Tag Archives: iron oxide nanoparticles

Carbon nanotubes for enhanced wheat growth?

It’s been a long time (Oct. 22, 2009 posting; scroll down about 20% of the way) since I’ve written about carbon nanotubes and their possible use in agriculture but now a December 6, 2017 news item on ScienceDaily raises the topic again,

The introduction of purified carbon nanotubes appears to have a beneficial effect on the early growth of wheatgrass, according to Rice University scientists. But in the presence of contaminants, those same nanotubes could do great harm.

The Rice lab of chemist Andrew Barron grew wheatgrass in a hydroponic garden to test the potential toxicity of nanoparticles on the plant. To their surprise, they found one type of particle dispersed in water helped the plant grow bigger and faster.

They suspect the results spring from nanotubes’ natural hydrophobic (water-avoiding) nature that in one experiment apparently facilitated the plants’ enhanced uptake of water.

The research appears in the Royal Society of Chemistry journal Environmental Science: Nano.

A December 6, 2017 Rice University news release (also on EurekAlert), which originated the news item, expands on the theme,

The lab mounted the small-scale study with the knowledge that the industrial production of nanotubes will inevitably lead to their wider dispersal in the environment. The study cited rapid growth in the market for nanoparticles in drugs, cosmetic, fabrics, water filters and military weapons, with thousands of tons produced annually.

Despite their widespread use, Barron said few researchers have looked at the impact of environmental nanoparticles — whether natural or man-made — on plant growth.

The researchers planted wheatgrass seeds in multiple replicates in cotton wool and fed them with dispersions that contained raw single-walled or multi-walled nanotubes, purified single-walled nanotubes or iron oxide nanoparticles that mimicked leftover catalyst often attached to nanotubes. The solutions were either water or tetrahydrofuran (THF), an industrial solvent. Some of the seeds were fed pure water or THF as a control.

Rice University researchers tested the effects of carbon nanotubes on the growth of wheatgrass. While some showed no effect, purified single-walled nanotubes in water (5) enhanced the plants' growth, while the same nanotubes in a solvent (6) retarded their development. The photos at left show the plants after four days and at right after eight days, with odd-numbered plants growing in water and evens in a solvent. Numbers 1 and 2 are controls without nanotubes; 3-4 contain raw single-walled tubes; 5-6 purified single-walled tubes; 7-8 raw multi-walled tubes; 9-10 low-concentration iron-oxide nanoparticles and 11-12 high-concentration iron-oxide nanoparticles.

Rice University researchers tested the effects of carbon nanotubes on the growth of wheatgrass. While some showed no effect, purified single-walled nanotubes in water (5) enhanced the plants’ growth, while the same nanotubes in a solvent (6) retarded their development. The photos at left show the plants after four days and at right after eight days, with odd-numbered plants growing in water and evens in a solvent. Numbers 1 and 2 are controls without nanotubes; 3-4 contain raw single-walled tubes; 5-6 purified single-walled tubes; 7-8 raw multi-walled tubes; 9-10 low-concentration iron-oxide nanoparticles and 11-12 high-concentration iron-oxide nanoparticles. Click on the image for a larger version. Photos by Seung Mook Lee

After eight days, the plantings showed that purified single-walled nanotubes in water enhanced the germination rate and shoot growth of wheatgrass, which grew an average of 13 percent larger than plants in plain water. Raw single- and multi-walled nanotubes and particles in either solution had little effect on the plants’ growth, they found.

However, purified single-walled nanotubes in THF retarded plant development by 45 percent compared to single-walled nanotubes in water, suggesting the nanotubes act as a carrier for the toxic substance.

The concern, Barron said, is that if single-walled nanotubes combine with organic pollutants like pesticides, industrial chemicals or solvents in the environment, they may concentrate and immobilize the toxins and enhance their uptake by plants.

Nothing seen in the limited study indicated whether carbon nanotubes in the environment, and potentially in plants, will rise up the food chain and be harmful to humans, he said.

