Tag Archives: James Heath

Nanodiagnostics: a roundtable at Kavli and new report from Cientifica

The Kavli Foundation, based in California, held a roundtable discussion on ‘Fighting Cancer with Nanotechnology‘ which focused largely on diagnostics and drug delivery. According to a March 14, 2012 news item on Nanowerk, the four participants were:

  • Anna Barker – Former Deputy Director of the National Cancer Institute (NCI) and current Director of Arizona State University’s Transformative Healthcare Networks;
  • Mark E. Davis – Professor of Chemical Engineering at the California Institute of Technology (Caltech), and a member of the Experimental Therapeutics Program of the Comprehensive Cancer Center at the City of Hope;
  • James Heath – Professor of Chemistry at Caltech and a founding Board member of Caltech’s Kavli Nanoscience Institute;
  • Michael Phelps – Norton Simon Professor, and Chair of Molecular and Medical Pharmacology at the University of California Los Angeles.

The researchers discussed how nanotechnology holds the promise of revolutionizing the way medicine wages war against cancer, from providing new ways to combine drugs to delivering gene-silencing therapeutics for cancer cells. [emphasis mine]

Yet again, war has been used as a metaphor for healing. I particularly appreciate the way ‘revolution’, which resonates with US audiences in a very particular way, has been introduced.

The discussion features diagnostics,

JAMES HEATH: That is certainly an important application. A typical diagnostic test measures only a single protein. But the nature of cancer—even a single cancer type—is that it can vary significantly from patient to patient. The implication is that there is probably not a single protein biomarker that can distinguish between such patient variations. Even to confidently address a single diagnostic question may take measuring several protein biomarkers. Discovering the right biomarkers is extremely challenging—you might have 300 candidate biomarkers from which you want to choose just six, but you will likely have to test all 300 on a very large patient pool to determine the best six. That’s tough to do with existing technologies because each protein measurement requires a large sample of blood or tumor tissue, and each measurement is time-consuming, labor intensive and expensive. With some of the emerging nanotechnologies, a large panel of candidate protein biomarkers can be rapidly measured from just a pinprick of blood, or a tissue sample as small as a single cell. This allows one to accelerate the development of conventional diagnostic tests, but it also opens up the possibilities for fundamentally new diagnostic approaches. These are opportunities that nanotech is bringing into play that simply weren’t there before.

Here’s one of my favourite comments,

MICHAEL PHELPS: Yes. All of us developing therapeutics want to have a transparent patient—to see where the drug goes throughout all tissues of the body, whether it hits the disease target in a sufficient dose to induce the desired therapeutic effect on the target, and where else the drug goes in the body regarding side effects. [emphasis mine] PET [positron emission tomography ‘scan’] can reveal all this. For this reason almost all drug companies now use PET in their discovery and development processes.

I suspect Phelps was a bit over enthused and spoke without thinking. I’m sure most doctors and researchers would agree that what they want is to heal without harm and not transparent patients. That’s why they’re so excited about nanotechnology and therapeutics, they’re trying to eliminate or, at least, lessen harm in the healing process. It would be nice though if they get past the ‘war’ metaphors and dreams of transparent patients.

I found the comments about the US FDA (Food and Drug Administration), pharmaceutical companies and biotech startups quite interesting,

ANNA BARKER: These challenges are mostly related to perception and having the tools to demonstrate that the agent does what you say it does. It’s more difficult for nanotherapeutics than for other drugs because they employ a new set of technologies that the FDA is more guarded about approving. The FDA is responsible for the health of the American public, so they are very careful about putting anything new into the population. So the challenges have to do with showing you can deliver what you said you were going to deliver to the target, and that the toxicity and distribution of the agent in the body is what you predicted. You have to have different measures than what is included in the classic toxicology testing packages we use for potential drugs.

MARK DAVIS: There’s so much cool science that people want to do, but you’re limited in what you can do in patients for a number of reasons. One is financial. This area is not being pushed forward by big Pharma, but by biotech companies, and they have limited resources. Secondly, the FDA is still learning about these innovations, they can limit what you are allowed to do in a clinical trial. For example, when we did the first clinical trial with a nanoparticle that had a targeting agent enabling it to latch onto a specific receptor on cancer cells and a gene silencing payload, we realized it would be important to know if patients have this receptor and the gene target of the payload to begin with. Prebiopsies from patients before testing the nanotherapeutic on them to see if the tumor cells had this receptor and gene target in abundance would have been helpful. However, in this first-in-man trial, the FDA did not allow required biopsies, and they were performed on a volunteer-basis only.

It is a fascinating discussion as it provides insight into the field of nanotherapeutics and into the some of the researchers.

On the topic of nanodiagnostics but this time focusing on the business end of things, a new report has been released by Cientifica. From the March 13, 2012 press release,

Nanodiagnostics will be a $50-billion market by 2021; Cientifica’s “Nanotechnology for Medical Diagnostics” looks at emerging nanoscale technologies

Following on from Cientifica’s Nanotechnology for Drug Delivery report series, “Nanotechnology for Medical Diagnostics,” a 237-page report, takes a comprehensive look at current and emerging nanoscale technologies used for medical diagnostics.

Areas examined include quantum dots, gold nanoparticles, exosomes, nanoporous silica, nanowires, micro- and nanocantilever arrays, carbon nanotubes, ion channel switch nanobiosensors, and many more.

Cientifica estimates medical imaging is the sector showing the highest growth and impact of nanomaterials. Already a $1.7-billion market, with gold nanoparticle applications accounting for $959 million, imaging will continue to be the largest nanodiagnostics sector, with gold nanoparticles, quantum dots and nanobiosensors all easily exceeding $10 billion.

