Tag Archives: Jackie Y. Ying

Killing bacteria on contact with dragonfly-inspired nanocoating

Scientists in Singapore were inspired by dragonflies and cicadas according to a March 28, 2018 news item on Nanowerk (Note: A link has been removed),

Studies have shown that the wings of dragonflies and cicadas prevent bacterial growth due to their natural structure. The surfaces of their wings are covered in nanopillars making them look like a bed of nails. When bacteria come into contact with these surfaces, their cell membranes get ripped apart immediately and they are killed. This inspired researchers from the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR to invent an anti-bacterial nano coating for disinfecting frequently touched surfaces such as door handles, tables and lift buttons.

This technology will prove particularly useful in creating bacteria-free surfaces in places like hospitals and clinics, where sterilization is important to help control the spread of infections. Their new research was recently published in the journal Small (“ZnO Nanopillar Coated Surfaces with Substrate-Dependent Superbactericidal Property”)

Image 1: Zinc oxide nanopillars that looked like a bed of nails can kill a broad range of germs when used as a coating on frequently-touched surfaces. Courtesy: A*STAR

A March 28, 2018 Agency for Science Technology and Research (A*STAR) press release, which originated the news item, describes the work further,

80% of common infections are spread by hands, according to the B.C. [province of Canada] Centre for Disease Control1. Disinfecting commonly touched surfaces helps to reduce the spread of harmful germs by our hands, but would require manual and repeated disinfection because germs grow rapidly. Current disinfectants may also contain chemicals like triclosan which are not recognized as safe and effective 2, and may lead to bacterial resistance and environmental contamination if used extensively.

“There is an urgent need for a better way to disinfect surfaces without causing bacterial resistance or harm to the environment. This will help us to prevent the transmission of infectious diseases from contact with surfaces,” said IBN Executive Director Professor Jackie Y. Ying.

To tackle this problem, a team of researchers led by IBN Group Leader Dr Yugen Zhang created a novel nano coating that can spontaneously kill bacteria upon contact. Inspired by studies on dragonflies and cicadas, the IBN scientists grew nanopilllars of zinc oxide, a compound known for its anti-bacterial and non-toxic properties. The zinc oxide nanopillars can kill a broad range of germs like E. coli and S. aureus that are commonly transmitted from surface contact.

Tests on ceramic, glass, titanium and zinc surfaces showed that the coating effectively killed up to 99.9% of germs found on the surfaces. As the bacteria are killed mechanically rather than chemically, the use of the nano coating would not contribute to environmental pollution. Also, the bacteria will not be able to develop resistance as they are completely destroyed when their cell walls are pierced by the nanopillars upon contact.

Further studies revealed that the nano coating demonstrated the best bacteria killing power when it is applied on zinc surfaces, compared with other surfaces. This is because the zinc oxide nanopillars catalyzed the release of superoxides (or reactive oxygen species), which could even kill nearby free floating bacteria that were not in direct contact with the surface. This super bacteria killing power from the combination of nanopillars and zinc broadens the scope of applications of the coating beyond hard surfaces.

Subsequently, the researchers studied the effect of placing a piece of zinc that had been coated with zinc oxide nanopillars into water containing E. coli. All the bacteria were killed, suggesting that this material could potentially be used for water purification.

Dr Zhang said, “Our nano coating is designed to disinfect surfaces in a novel yet practical way. This study demonstrated that our coating can effectively kill germs on different types of surfaces, and also in water. We were also able to achieve super bacteria killing power when the coating was used on zinc surfaces because of its dual mechanism of action. We hope to use this technology to create bacteria-free surfaces in a safe, inexpensive and effective manner, especially in places where germs tend to accumulate.”

IBN has recently received a grant from the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme to further develop this coating technology in collaboration with Tan Tock Seng Hospital for commercial application over the next 5 years.

1 B.C. Centre for Disease Control

2 U.S. Food & Drug Administration

(I wasn’t expecting to see a reference to my home province [BC Centre for Disease Control].) Back to the usual, here’s a link to and a citation for the paper,

ZnO Nanopillar Coated Surfaces with Substrate‐Dependent Superbactericidal Property by Guangshun Yi, Yuan Yuan, Xiukai Li, Yugen Zhang. Small https://doi.org/10.1002/smll.201703159 First published: 22 February 2018

This paper is behind a paywall.

