Tag Archives: James Tour

A de-icer and a preventative for airplane wings from Rice University

I last mentioned this graphene-based work (from James Tour at Rice University in Texas, US) on de-icing not just airplane wings but also windshields, skyscrapers and more in a Sept. 17, 2014 posting. The latest study indicates the technology could be used as a preventative according to a May 23, 2016 news item on phys.org,

Rice University scientists have advanced their graphene-based de-icer to serve a dual purpose. The new material still melts ice from wings and wires when conditions get too cold. But if the air is above 7 degrees Fahrenheit, ice won’t form at all.

A May 23, 2016 Rice University news release (also on EurekAlert), which originated the news item, goes on to describe the work in more detail,

The Rice lab of chemist James Tour gave its de-icer superhydrophobic (water-repelling) capabilities that passively prevent water from freezing above 7 degrees. The tough film that forms when the de-icer is sprayed on a surface is made of atom-thin graphene nanoribbons that are conductive, so the material can also be heated with electricity to melt ice and snow in colder conditions.

The material can be spray-coated, making it suitable for large applications like aircraft, power lines, radar domes and ships, according to the researchers. …

“We’ve learned to make an ice-resistant material for milder conditions in which heating isn’t even necessary, but having the option is useful,” Tour said. “What we now have is a very thin, robust coating that can keep large areas free of ice and snow in a wide range of conditions.”

Tour, lead authors Tuo Wang, a Rice graduate student, and Yonghao Zheng, a Rice postdoctoral researcher, and their colleagues tested the film on glass and plastic.

Materials are superhydrophobic if they have a water-contact angle larger than 150 degrees. The term refers to the angle at which the surface of the water meets the surface of the material. The greater the beading, the higher the angle. An angle of 0 degrees is basically a puddle, while a maximum angle of 180 degrees defines a sphere just touching the surface.

The Rice films use graphene nanoribbons modified with a fluorine compound to enhance their hydrophobicity. They found that nanoribbons modified with longer perfluorinated chains resulted in films with a higher contact angle, suggesting that the films are tunable for particular conditions, Tour said.

Warming test surfaces to room temperature and cooling again had no effect on the film’s properties, he said.

The researchers discovered that below 7 degrees, water would condense within the structure’s pores, causing the surface to lose both its superhydrophobic and ice-phobic properties. At that point, applying at least 12 volts of electricity warmed them enough to retain its repellant properties.

Applying 40 volts to the film brought it to room temperature, even if the ambient temperature was 25 degrees below zero. Ice allowed to form at that temperature melted after 90 seconds of resistive heating.

The researchers found that while effective, the de-icing mode did not remove water completely, as some remained trapped in the pores between linked nanoribbon bundles. Adding a lubricant with a low melting point (minus 61 degrees F) to the film made the surface slippery, sped de-icing and saved energy.

Here’s a link to and a citation for the paper,

Passive Anti-icing and Active Deicing Films by Tuo Wang, Yonghao Zheng, Abdul-Rahman O. Raji, Yilun Li, William K.A. Sikkema, and James M. Tour. ACS Appl. Mater. Interfaces, Just Accepted Manuscript DOI: 10.1021/acsami.6b03060 Publication Date (Web): May 18, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

International NanoCar race: 1st ever to be held in Autumn 2016

They have a very intriguing set of rules for the 1st ever International NanoCar Race to be held in Toulouse, France in October 2016. From the Centre d’Élaboration de Matériaux et d’Études Structurales (CEMES) Molecule-car Race International page (Note: A link has been removed),

1) General regulations

The molecule-car of a registered team has at its disposal a runway prepared on a small portion of the (111) face of the same crystalline gold surface. The surface is maintained at a very low temperature that is 5 Kelvin = – 268°C (LT) in ultra-high vacuum that is 10-8 Pa or 10-10 mbar 10-10 Torr (UHV) for at least the duration of the competition. The race itself last no more than 2 days and 2 nights including the construction time needed to build up atom by atom the same identical runway for each competitor. The construction and the imaging of a given runway are obtained by a low temperature scanning tunneling microscope (LT-UHV-STM) and certified by independent Track Commissioners before the starting of the race itself.