On the other hand, the researchers said it may be worth looking at whether hydrophobic substrates that mimic the positive effects observed in single-walled nanotubes could be used for high-efficiency channeling of water to seeds.

“Our work confirms the importance of thinking of nanomaterials as part of a system rather in isolation,” Barron said. “It is the combination with other compounds that is important to understand.”

Seung Mook Lee, a former visiting student research assistant from Memorial High School in Houston and now an undergraduate student at the University of California, Berkeley, is lead author of the paper. Co-authors are Rice research scientist Pavan Raja and graduate student Gibran Esquenazi. Barron is the Charles W. Duncan Jr.–Welch Professor of Chemistry and a professor of materials science and nanoengineering at Rice and the Sêr Cymru Chair of Low Carbon Energy and Environment at Swansea University, Wales (UK).

The Welsh Government Sêr Cymru Program and the Robert A. Welch Foundation supported the research.

Here’s a link to and a citation for the paper,

Effect of raw and purified carbon nanotubes and iron oxide nanoparticles on the growth of wheatgrass prepared from the cotyledons of common wheat (triticum aestivum) by Seung Mook Lee, Pavan M. V. Raja, Gibran L. Esquenazi, and Andrew R. Barron. Environ. Sci.: Nano, 2018, Advance Article DOI: 10.1039/C7EN00680B First published on 09 Nov 2017

This paper appears to be behind a paywall.

Nanoparticles for breaking up plaque and preventing cavities

There may be iron in your tooth care future if a team of researchers at the University of Pennsylvania have their way. From a July 26, 2016 news item on ScienceDaily,

The bacteria that live in dental plaque and contribute to tooth decay often resist traditional antimicrobial treatment, as they can “hide” within a sticky biofilm matrix, a glue-like polymer scaffold.

A new strategy conceived by University of Pennsylvania researchers took a more sophisticated approach. Instead of simply applying an antibiotic to the teeth, they took advantage of the pH-sensitive and enzyme-like properties of iron-containing nanoparticles to catalyze the activity of hydrogen peroxide, a commonly used natural antiseptic. The activated hydrogen peroxide produced free radicals that were able to simultaneously degrade the biofilm matrix and kill the bacteria within, significantly reducing plaque and preventing the tooth decay, or cavities, in an animal model.

“Even using a very low concentration of hydrogen peroxide, the process was incredibly effective at disrupting the biofilm,” said Hyun (Michel) Koo, a professor in the Penn School of Dental Medicine’s Department of Orthodontics and divisions of Pediatric Dentistry and Community and Oral Health and the senior author of the study, which was published in the journal Biomaterials. “Adding nanoparticles increased the efficiency of bacterial killing more than 5,000-fold.”

A July 25, 2016 University of Pennsylvania news release, which originated the news item, describes the genesis of the work and provides more details about the current research (Note: A link has been removed),

The work built off a seminal finding by Gao [Lizeng Gao, a postdoctoral researcher in Koo’s lab] and colleagues, published in 2007 in Nature Nanotechnology, showing that nanoparticles, long believed to be biologically and chemically inert, could in fact possess enzyme-like properties. In that study, Gao showed that an iron oxide nanoparticle behaved similarly to a peroxidase, an enzyme found naturally that catalyzes oxidative reactions, often using hydrogen peroxide.

When Gao joined Koo’s lab in 2013, he proposed using these nanoparticles in an oral setting, as the oxidation of hydrogen peroxide produces free radicals that can kill bacteria.

“When he first presented it to me, I was very skeptical,” Koo said, “because these free radicals can also damage healthy tissue. But then he refuted that and told me this is different because the nanoparticles’ activity is dependent on pH.”

Gao had found that the nanoparticles had no catalytic activity at neutral or near-neutral pH of 6.5 or 7, physiological values typically found in blood or in a healthy mouth. But when pH was acidic, closer to 5, they become highly active and can rapidly produce free radicals.

The scenario was ideal for targeting plaque, which can produce an acidic microenvironment when exposed to sugars.

