Tag Archives: James Hone

Light-captured energetics (harvesting light for optoelectronics)

Comparing graphene to a tiger is unusual but that’s what researcher Sanfeng Wu does—eventually—in a May 13, 2016 University of Washington news release (also on EurekAlert) about his work,

In the quest to harvest light for electronics, the focal point is the moment when photons — light particles — encounter electrons, those negatively-charged subatomic particles that form the basis of our modern electronic lives. If conditions are right when electrons and photons meet, an exchange of energy can occur. Maximizing that transfer of energy is the key to making efficient light-captured energetics possible.

“This is the ideal, but finding high efficiency is very difficult,” said University of Washington physics doctoral student Sanfeng Wu. “Researchers have been looking for materials that will let them do this — one way is to make each absorbed photon transfer all of its energy to many electrons, instead of just one electron in traditional devices.”

In traditional light-harvesting methods, energy from one photon only excites one electron or none depending on the absorber’s energy gap, transferring just a small portion of light energy into electricity. The remaining energy is lost as heat. But in a paper released May 13 in Science Advances, Wu, UW associate professor Xiaodong Xu and colleagues at four other institutions describe one promising approach to coax photons into stimulating multiple electrons. Their method exploits some surprising quantum-level interactions to give one photon multiple potential electron partners. Wu and Xu, who has appointments in the UW’s Department of Materials Science & Engineering and the Department of Physics, made this surprising discovery using graphene.

There has been intense research on graphene’s electrical properties but the researchers’ discovery adds a new property to be investigated (from the news release),

“Graphene is a substance with many exciting properties,” said Wu, the paper’s lead author. “For our purposes, it shows a very efficient interaction with light.”

Graphene is a two-dimensional hexagonal lattice of carbon atoms bonded to one another, and electrons are able to move easily within graphene. The researchers took a single layer of graphene — just one sheet of carbon atoms thick — and sandwiched it between two thin layers of a material called boron-nitride.

Boron-nitride is a material that has excited a great deal of interest in the last 12 to 18 months (from the news release),

“Boron-nitride has a lattice structure that is very similar to graphene, but has very different chemical properties,” said Wu. “Electrons do not flow easily within boron-nitride; it essentially acts as an insulator.”

Xu and Wu discovered that when the graphene layer’s lattice is aligned with the layers of boron-nitride, a type of “superlattice” is created with properties allowing efficient optoelectronics that researchers had sought. These properties rely on quantum mechanics, the occasionally baffling rules that govern interactions between all known particles of matter. Wu and Xu detected unique quantum regions within the superlattice known as Van Hove singularities.

Here’s an animated .gif illustrating the superlattice in action,

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The news release goes on to describe the Van Hove singularities within the superlattice and to mention the ‘tiger’,

“These are regions of huge electron density of states, and they were not accessed in either the graphene or boron-nitride alone,” said Wu. “We only created these high electron density regions in an accessible way when both layers were aligned together.”

When Xu and Wu directed energetic photons toward the superlattice, they discovered that those Van Hove singularities were sites where one energized photon could transfer its energy to multiple electrons that are subsequently collected by electrodes— not just one electron or none with the remaining energy lost as heat. By a conservative estimate, Xu and Wu report that within this superlattice one photon could “kick” as many as five electrons to flow as current.

With the discovery of collecting multiple electrons upon the absorption of one photon, researchers may be able to create highly efficient devices that could harvest light with a large energy profit. Future work would need to uncover how to organize the excited electrons into electrical current for optimizing the energy-converting efficiency and remove some of the more cumbersome properties of their superlattice, such as the need for a magnetic field. But they believe this efficient process between photons and electrons represents major progress.

“Graphene is a tiger with great potential for optoelectronics, but locked in a cage,” said Wu. “The singularities in this superlattice are a key to unlocking that cage and releasing graphene’s potential for light harvesting application.”

H/t to a May 13, 2016 news item on phys.org.

Here’s a link to and a citation for the paper,

Multiple hot-carrier collection in photo-excited graphene Moiré superlattices by Sanfeng Wu, Lei Wang, You Lai, Wen-Yu Shan, Grant Aivazian, Xian Zhang, Takashi Taniguchi, Kenji Watanabe, Di Xiao, Cory Dean, James Hone, Zhiqiang Li, and Xiaodong Xu. Science Advances 13 May 2016: Vol. 2, no. 5, e1600002 DOI: 10.1126/sciadv.1600002

This paper is open access.