On this gold surface and per competitor, one runway is constructed atom by atom using a few surface gold metal ad-atoms. A molecule-car has to circulate around those ad-atoms, from the starting to the arrival lines, each line being delimited by 2 gold ad-atoms. The spacing between two metal ad-atoms along a runway is less than 4 nm. A minimum of 5 gold ad-atoms line has to be constructed per team and per runway.

The organizers have included an example of a runway,

A preliminary runway constructed by C. Manzano and We Hyo Soe (A*Star, IMRE) in Singapore, with the 2 starting gold ad-atoms, the 5 gold ad-atoms for the track and the 2 gold ad-atoms had been already constructed atom by atom.

A preliminary runway constructed by C. Manzano and We Hyo Soe (A*Star, IMRE) in Singapore, with the 2 starting gold ad-atoms, the 5 gold ad-atoms for the track and the 2 gold ad-atoms had been already constructed atom by atom.

A November 25, 2015 [France] Centre National de la Recherche Scientifique (CNRS) press release notes that five teams presented prototypes at the Futurapolis 2015 event preparatory to the upcoming Autumn 2016 race,

The French southwestern town of Toulouse is preparing for the first-ever international race of molecule-cars: five teams will present their car prototype during the Futurapolis event on November 27, 2015. These cars, which only measure a few nanometers in length and are propelled by an electric current, are scheduled to compete on a gold atom surface next year. Participants will be able to synthesize and test their molecule-car until October 2016 prior to taking part in the NanoCar Race organized at the CNRS Centre d’élaboration des matériaux et d’études structurales (CEMES) by Christian Joachim, senior researcher at the CNRS and Gwénaël Rapenne, professor at Université Toulouse III-Paul Sabatier, with the support of the CNRS.

There is a video describing the upcoming 2016 race (English, spoken and in subtitles),

NanoCar Race, the first-ever race of molecule-cars by CNRS-en

A Dec. 14, 2015 Rice University news release provides more detail about the event and Rice’s participation,

Rice University will send an entry to the first international NanoCar Race, which will be held next October at Pico-Lab CEMES-CNRS in Toulouse, France.

Nobody will see this miniature grand prix, at least not directly. But cars from five teams, including a collaborative effort by the Rice lab of chemist James Tour and scientists at the University of Graz, Austria, will be viewable through sophisticated microscopes developed for the event.

Time trials will determine which nanocar is the fastest, though there may be head-to-head races with up to four cars on the track at once, according to organizers.

A nanocar is a single-molecule vehicle of 100 or so atoms that incorporates a chassis, axles and freely rotating wheels. Each of the entries will be propelled across a custom-built gold surface by an electric current supplied by the tip of a scanning electron microscope. The track will be cold at 5 kelvins (minus 450 degrees Fahrenheit) and in a vacuum.

Rice’s entry will be a new model and the latest in a line that began when Tour and his team built the world’s first nanocar more than 10 years ago.

“It’s challenging because, first of all, we have to design a car that can be manipulated on that specific surface,” Tour said. “Then we have to figure out the driving techniques that are appropriate for that car. But we’ll be ready.”

Victor Garcia, a graduate student at Rice, is building what Tour called his group’s Model 1, which will be driven by members of Professor Leonhard Grill’s group at Graz. The labs are collaborating to optimize the design.

The races are being organized by the Center for Materials Elaboration and Structural Studies (CEMES) of the French National Center for Scientific Research (CNRS).

The race was first proposed in a 2013 ACS Nano paper by Christian Joachim, a senior researcher at CNRS, and Gwénaël Rapenne, a professor at Paul Sabatier University.

Joining Rice are teams from Ohio University; Dresden University of Technology; the National Institute for Materials Science, Tsukuba, Japan; and Paul Sabatier [Université Toulouse III-Paul Sabatier].

