stages and honey can be used as a natural antibiotic to improve the wound dressing efficiency and increase the healing rate.

Here’s a link to and a citation for paper,

A novel honey-based nanofibrous scaffold for wound dressing application by  H. Maleki, A. A. Gharehaghaji, and P. J. Dijkstra.
Journal of Applied Polymer Science, Volume 127, Issue 5, pages 4086–4092, 5 March 2013 (Article first published online: 29 MAY 2012) DOI: 10.1002/app.37601

Copyright © 2012 Wiley Periodicals, Inc.

This article is behind a paywall.

One final note, the researchers are from (Maleki and Gharehaghaji) Amirkabir University of Technology, Tehran, Iran and (Dijkstra) the University of Twente, Enschede, The Netherlands

Removing dye from textile wastewater

I remember once reading a fashion article about the rivers in one  of Italy’s major textile centres. Apparently, the rivers were running red as it was that year’s ‘on trend’ colour and that’s what happens when mills empty their wastewater into rivers.  That article came back to mind on reading this Mar. 27, 2013 news item on Nanowerk (Note: A link has been removed),

Researchers at Amir Kabir University of Technology and Institute for Color Science and Technology [Iran] produced a bio-adsorbent with very high performance for the removal of dye from textile wastewater by preparing a combination of chitosan and dendrimer nanostructure (“Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies”).

Among the unique characteristics of these bio-adsorbents, mention can be made of high adsorption capacity, biodegradability, biocompatibility and non-toxicity.

There’s a March 28, 2013 news release on the Iran Nanotechnology Initiative Council (INIC) website, which provides more detail abut this work,

The aim of the research was to produce chitosan-dendrimer combination in order to remove dye from the wastewater containing reactive dyes. To this end, chitosan was modified in the first step by using ethylacrylate. Then in the second step, chitosan-dendrimer combination was produced by using PPI second generation of dendrimer.

Parameters that affect the dye removal process including pH, concentration of dye, time and temperature of contact were studied by RSM program in order to optimize the process. Kinetic studies and adsorption isotherms at equilibrium were evaluated too in order to measure the amount of dye adsorbed on the adsorbent.

Results showed that chitosan-dendrimer polymer bio-adsorbent could be used as a high potential and biodegradable bio-adsorbent to remove anionic compounds such as reactive dyes from textile industry wastewater. High adsorption capacity, biodegradability, biocompatibility, and non-toxicity are among the unique properties of these adsorbents.

Here’s a citation and a link for the article,

Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies by Mousa Sadeghi-Kiakhan, Mokhtar Arami1, Kamaladin Gharanjig. Journal of Applied Polymer Science, Volume 127, Issue 4, pages 2607–2619, 15 February 2013. Article first published online: 16 MAY 2012 DOI: 10.1002/app.37615

Copyright © 2012 Wiley Periodicals, Inc.

The article is behind a paywall.

Plus, for anyone (like me) who needs a definition for adsorbent (from the Dictionary of Construction),

A material that has the ability to extract certain substances from gases, liquids, or solids by causing them to adhere to its surface without changing the physical properties of the adsorbent. Activated carbon, silica gel, and activated alumina are materials frequently used for this application.

Inventions Nanotech Middle East conference in 2013

It’s a bit early to be talking about this conference since there isn’t much information, no speakers, no programme, etc. but there’s still time to pull that all together since the Inventions Nanotech Middle East Conference (aka, Inventions Nanotech ME) is scheduled for Nov. 3-5, 2013. From the Conference Overview page,

The Conference will host top notch industry experts from all over the world who will address the following crucial topics through live demonstrations and case studies:

Water
Energy / Oil & Gas
Environment
Health
Consumer Products

The event will be held at the Qatar National Convention Center.

There are two main sources of nanotech news items in that region. Iran or INIC  (Iran Nanotechnology Initiative Council [my Dec. 27, 2012 posting]), which continuously publicizes its nanotechnology research, and Saudi Arabia (KAUST or King Abdullah University of Science and Technology), which publicizes its work on solar energy (my July 30, 2012 posting), for the most part.

Good luck to the conference organizers.

Iran, the United Nations, China, and nanotechnology applications for water and wastewater treatment

The Dec. 27, 2012 news item on Nanowerk highlighting a UNIDO (United Nations Industrial Development Organization) meeting in Tehran observes (Note: Link removed),

The first meeting of United Nations Industrial Development Organization International Center on Nanotechnology (UNIDO ICN) was held in Tehran on December 12-13 titled ‘The First Meeting for the Applications of Nanotechnology in Water and Wastewater Industry: Challenges and Opportunities’.

At the beginning of the meeting, the Secretary General of Iran Nanotechnology Initiative Council Dr. Saeed Sarkar pointed out to the importance of nanotechnology in water and wastewater industry. According to him, the creation of a committee consisting of bodies active in the field of standardization in water and wastewater is a must for the application of nanotechnology.

“Energy, health, water, and environment are the priorities of the application of nanotechnology. Therefore, Iran Nanotechnology Initiative Council has divided its applicable programs in the field of water and wastewater into three main phases, and we are carrying out the first phase at the moment,” he said.

It must be pointed out that ICN was established in Iran on the suggestion of Iran Nanotechnology Initiative Council in 2012, and it tries to develop nanotechnology and its applications in water and wastewater through carrying out international cooperation and through creating capacities in under-developed countries.

UNIDO’s International Center on Nanotechnology webpage features an upcoming symposium in China ((in a sidebar to the right of the screen),

IWA Regional Symposium on Nanotechnology and Water Treatment 2013

The IWA (International Water Association) 2013 Symposium webpage describes the theme and meeting location,

The IWA Symposium on Environmental Nanotechnology 2013 will be held in Nanjing, China from 24-27 April 2013.

The meeting aims at bringing together researchers, specialists, professors and students to exchange ideas and present their latest works on advances in nanotechnology and key environmental issues relating to water/wastewater treatment and water reuse.

We hope to facilitate collaboration and create professional linkages among environmentalists worldwide. Furthermore, the conference could be an international platform to raise one’s academic standing in the specific field.

There are a variety of opportunities for you to participate through attending, presententing,  [sic] exhibiting, and sponsoring.
Proposed Themes:

  • Potential environmental impact of nanotechnology
  • Application of nanomaterials in water treatment

Here are the registration dates,

Early Bird Registration Deadline: 31 December 2012
Authors Registration Deadline: 28 February 2013

Iran’s new international nanotechnology statistics website

Iran’s international nanotechnology statistics website  is very Iran-centric as one would expect. (I find it’s always interesting to notice this elsewhere and then  consider how I take a Canada-centric focus for granted.) From the May 15, 2012 news item on Nanowerk,

Iran Nanotechnology Initiative Council (INIC) launched a website which monitors and analyzes scientific achievements and improvements of world countries in the field of nanotechnology based on continually updated statistical data.

The website is intended to track regional, mainly Iran, and global technological changes in the field around the clock.

The data is based on a set of keywords, which you can view here.