Courtesy of graphene: world’s thinnest light bulb

Columbia University’s (US) School of Engineering and Applied Science is trumpeting an achievement with graphene, i.e., the world’s thinnest light bulb. From a June 15, 2015 Columbia Engineering news release (also on EurekAlert),

Led by Young Duck Kim, a postdoctoral research scientist in James Hone’s group at Columbia Engineering, a team of scientists from Columbia, Seoul National University (SNU), and Korea Research Institute of Standards and Science (KRISS) reported today that they have demonstrated — for the first time — an on-chip visible light source using graphene, an atomically thin and perfectly crystalline form of carbon, as a filament. They attached small strips of graphene to metal electrodes, suspended the strips above the substrate, and passed a current through the filaments to cause them to heat up.

“We’ve created what is essentially the world’s thinnest light bulb,” says Hone, Wang Fon-Jen Professor of Mechanical Engineering at Columbia Engineering and coauthor of the study. “This new type of ‘broadband’ light emitter can be integrated into chips and will pave the way towards the realization of atomically thin, flexible, and transparent displays, and graphene-based on-chip optical communications.”

The news release goes on to describe some of the issues associated with generating light on a chip and how the researchers approached the problems (quick answer: they used graphene as the filament),

Creating light in small structures on the surface of a chip is crucial for developing fully integrated “photonic” circuits that do with light what is now done with electric currents in semiconductor integrated circuits. Researchers have developed many approaches to do this, but have not yet been able to put the oldest and simplest artificial light source—the incandescent light bulb—onto a chip. This is primarily because light bulb filaments must be extremely hot—thousands of degrees Celsius—in order to glow in the visible range and micro-scale metal wires cannot withstand such temperatures. In addition, heat transfer from the hot filament to its surroundings is extremely efficient at the microscale, making such structures impractical and leading to damage of the surrounding chip.

By measuring the spectrum of the light emitted from the graphene, the team was able to show that the graphene was reaching temperatures of above 2500 degrees Celsius, hot enough to glow brightly. “The visible light from atomically thin graphene is so intense that it is visible even to the naked eye, without any additional magnification,” explains Kim, first and co-lead author on the paper.

Interestingly, the spectrum of the emitted light showed peaks at specific wavelengths, which the team discovered was due to interference between the light emitted directly from the graphene and light reflecting off the silicon substrate and passing back through the graphene. Kim notes, “This is only possible because graphene is transparent, unlike any conventional filament, and allows us to tune the emission spectrum by changing the distance to the substrate.”

The ability of graphene to achieve such high temperatures without melting the substrate or the metal electrodes is due to another interesting property: as it heats up, graphene becomes a much poorer conductor of heat. This means that the high temperatures stay confined to a small “hot spot” in the center.

“At the highest temperatures, the electron temperature is much higher than that of acoustic vibrational modes of the graphene lattice, so that less energy is needed to attain temperatures needed for visible light emission,” Myung-Ho Bae, a senior researcher at KRISS and co-lead author, observes. “These unique thermal properties allow us to heat the suspended graphene up to half of the temperature of the sun, and improve efficiency 1000 times, as compared to graphene on a solid substrate.”

The team also demonstrated the scalability of their technique by realizing large-scale of arrays of chemical-vapor-deposited (CVD) graphene light emitters.

Yun Daniel Park, professor in the Department of Physics and Astronomy at Seoul National University and co-lead author, notes that they are working with the same material that Thomas Edison used when he invented the incandescent light bulb: “Edison originally used carbon as a filament for his light bulb and here we are going back to the same element, but using it in its pure form—graphene—and at its ultimate size limit—one atom thick.”

The group is currently working to further characterize the performance of these devices—for example, how fast they can be turned on and off to create “bits” for optical communications—and to develop techniques for integrating them into flexible substrates.

Hone adds, “We are just starting to dream about other uses for these structures—for example, as micro-hotplates that can be heated to thousands of degrees in a fraction of a second to study high-temperature chemical reactions or catalysis.”

Here’s a link to and a citation for the paper,

Bright visible light emission from graphene by Young Duck Kim, Hakseong Kim, Yujin Cho, Ji Hoon Ryoo, Cheol-Hwan Park, Pilkwang Kim, Yong Seung Kim, Sunwoo Lee, Yilei Li, Seung-Nam Park, Yong Shim Yoo, Duhee Yoon, Vincent E. Dorgan, Eric Pop, Tony F. Heinz, James Hone, Seung-Hyun Chun, Hyeonsik Cheong, Sang Wook Lee,    Myung-Ho Bae, & Yun Daniel Park. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.118 Published online 15 June 2015

This paper is behind a paywall.