One final comment, this research reminds me of research into simulating shark skin because that too has bacteria-killing nanostructures. My latest about the sharkskin research is a Sept, 18, 2014 posting.

Oil spill cleanups with supergelators

Researchers in Singapore have proposed a new technology for cleaning up oil spills, according to a June 17, 2016 news item on Nanowerk,

Large-scale oil spills, where hundreds of tons of petroleum products are accidentally released into the oceans, not only have devastating effects on the environment, but have significant socio-economic impact as well [1].

Current techniques of cleaning up oil spills are not very efficient and may even cause further pollution or damage to the environment. These methods, which include the use of toxic detergent-like compounds called dispersants or burning of the oil slick, result in incomplete removal of the oil. The oil molecules remain in the water over long periods and may even be spread over a larger area as they are carried by wind and waves. Further, burning can only be applied to fresh oil slicks of at least 3 millimeters thick, and this process would also cause secondary environmental pollution.

In a bid to improve the technology utilized by cleanup crews to manage and contain such large spills, researchers from the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR [located in Singapore] have invented a smart oil-scavenging material or supergelators that could help clean up oil spills efficiently and rapidly to prevent secondary pollution.

These supergelators are derived from highly soluble small organic molecules, which instantly self-assemble into nanofibers to form a 3D net that traps the oil molecules so that they can be removed easily from the surface of the water.

A June 17, 2016 IBN A*STAR media release, which originated the news item, provides more detail,

“Marine oil spills have a disastrous impact on the environment and marine life, and result in an enormous economic burden on society. Our rapid-acting supergelators offer an effective cleanup solution that can help to contain the severe environmental damage and impact of such incidents in the future,” said IBN Executive Director Professor Jackie Y. Ying.

Motivated by the urgent need for a more effective oil spill control solution, the IBN researchers developed new compounds that dissolve easily in environmentally friendly solvents and gel rapidly upon contact with oil. The supergelator molecules arrange themselves into a 3D network, entangling the oil molecules into clumps that can then be easily skimmed off the water’s surface.

“The most interesting and useful characteristic of our molecules is their ability to stack themselves on top of each other. These stacked columns allow our researchers to create and test different molecular constructions, while finding the best structure that will yield the desired properties,” said IBN Team Leader and Principal Research Scientist Dr Huaqiang Zeng. (Animation: Click to see how the supergelators stack themselves into columns.)

IBN’s supergelators have been tested on various types of weathered and unweathered crude oil in seawater, and have been found to be effective in solidifying all of them. The supergelators take only minutes to solidify the oil at room temperature for easy removal from water. In addition, tests carried out by the research team showed that the supergelator was not toxic to human cells, as well as zebrafish embryos and larvae. The researchers believe that these qualities would make the supergelators suitable for use in large oil spill areas.

The Institute is looking for industrial partners to further develop its technology for commercial use. [emphasis mine]

Video: Click to watch the supergelators in action

  1. The well documented BP Gulf of Mexico oil well accident in 2010 was a catastrophe on an unprecedented scale, with damages amounting to hundreds of billions of dollars. Its wide-ranging effects on the marine ecosystem, as well as the fishing and tourism industries, can still be felt six years on.

Here’s a link to and a citation for the paper,

Instant Room-Temperature Gelation of Crude Oil by Chiral Organogelators by Changliang Ren, Grace Hwee Boon Ng, Hong Wu, Kiat-Hwa Chan, Jie Shen, Cathleen Teh, Jackie Y. Ying, and Huaqiang Zeng. Chem. Mater., 2016, 28 (11), pp 4001–4008 DOI: 10.1021/acs.chemmater.6b01367 Publication Date (Web): May 10, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

I have featured other nanotechnology-enabled oil spill cleanup solutions here. One of the more recent pieces is my Dec. 7, 2015 post about boron nitride sponges. The search terms: ‘oil spill’ and ‘oil spill cleanup’ will help you unearth more.

There have been some promising possibilities and I hope one day these clean up technologies will be brought to market.

2015 Mustafa prize winners (two nanoscientists) announced

The $500,000US Mustafa Prize was started in 2013 according to the information on prize website’s homepage,

The Mustafa Prize is a top science and technology award granted to the top researchers and scientists of the Organization of Islamic Cooperation (OIC) member states biennially.

