Tag Archives: James Murday

Results in for Generation Nano: Small Science, Superheroes contest

The Generation Nano: Small Science, Superheroes contest last mentioned in my March 31, 2016 posting has ended and the placement of the winners, in a field of three finalists, announced at the 2016 USA Science and Engineering Festival according to an April 18, 2016 US National Science Foundation news release,

On behalf of the National Science Foundation (NSF), actor Wil Wheaton and legendary superhero creator Stan Lee yesterday announced the winners of the Generation Nano: Small Science, Superheroescompetition, sponsored by NSF and the National Nanotechnology Initiative (NNI).

The competition challenged high school students to think big — or, in this case, small — to create superheroes that harness their powers from nanotechnology.

Wheaton applauded the students’ creative storylines, noting that when he was Wesley Crusher on the TV series Star Trek: The Next Generation, such plots were only imaginary. “It is amazing what is today plausible due to the power of nanotechnonlogy,” he said.

In a video introduction before Wheaton announced top prize winners, Stan Lee said it was “great that I can virtually join you today.” He remarked on the winners’ “creativity, ingenuity and initiative.”

“From one superhero storyteller to the next, congratulations,” Lee said.

The winners

  • First Prize: Eric Liu from Thomas Jefferson High School for Science and Technology in Virginia, for his “Nanoman,” who fights the malignant crab-monster “Cancer.”
  • Second Prize and the People’s Choice Award: Madeleine Chang from Bergen County Academies in New Jersey, for her superhero “Radio Blitz,” who disposes of local waste.
  • Third Prize: Vuong Mai from Martha Ellen Stilwell School of the Arts in Georgia, for her protector “Nine,” who dons a nanosuit for strength to save a kidnapping victim.

All weekend, the students displayed their superheroes and described the nanoscience behind them to thousands of attendees at the 2016 USA Science & Engineering Festival in Washington, D.C.

“All three finalists immersed themselves in the worlds of nanotechnology and art, told a great story, entertained and educated — all at the same time,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “Their creations will surely motivate additional students to imagine and learn more about what is possible with nanotechnology.”

Top award winners in this competition show that with imagination and nanotechnology, possibilities abound, said Mihail C. Roco, NSF senior advisor for science and engineering and a key architect of NNI.

“These school students have aimed higher than ever in their lives, pushing their abilities in novel domains where seeds for their high-tech future may germinate,” Roco said. “We need a constant regeneration of new talent to exploit this general purpose science and technology field to its outstanding potential. These students are well on their way.”

Competition details

NSF and NNI challenges students to submit written entries explaining their superhero and nanotechnology-driven gear, along with a one-page comic or 90-second video. A panel of judges from academia and multimedia platforms selected semifinalists and finalists, from which the public selected Madeline Chang as its People’s Choice winner.

Top prizes were determined by judges Elise Lemle, director of special projects at Two Bit Circus; Lizabeth Fogel, director of Education for the Walt Disney Company and Chair of the Board for the Partnership for 21st Century Learning; and James Murday, director of physical sciences at the University of Southern California’s Washington, D.C., office of research advancement.

Visit the Generation Nano competition website for competition details such as eligibility criteria, entry guidelines, timeline, prizes and videos/comics from the finalists and semifinalists. And stay tuned for information on next year’s competition.

Here’s a photo of Wil Wheaton officiating at the ceremony,

Actor, writer and blogger Wil Wheaton hosted the Gen Nano competition award ceremony.

Actor, writer and blogger Wil Wheaton hosted the Gen Nano competition award ceremony. Courtesy of the NSF.

Honestly, this could be anyone but there are videos of the ceremony featuring Wil Wheaton, each of the winner’s pieces, and Stan Lee attending the ceremony virtually (five videos in all).

Nanotechnology for Defense Conference call for abstracts

The deadline for abstracts is Feb. 18, 2012 for the Nanotechnology for Defense Conference (NT4D) in Summerlin, Nevada from Aug. 6 – 10, 2012.