Two final notes: there was an announcement earlier this year (mentioned in my March 30, 2015 post) that a graphene light bulb would be in stores this year. Dexter Johnson notes in his June 15, 2015 post (Nanoclast blog on the IEEE [International Institute of Electrical and Electronics Engineers] website) that the earlier light bulb has a graphene coating. You may want to check out Dexter’s posting about the latest light bulb achievement as he also includes an embedded video illustrating how Columbia Engineering’s graphene filament works.

Bendable, stretchable, light-weight, and transparent: a new competitor in the competition for ‘thinnest electric generator’

An Oct. 15, 2014 Columbia University (New York, US) press release (also on EurekAlert), describes another contender for the title of the world’s thinnest electric generator,

Researchers from Columbia Engineering and the Georgia Institute of Technology [US] report today [Oct. 15, 2014] that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

In a paper published online October 15, 2014, in Nature, research groups from the two institutions demonstrate the mechanical generation of electricity from the two-dimensional (2D) MoS2 material. The piezoelectric effect in this material had previously been predicted theoretically.

Here’s a link to and a citation for the paper,

Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics by Wenzhuo Wu, Lei Wang, Yilei Li, Fan Zhang, Long Lin, Simiao Niu, Daniel Chenet, Xian Zhang, Yufeng Hao, Tony F. Heinz, James Hone, & Zhong Lin Wang. Nature (2014) doi:10.1038/nature13792 Published online 15 October 2014

This paper is behind a paywall. There is a free preview available with ReadCube Access.

Getting back to the Columbia University press release, it offers a general description of piezoelectricity and some insight into this new research on molybdenum disulfide,

Piezoelectricity is a well-known effect in which stretching or compressing a material causes it to generate an electrical voltage (or the reverse, in which an applied voltage causes it to expand or contract). But for materials of only a few atomic thicknesses, no experimental observation of piezoelectricity has been made, until now. The observation reported today provides a new property for two-dimensional materials such as molybdenum disulfide, opening the potential for new types of mechanically controlled electronic devices.

“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.

“Proof of the piezoelectric effect and piezotronic effect adds new functionalities to these two-dimensional materials,” says Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering and a co-leader of the research. “The materials community is excited about molybdenum disulfide, and demonstrating the piezoelectric effect in it adds a new facet to the material.”

Hone and his research group demonstrated in 2008 that graphene, a 2D form of carbon, is the strongest material. He and Lei Wang, a postdoctoral fellow in Hone’s group, have been actively exploring the novel properties of 2D materials like graphene and MoS2 as they are stretched and compressed.

Zhong Lin Wang and his research group pioneered the field of piezoelectric nanogenerators for converting mechanical energy into electricity. He and postdoctoral fellow Wenzhuo Wu are also developing piezotronic devices, which use piezoelectric charges to control the flow of current through the material just as gate voltages do in conventional three-terminal transistors.

There are two keys to using molybdenum disulfide for generating current: using an odd number of layers and flexing it in the proper direction. The material is highly polar, but, Zhong Lin Wang notes, so an even number of layers cancels out the piezoelectric effect. The material’s crystalline structure also is piezoelectric in only certain crystalline orientations.

For the Nature study, Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, Wang’s group installed measurement electrodes on samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.

The researchers also noted that the output voltage reversed sign when they changed the direction of applied strain, and that it disappeared in samples with an even number of atomic layers, confirming theoretical predictions published last year. The presence of piezotronic effect in odd layer MoS2 was also observed for the first time.

“What’s really interesting is we’ve now found that a material like MoS2, which is not piezoelectric in bulk form, can become piezoelectric when it is thinned down to a single atomic layer,” says Lei Wang.

To be piezoelectric, a material must break central symmetry. A single atomic layer of MoS2 has such a structure, and should be piezoelectric. However, in bulk MoS2, successive layers are oriented in opposite directions, and generate positive and negative voltages that cancel each other out and give zero net piezoelectric effect.

“This adds another member to the family of piezoelectric materials for functional devices,” says Wenzhuo Wu.

In fact, MoS2 is just one of a group of 2D semiconducting materials known as transition metal dichalcogenides, all of which are predicted to have similar piezoelectric properties. These are part of an even larger family of 2D materials whose piezoelectric materials remain unexplored. Importantly, as has been shown by Hone and his colleagues, 2D materials can be stretched much farther than conventional materials, particularly traditional ceramic piezoelectrics, which are quite brittle.

The research could open the door to development of new applications for the material and its unique properties.

“This is the first experimental work in this area and is an elegant example of how the world becomes different when the size of material shrinks to the scale of a single atom,” Hone adds. “With what we’re learning, we’re eager to build useful devices for all kinds of applications.”

Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.