Gao and Koo reached out to Cormode [David Cormode, an assistant professor of radiology and bioengineering], who had experience working with iron oxide nanoparticles in a radiological imaging context, to help them synthesize, characterize and test the effectiveness of the nanoparticles, several forms of which are already FDA-approved for imaging in humans.

Beginning with in vitro studies, which involved growing a biofilm containing the cavity-causing bacteria Streptococcus mutans on a tooth-enamel-like surface and then exposing it to sugar, the researchers confirmed that the nanoparticles adhered to the biofilm, were retained even after treatment stopped and could effectively catalyze hydrogen peroxide in acidic conditions.

They also showed that the nanoparticles’ reaction with a 1 percent or less hydrogen peroxide solution was remarkably effective at killing bacteria, wiping out more than 99.9 percent of the S. mutans in the biofilm within five minutes, an efficacy more than 5,000 times greater than using hydrogen peroxide alone. Even more promising, they demonstrated that the treatment regimen, involving a 30-second topical treatment of the nanoparticles followed by a 30-second treatment with hydrogen peroxide, could break down the biofilm matrix components, essentially removing the protective sticky scaffold.

Moving to an animal model, they applied the nanoparticles and hydrogen peroxide topically to the teeth of rats, which can develop tooth decay when infected with S. mutans just as humans do. Twice-a-day, one-minute treatments for three weeks significantly reduced the onset and severity of carious lesions, the clinical term for tooth decay, compared to the control or treatment with hydrogen peroxide alone. The researchers observed no adverse effects on the gum or oral soft tissues from the treatment.

“It’s very promising,” said Koo. “The efficacy and toxicity need to be validated in clinical studies, but I think the potential is there.”

Among the attractive features of the platform is the fact that the components are relatively inexpensive.

“If you look at the amount you would need for a dose, you’re looking at something like 5 milligrams,” Cormode said. “It’s a tiny amount of material, and the nanoparticles are fairly easily synthesize, so we’re talking about a cost of cents per dose.”

In addition, the platform uses a concentration of hydrogen peroxide, 1 percent, which is lower than many currently available tooth-whitening systems that use 3 to 10 percent concentrations, minimizing the chance of negative side effects.

Looking ahead, Gao, Koo, Cormode and colleagues hope to continue refining and improving upon the effectiveness of the nanoparticle platform to fight biofilms.

“We’re studying the role of nanoparticle coatings, composition, size and so forth so we can engineer the particles for even better performance,” Cormode said.

The funding agencies provide a note of interest (Note: Links have been removed),

The study was funded by the International Association for Dental Research/GlaxoSmithKline Innovation in Oral Health Award, National Science Foundation and University of Pennsylvania Research Foundation.

Presumably the industry as represented by the GlaxoSmithKline Innovation in Oral Health Award is keeping a close eye on this work.

Here’s a link to and a citation for the paper,

Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo by Lizeng Gao, Yuan Liu, Dongyeop Kim, Yong Li, Geelsu Hwang, Pratap C. Naha, David P. Cormode, & Hyun Koo. Biomaterials Volume 101, September 2016, Pages 272–284 doi:10.1016/j.biomaterials.2016.05.051

This paper is behind a paywall.

‘Smart dress’ for oil-degrading bacteria (marine oil spill remediation)

This July 22, 2016 news item (on Nanowerk) about bacteria and marine oil spill remediation was a little challenging (for me) to read (Note: A link has been removed),

Bionanotechnology research is targeted on functional structures synergistically combining macromolecules, cells, or multicellular assemblies with a wide range of nanomaterials. Providing micrometer-sized cells with tiny nanodevices expands the uses of the cultured microorganisms and requires nanoassembly on individual live cells (“Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria”).

Surface engineering functionalizes the cell walls with polymer layers and/or nanosized particles and has been widely employed to modify the intrinsic properties of microbial cells. Cell encapsulation allows fabricating live microbial cells with magnetic nanoparticles onto cell walls, which mimics natural magnetotactic bacteria.