The Prize seeks to encourage education and research and is set to play the pioneering role in developing relations between science and technology institutions working in the OIC member countries.

It also aims to improve scientific relation between academics and researchers to facilitate the growth and perfection of science in the OIC member states.

The laureates in each section will be awarded 500,000 USD which is financed through the endowments made to the Prize. The winners will also be adorned with a special medal and certificate.

The Mustafa Prize started its job in 2013. The Policy making Council of the Prize which is tasked with supervising various procedures of the event is comprised of high-profile universities and academic centers of OIC member states.

The prize will be granted to the works which have improved the human life and have made tangible and cutting-edge innovations on the boundaries of science or have presented new scientific methodology.

The 2015 winners were announced in a Dec. 23, 2015 news item on merhnews.com,

Dr. Hossein Zohour, Chairman of the science committee of Mustafa Scientific Prize, has announced the laureates on Wednesday [Dec. 16, 2015].

According to the Public Relations Department of Mustafa (PBUH) Prize, Professor Jackie Y. Ying from Singapore and Professor Omar Yaghi from Jordan won the top science and technology award of the Islamic world.

Zohour cited that the Mustafa (PBUH) Prize is awarded in four categories including, Life Sciences and Medicine, Nanoscience and Nanotechnology, Information and Communication Technologies and Top Scientific Achievement in general fields. “In the first three categories, the nominees must be citizens of one of the 57 Islamic countries while in the fourth category the nominee must be Muslim but being citizen of an Islamic country is not mandatory,” he added.

Professor Jackie Y. Ying, CEO and faculty member of the Institute of Bioengineering and Nanotechnology of Singapore and Professor Omar Yaghi, president of Kavli Nano-energy Organization and faculty member of University of California, Berkeley are the laureates in the fields of Nano-biotechnology sciences and Nanoscience and Nanotechnology respectively.

Zohour continued, “Professor Ying is awarded in recognition of her efforts in development of ‘stimulus response systems in targeted delivery of drugs’ in the field of Nano-biotechnology.”

These systems are consisted of polymeric nanoparticles, which auto-regulate the release of insulin therapeutic depending on the blood glucose levels without the need for sampling. The technology was first developed in her knowledge-based company and now being commercialized in big pharmaceutical firms to be at the service of human health.

Professor Omar Yaghi, prominent Jordanian chemist, has also been selected for his extensive research in the field of metal-organic frameworks (MOFs) in the category of nanoscience and nanotechnology.

It’s worth noting that this [sic] MOFs have a wide range of applications in clean energy technologies, carbon dioxide capturing and hydrogen and methane storage systems due to their extremely high surface areas.

The Mustafa (PBUH) Prize Award Ceremony will take place on Friday December 25 [2015] at Vahdat Hall to honor the laureates.

Unfortunately, I’ve not profiled Dr. Yaghi’s work here. Dr. Ying has been mentioned a few times (a March 2, 2015 posting, a May 12, 2014 posting, and an Aug. 22, 2013 posting) but not for the work for which she is being honoured.

Congratulations to both Dr. Yaghi and Dr. Ying!

Hydro-Québec, lithium-ion batteries, and silicate-based nanoboxes

Hydro-Québec (Canada) is making a bit of a splash these days (this is the third mention within less than a week) on my blog, if nowhere else. The latest development was announced in a Feb. 24, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Singapore’s Institute of Bioengineering and Nanotechnology (IBN) of A*STAR and Quebec’s IREQ (Hydro-Québec’s research institute) have synthesized silicate-based nanoboxes that could more than double the energy capacity of lithium-ion batteries as compared to conventional phosphate-based cathodes (“Synthesis of Phase-Pure Li2MnSiO4@C Porous Nanoboxes for High-Capacity Li-Ion Battery Cathodes”). This breakthrough could hold the key to longer-lasting rechargeable batteries for electric vehicles and mobile devices.

A Feb. 24, 2015 Hydro-Québec press release (also on Canadian News Wire), which originated the news item, describe the research and the relationship between the two institutions,

“IBN researchers have successfully achieved simultaneous control of the phase purity and nanostructure of Li2MnSiO4 for the first time,” said Professor Jackie Y. Ying, IBN Executive Director. “This novel synthetic approach would allow us to move closer to attaining the ultrahigh theoretical capacity of silicate-based cathodes for battery applications.”