I see there’s a reference in that last paragraph to “harvesting mechanical energy from  the environment.” I’m not sure what they mean by that but I have written a few times about harvesting biomechanical energy. One of my earliest pieces is a July 12, 2010 post which features work by Zhong Lin Wang on harvesting energy from heart beats, blood flow, muscle stretching, or even irregular vibrations. One of my latest pieces is a Sept. 17, 2014 post about some work in Canada on harvesting energy from the jaw as you chew.

A final note, Dexter Johnson discusses this work in an Oct. 16, 2014 post on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website).

World’s* smallest FM radio transmitter made out of graphene

I’m always amazed at how often nanotechnology is paired with radio. The latest ‘nanoradio’ innovation is from the University of Columbia School of Engineering. According to a November 18, 2013 news item on ScienceDaily,

 A team of Columbia Engineering researchers, led by Mechanical Engineering Professor James Hone and Electrical Engineering Professor Kenneth Shepard, has taken advantage of graphene’s special properties — its mechanical strength and electrical conduction — and created a nano-mechanical system that can create FM signals, in effect the world’s smallest FM radio transmitter.

One of my first ‘nanorado’ stories (in 2007 and predating the existence of this blog) focused on carbon nanotubes and a Zettl Group (Alex Zettl) project at the University of California at Berkeley (from the Zettl Group’s Nanotube Radio: Supplementary materials webpage),

We have constructed a fully functional, fully integrated radio receiver, orders-of-magnitude smaller than any previous radio, from a single carbon nanotube. The single nanotube serves, at once, as all major components of a radio: antenna, tuner, amplifier, and demodulator. Moreover, the antenna and tuner are implemented in a radically different manner than traditional radios, receiving signals via high frequency mechanical vibrations of the nanotube rather than through traditional electrical means. We have already used the nanotube radio to receive and play music from FM radio transmissions such as Layla by Eric Clapton (Derek and the Dominos) and the Beach Boy’s Good Vibrations. The nanotube radio’s extremely small size could enable radical new applications such as radio controlled devices small enough to exist in the human bloodstream, or simply smaller, cheaper, and more efficient wireless devices such as cellular phones.

The group features four songs transmitted via their carbon nanotube radio (from the ‘supplementary materials’ webpage),

A high resolution transmission electron microscope allows us to observe the nanotube radio in action. We have recorded four videos from the electron microscope of the nanotube radio playing four different songs. At the beginning of each video, the nanotube radio is tuned to a different frequency than that of the transmitted radio signal. Thus, the nanotube does not vibrate, and only static noise can be heard. As the radio is brought into tune with the transmitted signal, the nanotube begins to vibrate, which blurs its image in the video, and at the same time, the music becomes audible. The four songs are Good Vibrations by the Beach Boys, Largo from the opera Xerxes by Handel (this was the first song ever transmitted using radio), Layla by Eric Clapton (Derek & the Dominos), and the Main Title from Star Wars by John Williams.

Good Vibrations (Quicktime, 8.06 MB)
Layla (Quicktime, 6.13 MB)
Largo (Quicktime, 8.73 MB)
Star Wars (Quicktime, 8.68 MB)

‘Layla’ is quite scrtachy and barely audible but it is there, if you care to listen to this 2007 carbon nanotube radio project. Now in 2013 we have a graphene radio receiver and this graphene radio project is intended to achieve some of the goals as the carbon nanotube radio project,. From the Nov. 17, 2013 University of Columbia news release on newswise and also on EurekAlert),

“This work is significant in that it demonstrates an application of graphene that cannot be achieved using conventional materials,” Hone says. “And it’s an important first step in advancing wireless signal processing and designing ultrathin, efficient cell phones. Our devices are much smaller than any other sources of radio signals, and can be put on the same chip that’s used for data processing.”

Graphene, a single atomic layer of carbon, is the strongest material known to man, and also has electrical properties superior to the silicon used to make the chips found in modern electronics. The combination of these properties makes graphene an ideal material for nanoelectromechanical systems (NEMS), which are scaled-down versions of the microelectromechanical systems (MEMS) used widely for sensing of vibration and acceleration. For example, Hone explains, MEMS sensors figure out how your smartphone or tablet is tilted to rotate the screen.

In this new study, the team took advantage of graphene’s mechanical ‘stretchability’ to tune the output frequency of their custom oscillator, creating a nanomechanical version of an electronic component known as a voltage controlled oscillator (VCO). With a VCO, explains Hone, it is easy to generate a frequency-modulated (FM) signal, exactly what is used for FM radio broadcasting. The team built a graphene NEMS whose frequency was about 100 megahertz, which lies right in the middle of the FM radio band (87.7 to 108 MHz). They used low-frequency musical signals (both pure tones and songs from an iPhone) to modulate the 100 MHz carrier signal from the graphene, and then retrieved the musical signals again using an ordinary FM radio receiver.

