Tag Archives: Institut Català de Nanociència i Nanotecnologia

Nondirect relationships between the number of hydrogen bonds in DNA pairs and their relative strengths (three can be less than two)

Michael Berger’s Oct. 10, 2017 Nanowerk Spotlight article features research from the Institut Català de Nanociència i Nanotecnologia, (Catalan Institute of Nanoscience and Nanotechnology and acronym ICN2) which has nothing to do with recent vote on independence (for more, see this Oct. 23, 2017 article about how countries such as ‘Catalonia’ and others do and don’t gain independence in The Atlantic),

This is the first report on the electrical characterization of DNA with intrabond resolution.

Specifically, it quantifies electrical forces due to a single hydrogen bond in DNA and provides proof of a non-direct relationship between the number of hydrogen bonds in DNA pairs and the relative strengths of such pairs.

Such understanding of the relative strengths of the forces involved in the specific bonding of DNA as well as its electrical origin provides physical foundations to control mechanisms associated with DNA stability. It could help to develop new methods for the understanding, characterization; and control of relevant events originated at intrabond scales e.g. controlled DNA repair and damage; controlled modification of the expression of the genome; and communications below the single bond limit.

A blackboard representation of the manuscript’s key message: the quantification of the relative strengths between base pairs in DNA due to zipping hydrogen bonds might place on doubt such mechanisms regarding the interpretation of thermodynamic properties of DNA based on the assumption that A/T pairs are weaker than G/C pairs due to the sole difference in the number of hydrogen bonds, 2 and 3 respectively. (Image: Dr. Yamila García-Martínez)

Generally, being able to control DNA stability at the single bond level by means of electromagnetic interactions opens new avenues to induce modifications of the replication and transcription processes of DNA by means of noncontact methods.

….

Going forward, the researchers will study the effects of external electromagnetic fields on DNA at the level of single bond events. This will have not only an enormous interest in the medical field but also in nanotechnology where it would open the door to non-contact atomic manipulation of DNA – the analogue to the CRISPR gene editing method [emphasis mine] but using electromagnetic fields to drive changes in DNA.

Interesting stuff, eh?

Here’s a link to and a citation for the paper,

Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths by Y. B. Ruiz-Blanco, Y. Almeida, C. M. Sotomayor-Torres, Y. García. PLOS [Public Library of Science] https://doi.org/10.1371/journal.pone.0185638 Published: October 5, 2017

This paper is open access.

Feel the vibe on Nanophonics Day

Officially, Nanophonics Day was held on May 26, 2014 but it’s never too late to appreciate good vibrations. Here’s more about the ‘day’ and nanophonics from a May 27, 2014 news item on Azonano (Note: A link has been removed),

The Nanophononics Day, collocated with the European Materials Research Society Spring Meeting (Lille, 26-30 May), aims to raise awareness about this emergent research area and the EUPHONON Project. ICREA Prof Dr Clivia Sotomayor, Group Leader at ICN2, coordinates this initiative.

A phonon is a collective excitation of atoms or molecules, a vibration of matter which plays a major role in physical properties of solids and liquids. Nanophononics is the science and engineering of these vibrations at the nanometre scale. Applications of the knowledge generated in the field might include novel devices aiming to decrease the power consumption for a low-power information society. It also includes phonon lasers and phenomena involving ultra-fast acoustic processes, or exceeding the limits of mass and pressure detections in membranes which might have an impact in safety and technology standards. Nanophononics links classical and quantum physics and translates this knowledge into everyday applications.

A May 26, 2014 Institut Català de Nanociència i Nanotecnologia (ICN2) news release, which originated the news item, provides more details about European research into nanophonics,

The EUPHONON project aims to amalgamate the activities on phonon science and technology in Europe to establish a strong community in this emerging research field. It started in November 2013, coordinated by Prof. Sebastian Volz from CNRS – École Central Paris. ICREA Prof Dr Clivia M Sotomayor Torres, Phononic and Photonic Nanostructures (P2N) Group Leader at the Institut Català de Nanociència i Nanotecnologia (ICN2), is among the 7 members of the consortium. She is the coordinator of the Nanophononics Day, intended to raise awareness about this emergent research area and the EUPHONON Project.

The Nanophononics Day is celebrated in May 26th 2014, collocated with Symposium D of the European Materials Research Society (E-MRS) Spring Meeting 2014 in Lille, entitled “Phonons and Fluctuation in Low Dimensional Structures” and with ICREA Prof Dr Clivia M Sotomayor Torres again among its organizers. It is probably the largest nanophononic event in Europe and a perfect context for a lively discussion about the most recent theoretical and experimental findings.

The Nanophononics Day includes conferences by leading scientists about recent breakthroughs in nano-scale thermal transport and how the recent achievements constitute solid base for nanophononics. Prof Gang Chen (MIT, USA) and Prof Olivier Bourgeois (CNRS Inst. Neel) will cover phonons in solid materials while phonons in biological matter will be addressed by Prof Thomas Dehoux (University of Bordeaux). Experimental methods using scanning probes will be illustrated by Prof Oleg Kolosov (Lancaster University) and Prof Severine Gomez (University of Lyon).

I wish you a belated Happy Nanophonics Day!