Tag Archives: Iran Nano 2011 exhibition

Nano in Egypt and in Iran

It’s great to get some information about what’s going on in Egypt and Iran with regard to nanotechnology and Julian Taub at the Scientific American blog network has posted a couple of very interesting interviews about what’s happening in those countries.  From Taub’s Jan. 12, 2012 posting (Felafel Tech: Nanotechnology in Egypt), here’s a description of his interview subject,

Dr. Mohamed Abdel-Mottaleb is the leading nanotechnology consultant in Egypt and Director of the Nano Materials Masters Program and the founding director for the Center of Nanotechnology at Nile University. He also helped write a chapter for NATO Science for Peace on nanomaterial consumer applications, as well as numerous research papers and articles on the issue of nanotechnology for developing countries. I sit down with him to discuss the importance of nanotechnology, the state of technological progress and public nanotechnology education after the revolution, and Egypt’s future role in the global nanotechnology landscape.

After talking about the impact that the recent revolution has had on the nanotech industry (briefly: not much since there wasn’t much of a nanotech industry in the first place) in Egypt, Abdel-Mottaleb discusses the impact on nanotechnology research at his center,

It has slowed things significantly, because now our students have to try to use facilities wherever available in Egypt. This always depends on the availability of the equipment and the response costs for us to use the equipment and the facilities at other universities or research centers. We’ve rented some labs from some companies located near the university, which are not even adequate. Our research has slowed down, students are frustrated but committed to finish and go to work, and contribute to the society and to Egypt. It has affected us deeply, negatively, but we are committed to solve it.

A significant hurdle we are facing now is the fact that the Egyptian government has stopped our move into our new campus. Since 2007, we have been operating out of temporary facilities and awaiting the completion the campus. The government has granted Ahmed Zewail (1999 Nobel Laureate in Chemistry) the full use of our campus, and since May 2010, he is refusing to allow the university to move into the facilities. This is despite the fact that the facilities were partly funded by donations to the university and the facilities remain unused to date.  Several rounds of negotiations have failed due to his insistence on shutting down the university. He plans to build a new university (Zewail University). It is very difficult to us to understand his position and intentions. We hope that the international community will support us and not allow the shutting down of a very young and successful university.

In answer to a question from Taub about the best way to advance Egyptian R&D (research and development) in nanotechnology,

I think we need a national nano initiative. It needs specific and measurable targets that all the resources that are going to be allocated for nanotechnology are going to be put into that area, and achieving targets. We need a significant collaboration with the international community. We need to find a way to establish such bi-lateral collaboration schemes, and in the end, we need the facilities. We have a huge untapped human resource power here, I mean, it’s really wonderful to see a fresh graduate from university writing a full proposal and standing up and defending it on a very scientific level, and really holding a sound argument. Unfortunately they are unable to execute these proposals because of the lack of funding and the lack of facilities.

This is really the way out, and nanotechnology can affect the culture in this region. You can use the interdisciplinary thinking and push the idea that you cannot do something on your own, you need collaborations, you need to blend other disciplines, and this is very similar to having foreigners or people in different language speaking countries having to find a way to work together. Nanotechnology really instills that into the minds of the students, and gives them the opportunity to question and challenge the conditions or the dogmas they have, whether it is about science, or culture, or politics. Nanotechnology is a wonderful venue to promote intercultural dialogue, and interfaith dialogue. You can really see the opportunities.

I find that last bit about nanotechnology’s  interdisciplinary nature as having an impact on dialogue in many spheres (Abdel-Mottaleb mentions science, culture, and politics) quite interesting and something I’ve not seen in either the Canadian or US discourses.

Egypt and nanotechnology were previously mentioned  in my Nov. 21, 2011 posting (Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C) and I have also mentioned Egypt, science, and the revolution in my Feb. 4, 2011 posting (Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria). That gives me a tidy segue to Taub’s Jan. 13, 2012 posting (Science and Sanctions: Nanotechnology in Iran).

Here’s a little bit about  Dr. Abdolreza Simchi, the interview subject, from Taub’s introduction,

Dr. Simchi is a distinguished nanotechnology researcher heading the Research Center for Nanostructured and Advanced Materials (RCNAM) at the Department of Material Science and Engineering of Sharif University, where he focuses on biomedical engineering and sustainable technology. Nanotechnology is a new and interdisciplinary field where scientists can engineer atom and molecules on the nanoscale, fifty thousand times thinner than a human hair.