“We are delighted to collaborate with IBN on this project. IBN’s expertise in synthetic chemistry and nanotechnology allows us to explore new synthetic approaches and nanostructure design to achieve complex materials that pave the way for breakthroughs in battery technology, especially regarding transportation electrification,” said Dr. Karim Zaghib, Director – Energy Storage and Conservation at Hydro-Québec.

Lithium-ion batteries are widely used to power many electronic devices, including smart phones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. Due to a growing demand for long-lasting, rechargeable lithium-ion batteries for various applications, significant efforts have been devoted to improving the capacity of these batteries. In particular, there is great interest in developing new compounds that may increase energy storage capacity, stability and lifespan compared to conventional lithium phosphate batteries.

The five-year research collaboration between IBN and Hydro-Québec was established in 2011. The researchers plan to further enhance their new cathode materials to create high-capacity lithium-ion batteries for commercialization.

Here’s a link to and a citation for the paper,

Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes by Xian-Feng Yang, Jin-Hua Yang, Karim Zaghib, Michel L. Trudeau, and Jackie Y. Ying. Nano Energy Volume 12, March 2015, Pages 305–313 doi:10.1016/j.nanoen.2014.12.021

This paper is behind a paywall.

Here are my two most recent mentions of Hydro-Québec and lithium-ion batteries (both Grafoid and NanoXplore have deals with Hydro-Québec),

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election (Feb. 23, 2015)

NanoXplore: graphene and graphite in Québec (Canada) (Feb. 20, 2015)

Fungal infections, begone!

A May 7, 2014 news item on Nanowerk highlights some antifungal research at A*STAR (Singapore’s Agency for Science, Technology and Research),

Pathogenic fungi like Candida albicans can cause oral, skin, nail and genital infections. While exposure to pathogenic fungi is generally not life-threatening, it can be deadly to immunocompromised patients with AIDS or cancer. A variety of antifungal medications, such as triazoles and polyenes, are currently used for treating fungal infections. The range of these antifungal medications, however, is extremely limited, with some fungal species developing resistance to these drugs.

Yi Yan Yang at the A*STAR Institute of Bioengineering and Nanotechnology in Singapore and co-workers, in collaboration with IBM Almaden Research Center in the United States, have discovered four cationic terephthalamide-bisurea compounds with strong antifungal activity, excellent microbial selectivity and low host toxicity …

A May 7, 2018 A*STAR news release, which originated the news item, describes the research in detail (Note: A link has been removed),

Conformational analysis revealed that the terephthalamide-bisurea compounds have a Z-shaped structure: the terephthalamide sits in the middle, urea groups on both sides of the terephthalamide, and cationic charges at both ends. The researchers prepared compounds with different spacers — ethyl, butyl, hexyl or benzyl amine — in-between the urea group and the cationic charge.

When dissolved in water, the terephthalamide-bisurea compounds aggregate to form fibers with lengths ranging from a few hundred nanometers to several micrometers. Some of the compounds form fibers with high flexibility and others with high rigidity.

The researchers evaluated the antifungal activity of their terephthalamide-bisurea compounds against C. albicans. They found that all of the cationic compounds effectively inhibited fungal growth, even when the fungal concentration increased from 102 to 105 colony-forming units per milliliter.

The researchers believe that the potent antifungal activity is largely due to the formation of fibers with extremely small diameters in the order of 5 to 10 nanometers, which facilitates the rupture of fungal membranes. “This is particularly important because the fungal membrane of C. albicans is multilayered and has low negative charges,” explains Yang. “It also helps explain why cationic terephthalamide-bisurea compounds could easily penetrate the fungal membrane.”

The terephthalamide-bisurea compounds also eradicated clinically isolated drug-resistant C. albicans. The compounds prevent the development of drug resistance by rupturing the fungal membrane of C. albicans and disrupting the biofilm (see image).

Additionally, cytotoxicity tests showed that the cationic terephthalamide-bisurea compounds exhibit low toxicity toward mammalian cells and in a mouse model, revealing that the compounds “are relatively safe for preventing and treating fungal infections,” says Yang. [emphasis mine]

It’s nice to see that this potential anti-fungal treatment isn’t damaging to one’s cells.