“Getting onboard with the right technology at the right time is crucial,” said Harper [Tim Harper, Cientifica’s Chief Executive Officer]. “The use of exosomes in diagnosis, for instance, a relatively new technique and a tiny market, is set to reach close to half a billion dollars by 2021.”

You can find out more and/or purchase the report here.

I have written about Cientifica’s  Nanotechnology for Drug Delivery (NDD) white paper here and have published an interview with Tim Harper about global nanotechnology funding and economic impacts here.

Buckypaper and nanocrystalline cellulose; two different paths to the same ends?

Buckypaper interests me largely because of its name (along with Buckyballs and Buckytubes [usually called carbon nanotubes]). I believe the names are derived from Buckminsterfullerenes a form of carbon engineered (it can be found in nature) in the labs at Rice University. From the Wikipedia essay on Buckminsterfullerenes,

Buckminsterfullerene is a spherical fullerene molecule with the formula C60. It was first prepared in 1985 by Harold Kroto, James Heath, Sean O’Brien, Robert Curl and Richard Smalley at Rice University.  Kroto, Curl, and Smalley were awarded the 1996 Nobel Prize in Chemistry for their roles in the discovery of buckminsterfullerene and the related class of molecules, the fullerenes. The name is an homage to Richard Buckminster Fuller, whose geodesic domes it resembles. Buckminsterfullerene was the first fullerene molecule discovered and it is also the most common in terms of natural occurrence, as it can be found in small quantities in soot.

Buckypaper is a main focus at the High Performance Materials Institute at the Florida State University, which has just *released a promotional video (according to the Oct. 3, 2011 news item on Nanowerk). Here’s the video,

It reminds me a little of the video for Nokia’s Morph concept, which was released a few years back. I haven’t heard any substantive news about that project although there are the occasional updates. For example, the Morph was originally described it as a phone and then they changed it to the Morph concept. I’d love to see a prototype one of these days. (There’s more about the Morph and its incarnations in my Sept. 29, 2010 posting.)

The descriptions for applications using Buckypaper reminded me of nanocrystalline cellulose as I’ve seen some of the same claims made for that substance. I’m hoping to hear about the new plant in Windsor, Québec which is supposed to be opening this fall. From the ArboraNano new projects page,

Currently, Canada has an 18- to 24-month global lead in the commercial production of NCC as a 1 ton/day demonstration plant located in Windsor, Quebec enters the final phases of construction. Startup is planned for Fall 2011.

It’s good to see all these different research efforts and to reflect on the innovation being demonstrated.

* Nov. 27, 2013: changed ‘release’ to ‘released’.

Year of Nano at Rice University

I mentioned the Year of Nano 25th anniversary celebration of the buckminsterfullerene (also known as a C60 fullerene or bucky ball) at Rice University in a Feb. 8, 2010 posting (it’s towards the bottom) and wasn’t really expecting to hear more about it until the technical symposium in October 2010. Yesterday, the folks at Rice University sent out a news release that manages to herald both the Year of Nano and the 50th anniversary of the laser. From the news release (titled, From beams to bucky balls),

Twenty-five years after the laser beam came to be, a historic meeting took place at Rice University that led to the discovery of the buckminsterfullerene, the carbon 60 molecule for which two Rice scientists won the Nobel Prize.

Now that the buckyball is celebrating its own 25th anniversary, it’s worth noting that one wouldn’t have happened without the other.

During the Year of Nano, Rice will honor Nobel laureates Robert Curl and the late Richard Smalley, their research colleague and co-laureate, Sir Harold Kroto, then of the University of Sussex, and former graduate students James Heath and Sean O’Brien with a series of events culminating in an Oct. 11-13 symposium at Rice on nanotechnology’s past, present and future.

But Curl happily throws a share of the credit to another Rice professor, Frank Tittel, a laser pioneer whose work continues to break new ground in chemical sensing.

Fifty years ago this Sunday, on May 16, 1960, Hughes Research scientist Theodore Maiman fired off the first laser beam from a small ruby rod, a camera flashlamp and a power supply.

Not long after the news was reported in the New York Times, Tittel, now Rice’s J.S. Abercrombie Professor in Electrical and Computer Engineering, was asked by his new bosses at General Electric to recreate Maiman’s device. “That used brute force,” Tittel said of his first laser, later donated to the Franklin Institute Science Museum in Philadelphia. “Now we’re more sophisticated.”

Tittel joined Rice in 1967 and quickly built the first tunable laser in Texas, used in spectroscopy and sensing devices. He also formed collaborations with other professors, including Curl, who is now Rice’s University Professor Emeritus and Kenneth S. Pitzer-Schlumberger Professor Emeritus of Natural Sciences.

The laser attracted a lot of interest and was used to investigate a number of phenomena including Kroto’s chief interest in 1985, the “abundance of carbon molecules in interstellar clouds,”

…  The experiments in late 1985 showed an abundance of carbon 60, which set the scientists racing to figure out what such a molecule would look like. “We had this problem that this (carbon cluster) was a little strong, and it looked like there was something there,” Curl said, noting that the team pursued the interstellar question no further. “The discovery of the fullerenes drew all our attention.”

Smalley was the first to find the solution by assembling a paper model of hexagons and pentagons that turned out to be identical to a soccer ball. (In a webcast available here, Curl described how the team came up with the key to the solution over enchiladas at a Houston diner.)

The webcast with Curl is titled, How Astrophysical Interests Accidentally Led to Advances in Carbon Chemistry. I think what’s so fascinating is that Richard Smalley wasn’t that interested in Kroto’s question but it was that question that led to their great discovery. This story reminded me of a comment from Dr. J. Storrs Hall that I quoted in one of my recent posts (scroll down to find the passage), “As Dr. Hall aptly noted it’s not dispassionate calculations but ‘serendipity: the way science always works’.”