For this study researchers from Kazan Federal University and Louisiana Tech University chose Alcanivorax borkumensis marine bacteria as a target microorganism for cell surface engineering with magnetic nanoparticles for the following reasons: (1) these hydrocarbon-degrading bacteria are regarded as an important tool in marine oil spill remediation and potentially can be used in industrial oil-processing bioreactors, therefore the external magnetic manipulations with these cells seems to be practically relevant; (2) A. borkumensis are marine Gram-negative species having relatively fragile and thin cell walls, which makes cell wall engineering of these bacteria particularly challenging.

Rendering oil-degrading bacteria with artificially added magnetic functionality is important to attenuate their properties and to expand their practical use.

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

A July 22, 2016 Kazan Federal University (Russia) press release (also on EurekAlert), which originated the news item, has more detail about the research,

Cell surface engineering was performed using polycation-coated magnetic nanoparticles, which is a fast and straightforward process utilizing the direct deposition of positively charged iron oxide nanoparticles onto microbial cells during a brief incubation in excessive concentrations of nanoparticles. Gram-negative bacteria cell walls are built from the thin peptidoglycan layer sandwiched between the outer membrane and inner plasma membrane, with lipopolysaccharides rendering the overall negative cell charge, therefore cationic particles will attach to the cell walls due to electrostatic interactions.

Rod-like 0.5-μm diameter Gram-negative bacteria A. borkumensis were coated with 70?100 nm [sic] magnetite shells. The deposition of nanoparticles was performed with extreme care to ensure the survival of magnetized cells.

The development of biofilms on hydrophobic surface is a very important feature of A. borkumensis cells because this is how these cells attach to the oil droplets in natural environments. Consequently, any cell surface modification should not reduce their ability to attach and proliferate as biofilms. Here, at all concentrations of PAH- magnetite nanoparticles investigated, authors of the study detected the similar biofilm growth patterns. Overall, the magnetized cells were able to proliferate and exhibited normal physiological activity.

The next generations of the bacteria have a tendency to remove the artificial shell returning to the native form. Such magnetic nanoencapsulation may be used for the A. borkumensis transportation in the bioreactors to enhance the spill oil decomposition at certain locations.

If I read this rightly, the idea, in future iterations of this research, is to destroy the oil once it’s been gathered by the biofilm. This seems a different approach where other oil spill remediation techniques have hydrophobic/oleophilic sponges absorbing the oil, which could potentially be used in the future. There are carbon nanotube sponges (my April 17, 2012 posting) and boron nitride sponges (my Dec. 7, 2015 posting).

Here’s a link to and a citation for the paper,

Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria by Svetlana A. Konnova, Yuri M. Lvov, and Rawil F. Fakhrullin. Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b01743 Publication Date (Web): June 09, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Protein cages, viruses, and nanoparticles

The Dec. 19, 2012 news release on EurekAlert about a study published by researchers at Aalto University (Finland) describes a project where virus particles are combined with nanoparticles to create new metamaterials,

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

… biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules.

The gold nanoparticles and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

Virus particles – the old foes of mankind – can do much more than infect living organisms. Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to hybrid materials that consist of both living and synthetic matter, Kostiainen [Mauri A. Kostiainen, postdoctoral researcher] trusts.

The article which has been published in Nature Nanotechnology is free,

Electrostatic assembly of binary nanoparticle superlattices using protein cages by Mauri A. Kostiainen, Panu Hiekkataipale, Ari Laiho, Vincent Lemieux, Jani Seitsonen, Janne Ruokolainen & Pierpaolo Ceci in Nature Nanotechnology (2012) doi:10.1038/nnano.2012.220  Published online 16 December 2012

There’s a video demonstrating the assembly,

From the YouTube page, here’s a description of what the video is demonstrating,

Aalto University-led research group shows that CCMV virus or ferritin protein cages can be used to guide the assembly of RNA molecules or iron oxide nanoparticles into three-dimensional binary superlattices. The lattices are formed through tuneable electrostatic interactions with charged gold nanoparticles.

Bravo and thank  you to  Kostiainen who seems to have written the news release and prepared all of the additional materials (image and video). There are university press offices that could take lessons from Kostiainen’s efforts to communicate about the work.