Dr. Simchi represents a bridge between Iran and the West. He has received many awards for his work, not only from Iran, but also from Germany, the UK, and the UN. He earned his PhD in a joint program between Sharif University and the University of Vienna and then worked at the German technology institute Fraunhofer at the beginning of his career.

Before excerpting a few more items from Taub’s post, I’m going to introduce a little information about Iran and its nanotechnology initiative from Tim Harper, Chief Executive Officer (CEO) of Cientifica. I interviewed Tim in my July 15, 2011 posting (Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts), where he mentioned Iran briefly and, after his visit to Iran’s Nano 2011 exhibition, he discussed it more extensively on his own blog. From Tim’s Nov. 17, 2011 posting on TNTLog,

Iran has always been a source of fascination, a place of ancient culture and history and now a country making a lot of noise about science and technology, so I was pleased to be invited by the Iran Nanotechnology Initiative Council to attend the Iran Nano 2011 exhibition in Tehran.

The unique aspect of Iranian nanotechnology is that because of the various international sanctions over the past thirty years it’s not the kind of place where you can just order an AFM or an electron microscope from a major US or Japanese supplier. As a result there was lots of home made kit on display, from sputtering systems, through surface analysis to atomic force microscopes.

So, Iranian scientists have engineered their way around the embargo on selling high tech equipment of Iran – and there was no shortage of high-end laptops on display either – but so often science is not about how much stuff you have in your lab, but what you can do with it.

Here’s what Dr. Simchi had to say about sanctions in Taub’s interview (Jan. 13, 2012 posting),

I believe sanction has two faces. On one hand, it restricts the accessibility to facilities, equipment, and materials. This part is certainly disturbing the progress. However, I see another side that somehow is good! The sanction has limited the mobility of our students and experts. I believe the strength of the country is its talented and brilliant students and well-established academic media. This is the most important difference between Iran and other neighboring countries. Over three million students have now enrolled in Iranian Universities. Hundred thousands are now registered at graduate levels. This is a true strength and advantage of Iran. As far as the American and European banning of the mobility of Iranian students via visa restriction, we enjoy more and more from forced-prohibited brain drain.

What is the wonder in rapid development of Iran in scientific publication when thousands of talented graduate students join the university annually? This is a direct consequence of well-educated students, working hard even in a tough condition.  I am personally an example of this scenario (although I am not belonging to the upper 10% of talented scientists in Iran). I was unable to go to the US to visit Standford University due to the September 11 tragedy and was twice refused a visa to visit UC Berkeley. What would have happened if I had been successful to go to the US and possibly settle down? Up to now, I have graduated many talented students at SUT. They are really brilliant and I am very proud of them. Some of them left the country to continue their studies in Europe and the US but many are living in Iran and truly contribute to nanotechnology development.  Since my research area is not strategic and has no dual applications (mainly biomaterials and green technologies), I enjoy collaborating with many scientists in the US, Canada, Europe, South Korea, and Japan.

Simchi’s research focus is interesting in light of his specialty (from Taub’s Jan. 13, 2012 posting),

I am principally a metallurgist, and specifically a particulate materials scientist. However, I always look at science and technology side-by-side and shoulder-to-shoulder. In fact, it is of prime importance to me, as an engineer, to see where and how my research output might be utilized; the maximum and direct benefit for the nation and human beings are my utmost aims. In simple words, I look towards the national interests. My people suffer from cancer (Iran is a country with high-cancer risk), environmental pollution (for instance, Tehran is one of the most polluted cities in the world), and limited water resources (dry lands). Therefore, I keep trying to combine my knowledge on particulate materials with nanotechnology, i.e. size effect, to improve healthcare via biomedical applications of materials, and to combat environmental problems. I am particularly interested in developing nanoparticles for diagnosis and therapy and to use them in tissue engineering applications.

As for what Iran is doing with regard to commericalization, Tim notes this (from the Nov. 17, 2011 posting at TNTlog),

In terms of commercial products there were many on display. Agriculture was well represented, with fertilisers, pesticides, coatings to reduce fruit spoilage and even catalytic systems to remove ethylene from fruit storage facilities. Construction materials were another large area, with a wide range of building materials on display. Absent were areas such as semiconductors and medical devices, but once again their absence illustrates that INIC [Iran Nanotechnology Initiative Council] is focussing much more on the solutions demanded by Iranian industry rather than trying to compete with more advanced economies.

Tim’s view that the absence of medical devices at the exhibition he visited is evidence that INIC is focussed on industry solutions suggests Dr. Simchi’s interests in biomedical and tissue engineering applications may prove a little challenging to pursue. In any event, I heartily recommend reading Taub’s interviews and Tim’s posting in their entirely.