Here’s a link to and a citation for the paper,

Supramolecular high-aspect ratio assemblies with strong antifungal activity by Kazuki Fukushima, Shaoqiong Liu, Hong Wu, Amanda C. Engler, Daniel J. Coady, Hareem Maune, Jed Pitera, Alshakim Nelson, Nikken Wiradharma, Shrinivas Venkataraman, Yuan Huang, Weimin Fan, Jackie Y. Ying, Yi Yan Yang, & James L. Hedrick. Nature Communications 4, Article number: 286 doi:10.1038/ncomms3861 Published 09 December 2013

This article is behind a paywall.

Assembly-line 3-D tissue engineering

It looks as if the researchers at Singapore’s Institute of Bioengineering and Nanotechnology (IBN), have developed a template for producing complex tissues such as those in liver and in fat, from an Aug. 20, 2013 news item on ScienceDaily,

Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have developed a simple method of organizing cells and their microenvironments in hydrogel fibers. Their unique technology provides a feasible template for assembling complex structures, such as liver and fat tissues, as described in their recent publication in Nature Communications.

According to IBN Executive Director Professor Jackie Y. Ying, “Our tissue engineering approach gives researchers great control and flexibility over the arrangement of individual cell types, making it possible to engineer prevascularized tissue constructs easily. This innovation brings us a step closer toward developing viable tissue or organ replacements.”

The Aug. 19, 2013 A*STAR’s (Singapore’s Agency for Science and Technology Research) IBN  press release, which originated the news item, offers a detailed explanation of how this discovery could make tissue and organ replacements much easier,

IBN Team Leader and Principal Research Scientist, Dr Andrew Wan, elaborated, “Critical to the success of an implant is its ability to rapidly integrate with the patient’s circulatory system. This is essential for the survival of cells within the implant, as it would ensure timely access to oxygen and essential nutrients, as well as the removal of metabolic waste products. Integration would also facilitate signaling between the cells and blood vessels, which is important for tissue development.”

Tissues designed with pre-formed vascular networks are known to promote rapid vascular integration with the host. Generally, prevascularization has been achieved by seeding or encapsulating endothelial cells, which line the interior surfaces of blood vessels, with other cell types. In many of these approaches, the eventual distribution of vessels within a thick structure is reliant on in vitro cellular infiltration and self-organization of the cell mixture. These are slow processes, often leading to a non-uniform network of vessels within the tissue. As vascular self-assembly requires a large concentration of endothelial cells, this method also severely restricts the number of other cells that may be co-cultured.

Alternatively, scientists have attempted to direct the distribution of newly formed vessels via three-dimensional (3D) co-patterning of endothelial cells with other cell types in a hydrogel. This approach allows large concentrations of endothelial cells to be positioned in specific regions within the tissue, leaving the rest of the construct available for other cell types. The hydrogel also acts as a reservoir of nutrients for the encapsulated cells. However, co-patterning multiple cell types within a hydrogel is not easy. Conventional techniques, such as micromolding and organ printing, are limited by slow cell assembly, large volumes of cell suspension, complicated multi-step processes and expensive instruments. These factors also make it difficult to scale up the production of implantable 3D cell-patterned constructs. To date, these approaches have been unsuccessful in achieving vascularization and mass transport through thick engineered tissues.

To overcome these limitations, IBN researchers have used interfacial polyelectrolyte complexation (IPC) fiber assembly, a unique cell patterning technology patented by IBN, to produce cell-laden hydrogel fibers under aqueous conditions at room temperature. Unlike other methods, IBN’s novel technique allows researchers to incorporate different cell types separately into different fibers, and these cell-laden fibers may then be assembled into more complex constructs with hierarchical tissue structures. In addition, IBN researchers are able to tailor the microenvironment for each cell type for optimal functionality by incorporating the appropriate factors, e.g. proteins, into the fibers. Using IPC fiber assembly, the researchers have engineered an endothelial vessel network, as well as cell-patterned fat and liver tissue constructs, which have successfully integrated with the host circulatory system in a mouse model and produced vascularized tissues.

Here’s a citation for and link to the published paper,

Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres by Meng Fatt Leong,    Jerry K. C. Toh, Chan Du, Karthikeyan Narayanan, Hong Fang Lu, Tze Chiun Lim, Andrew C. A. Wan, & Jackie Y. Ying. Nature Communications 4, Article number: 2353 doi:10.1038/ncomms3353 Published 19 August 2013

This article is behind a paywall although you can preview it with ReadingCube access.