J. Steven Rutt in his Feb. 4, 2012 article for Cleantech & Nano notes,

Defense is one of the fundamental and perhaps the most stable pillar for nanotechnology commercialization, along with other pillars such as bio nanotechnology and energy.  The history of the Department of Defense’s (DoD) interest in nanotechnology is noted in the Foreward of Ratner and Ratner’s book, Nanotechnology and Homeland Security 2004 (written by James Murday, Office of Naval Research).  The DoD interest in nanotechnology can be “clearly identified as early as the late 1970′s when its Ultrasubmicron Electronics Research (USER) program.”  [sic]IT

I have a longstanding interest in the military and its nanotechnology research so I find this call for abstracts quite piquant, from the conference call for abstracts page,

We look forward to receiving your abstracts for the 2012 NanoTechnology for Defense Conference. Submitted abstracts must be unclassified and should be no more than 300 words long. In early March 2012, you will be contacted regarding the status of your acceptance. Final presentations will be due 9 July 2012. This event is conducted at the ITAR level and therefore presentations given at the Symposium do not need to be cleared for public release. However, presentations and papers should not contain proprietary information and may not be more restrictive than Distribution X (Distribution authorized to U.S. Government Agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD directive 5230.5 under the provisions of Public Law 98-94). All abstracts should fall into one or more of the described topics on the previous pages.  Please note, presentation of an abstract does not waive any applicable registration fees.

Full and open abstracts are preferred, however we will accept ITAR restricted abstracts. Acceptable distribution levels include A or X ONLY.  To find more information on distribution levels, visit http://www.usasymposium.com/nano/security.htm.  Please note:  ITAR ABSTRACTS MUST BE PASSWORD PROTECTED.

ITAR restricted? Distribution A and X levels? It all seems reminiscent of tv programmes like the X-Files and Fringe.

For anyone who’s interested in making a submission (despite the resemblance to X-Files and/or Fringe), conference organizers are looking for abstracts on these topics and others (from the Rutt article),

The current call for abstracts at the 2012 NT4D Conference focus on (1) Nanotechnology Success Stories, (2) Nanotechnology for Military Coatings Applications, (3) Nanotechnology for Chem-Bio Defense and Battlefield Casualty Care Medical Applications, (4) Nanomaterials Response to Extreme Stimuli, and (5) Nanoelectronics.  However, the scope is broad as topics in the following areas will be considered: …

For anyone like me who isn’t familiar with Nevada, Summerlin is partly in Las Vegas according to the Wikipedia essay,

Summerlin is an affluent 22,500-acre (9,100 ha) master-planned community under development by The Howard Hughes Corporation in the Las Vegas metropolitan area of Nevada near the Spring Mountains and Red Rock Canyon National Conservation Area. It lies partially within the city limits of Las Vegas, Nevada, and in unincorporated Clark County. Summerlin, named for Howard Hughes’ grandmother, Jean Amelia Summerlin, ranked as the country’s best-selling master-planned community for more than a decade by Robert Charles Lesser & Co.and continues to rank among the top ten best-selling communities in the country some 19 years after development first began.

I have removed links and citation notes from the Wikipedia essay excerpt.

Realism strikes nanotechnology market and employment forecasts

There’s been a new kind of market forecast for nanotechnology kicking around lately. Instead of predicting market values in the trillions, the prediction is in the billions. There’s an item on Nanowerk about this new report,

It therefore is quite refreshing to finally see a market report titled “Nanotechnology: A Realistic Market Assessment” that estimates the worldwide sales revenues for nanotechnology to be $26 billion – yes, that’s illion with a b, not a tr – in 2015.

According to this report, the largest nanotechnology segments in 2009 were nanomaterials, with sales reaching $9 billion in 2009. This is expected to grow to more than $19 billion in 2015. Sales of nanotools, meanwhile, will experience high growth. From a total market revenue of $2.6 billion in 2009, the nanotools segment will increase at a 3.3% CAGR to reach a value of $6,812.5 million in 2015.

These numbers seem more realistic given the commentaries and critiques I’ve seen from more knowledgeable business analysts than me. (There’s more about the report and links to it and other related articles at Nanowerk.)