“This device is by far the smallest system that can create such FM signals,” says Hone.

While graphene NEMS will not be used to replace conventional radio transmitters, they have many applications in wireless signal processing. Explains Shepard, “Due to the continuous shrinking of electrical circuits known as ‘Moore’s Law’, today’s cell phones have more computing power than systems that used to occupy entire rooms. However, some types of devices, particularly those involved in creating and processing radio-frequency signals, are much harder to miniaturize. These ‘off-chip’ components take up a lot of space and electrical power. In addition, most of these components cannot be easily tuned in frequency, requiring multiple copies to cover the range of frequencies used for wireless communication.”

Unfortunately I haven’t seen any audio files for this ‘graphene radio’ but here’s a link to and a citation for the 2013 paper ,

Graphene mechanical oscillators with tunable frequency by Changyao Chen, Sunwoo Lee, Vikram V. Deshpande, Gwan-Hyoung Lee, Michael Lekas, Kenneth Shepard, & James Hone. Nature Nanotechnology (2013) doi:10.1038/nnano.2013.232 Published online 17 November 2013

The paper is behind a paywall.

* ‘Wolrd’s’ in headline corrected to ‘World’s’ on July 29, 2015.

New paradigm for low power telecommunications

I’m always a sucker for the nonlinear although I’m much more familiar with nonlinear narratives than I am with nonlinear photonics. From the July 15, 2012 news item on EurekAlert,

New research by Columbia Engineering demonstrates remarkable optical nonlinear behavior of graphene that may lead to broad applications in optical interconnects and low-power photonic integrated circuits. With the placement of a sheet of graphene just one-carbon-atom-thick, the researchers transformed the originally passive device into an active one that generated microwave photonic signals and performed parametric wavelength conversion at telecommunication wavelengths.

“We have been able to demonstrate and explain the strong nonlinear response from graphene, which is the key component in this new hybrid device,” says Tingyi Gu, the study’s lead author and a Ph.D. candidate in electrical engineering. “Showing the power-efficiency of this graphene-silicon hybrid photonic chip is an important step forward in building all-optical processing elements that are essential to faster, more efficient, modern telecommunications. And it was really exciting to explore the ‘magic’ of graphene’s amazingly conductive properties and see how graphene can boost optical nonlinearity, a property required for the digital on/off two-state switching and memory.”

Here’s one of the issues that scientists have been grappling with,

Until recently, researchers could only isolate graphene as single crystals with micron-scale dimensions, essentially limiting the material to studies confined within laboratories. “The ability to synthesize large-area films of graphene has the obvious implication of enabling commercial production of these proven graphene-based technologies,” explains James Hone, associate professor of mechanical engineering, whose team provided the high quality graphene for this study. “But large-area films of graphene can also enable the development of novel devices and fundamental scientific studies requiring graphene samples with large dimensions. This work is an exciting example of both—large-area films of graphene enable the fabrication of novel opto-electronic devices, which in turn allow for the study of scientific phenomena.”

Building on the work done by scientists such as Hone,this new group of researchers led by by Chee Wei Wong, professor of mechanical engineering, director of the Center for Integrated Science and Engineering, and Solid-State Science and Engineering at Columbia University, created a new device,

They have engineered a graphene-silicon device whose optical nonlinearity enables the system parameters (such as transmittance and wavelength conversion) to change with the input power level. The researchers also were able to observe that, by optically driving the electronic and thermal response in the silicon chip, they could generate a radio frequency carrier on top of the transmitted laser beam and control its modulation with the laser intensity and color. Using different optical frequencies to tune the radio frequency, they found that the graphene-silicon hybrid chip achieved radio frequency generation with a resonant quality factor more than 50 times lower than what other scientists have achieved in silicon.

“We are excited to have observed four-wave mixing in these graphene-silicon photonic crystal nanocavities,” says Wong. “We generated new optical frequencies through nonlinear mixing of two electromagnetic fields at low operating energies, allowing reduced energy per information bit. This allows the hybrid silicon structure to serve as a platform for all-optical data processing with a compact footprint in dense photonic circuits.”

That bit about the system parameters changing with input levels suggests a biological system responding sensitively to environmental inputs, e.g., when it gets hot, your body tries to cool itself down in a sensitive response to an input. Of course, that fanciful analogy doesn’t extend itself too far since the human body is trying to return to its internal balance point (homeostasis) which isn’t what the Columbia researchers are attempting to do with their device.