On the same track, I came across an August 10,2010 posting by Dexter Johnson (Nanoclast) on employment figures for the ‘nanotechnology industry’. From the posting ((Nanotech Employment Numbers Remain Inscrutable),

On the one hand, you have the ever-optimistic viewpoint of Mihail C. Roco, a senior adviser for nanotechnology at NSF [National Science Foundation], who helped develop the numbers back in 2000 that estimated that by 2015 2 million workers worldwide, and 800,000 in the US, would be needed to support nanotechnology manufacturing. According to Roco, we’re still on target with estimates that in 2008 there were 160,000 workers in nanotechnology, representing a 25% increase between 2000 and 2008. If that same percentage increase is applied to the years from 2008 to 2015, then you would get 800,000 by 2015 in Roco’s estimates.

As satisfying as it may be to be dead-on accurate with one’s projections, one cannot help be reminded of Upton Sinclair’s quote “It is difficult to get a man to understand something when his job depends on not understanding it.” If you are given the task of predicting the unpredictable you have to stick to the methodology even when it hardly makes sense.

Dexter is providing commentary on an article by Ann M. Thayer in Chemical and Engineering News, Filling Nanotech Jobs. In the wake of the US National Nanotechnology Initiative’s (NNI) 10th anniversary this year, Thayer unpacks some of the numbers and projections about nanotechnology’s economic impacts. It is sobering. From the article,

Ten years down the road, and with 2015 just over the horizon, it’s clear that the hype has died down and investment momentum has slowed. Although U.S. government nanotech spending under NNI has totaled nearly $12 billion, according to market research firm Lux Research, the recession has further blunted demand for nanomaterials, slowed technology adoption, and reduced its market projections. Many small firms have closed their doors, and some state nanotech initiatives have stalled.

Beyond the likely effect of the economic downturn on employment, efforts to train a nanotech workforce face other uncertainties. The technology has moved into products and manufacturing, but it is still early in its commercial development path. And while it evolves, it must compete for government and investor attention from newer emerging technologies.

Much of the article focuses on educational efforts to support what was intended as a newly emerging and vibrant nanotechnology field. From Thayer’s article,

Reviews of NNI by the President’s Council of Advisors on Science & Technology and others have recommended improving coordination around education and workforce issues. Often near the top of the list is a call for increased participation by the Departments of Labor and Education, agencies new to NNI in 2006, to provide input and help strengthen efforts.

“This should be the next major step,” Roco agrees. “NSF has created a spectrum of methods and models in education, and now these need to be implemented at a larger scale.” He and others in government are counting on the Commerce Department to help assess industry needs and point universities in the right direction.

But the path forward is unclear, in part because the funding environment is in flux. For example, funding that jump-started some of the early nanotech centers, such as NCLT [National Center for Learning & Teaching], has ended, and the centers must recompete or find other ways to sustain their operations.

Education, like any business, responds to market needs. Murday [[James S. Murday, associate director in the University of Southern California’s Office of Research Advancement] supposes that nanoscience education could mirror the materials science field, which came together under government investment in the 1960s. “It’s sort of an existence proof in the past 50 years that you don’t have to be bound by the old disciplines,” Murday says. Instead of getting hung up on what nanotech is or isn’t, “maybe we ought to focus on what we really want, which is new products and figuring out how to design our educational system to make the fastest progress,” he suggests. [emphasis mine]

‘Designing an educational system to make the fastest progress’ as per Murday reeks of the Industrial Revolution. After all, the reason for near universal literacy was that industry in the name of progress needed better educated workers. But that’s a side issue.

What this whole discussion brings up is a question of strategy. The easiest comparison for me to make is between the US and Canada. As I’ve noted before (my Aug. 2, 2010 posting), the US has poured a lot money, time, and energy in a very focused nanotechnology strategy, e.g. NNI,  whereas in Canada, the nanotechnology effort has largely been rolled into pre-existing programs.

At this point, it’s impossible to say if there’s a clear cut right or wrong strategy, as Dexter points out, the people who made and continue to make the projections and decide strategy have a vested interested in being proved right.