I believe there’s still time to register an entry (from the Molecule-car Race International page; Note: Links have been removed),

To register for the first edition of the molecule-car Grand Prix in Toulouse, a team has to deliver to the organizers well before March 2016:

  • The detail of its institution (Academic, public, private)
  • The design of its molecule-vehicle including the delivery of the xyz file coordinates of the atomic structure of its molecule-car
  • The propulsion mode, preferably by tunneling inelastic effects
  • The evaporation conditions of the molecule-vehicles
  • If possible a first UHV-STM image of the molecule-vehicle
  • The name and nationality of the LT-UHV-STM driver

Those information are used by the organizers for selecting the teams and for organizing training sessions for the accepted teams in a way to optimize their molecule-car design and to learn the driving conditions on the LT-Nanoprobe instrument in Toulouse. Then, the organizers will deliver an official invitation letter for a given team to have the right to experiment on the Toulouse LT-Nanoprobe instrument with their own drivers. A detail training calendar will be determined starting September 2015.

The NanoCar Race website’s homepage notes that it will be possible to view the race in some fashion,

The NanoCar Race is a race where molecular machines compete on a nano-sized track. A NanoCar is a single molecule-car that has wheels and a chassis… and is propelled by a small electric shock.

The race will be invisible to the naked eye: a unique microscope based in Toulouse, France, will make it possible to watch the competition.

The NanoCar race is mostly a fantastic human and scientific adventure that will be broadcast worldwide. [emphasis mine]

Good luck to all the competitors.

A 244-atom submarine powered by light

James Tour lab researchers at Rice University announce in a Nov. 16, 2015 news item on Nanowerk,

Though they’re not quite ready for boarding a lá “Fantastic Voyage,” nanoscale submarines created at Rice University are proving themselves seaworthy.

Each of the single-molecule, 244-atom submersibles built in the Rice lab of chemist James Tour has a motor powered by ultraviolet light. With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers.
And with the motors running at more than a million RPM, that translates into speed. Though the sub’s top speed amounts to less than 1 inch per second, Tour said that’s a breakneck pace on the molecular scale.

“These are the fastest-moving molecules ever seen in solution,” he said.

Expressed in a different way, the researchers reported this month in the American Chemical Society journal Nano Letters that their light-driven nanosubmersibles show an “enhancement in diffusion” of 26 percent. That means the subs diffuse, or spread out, much faster than they already do due to Brownian motion, the random way particles spread in a solution.

While they can’t be steered yet, the study proves molecular motors are powerful enough to drive the sub-10-nanometer subs through solutions of moving molecules of about the same size.

“This is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him,” Tour said.

A Nov. 16, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides context and details about the research,

Tour’s group has extensive experience with molecular machines. A decade ago, his lab introduced the world to nanocars, single-molecule cars with four wheels, axles and independent suspensions that could be “driven” across a surface.

Tour said many scientists have created microscopic machines with motors over the years, but most have either used or generated toxic chemicals. He said a motor that was conceived in the last decade by a group in the Netherlands proved suitable for Rice’s submersibles, which were produced in a 20-step chemical synthesis.

“These motors are well-known and used for different things,” said lead author and Rice graduate student Victor García-López. “But we were the first ones to propose they can be used to propel nanocars and now submersibles.”

The motors, which operate more like a bacteria’s flagellum than a propeller, complete each revolution in four steps. When excited by light, the double bond that holds the rotor to the body becomes a single bond, allowing it to rotate a quarter step. As the motor seeks to return to a lower energy state, it jumps adjacent atoms for another quarter turn. The process repeats as long as the light is on.

For comparison tests, the lab also made submersibles with no motors, slow motors and motors that paddle back and forth. All versions of the submersibles have pontoons that fluoresce red when excited by a laser, according to the researchers. (Yellow, sadly, was not an option.)

“One of the challenges was arming the motors with the appropriate fluorophores for tracking without altering the fast rotation,” García-López said.

Once built, the team turned to Gufeng Wang at North Carolina State University to measure how well the nanosubs moved.

“We had used scanning tunneling microscopy and fluorescence microscopy to watch our cars drive, but that wouldn’t work for the submersibles,” Tour said. “They would drift out of focus pretty quickly.”

The North Carolina team sandwiched a drop of diluted acetonitrile liquid containing a few nanosubs between two slides and used a custom confocal fluorescence microscope to hit it from opposite sides with both ultraviolet light (for the motor) and a red laser (for the pontoons).

The microscope’s laser defined a column of light in the solution within which tracking occurred, García-López said. “That way, the NC State team could guarantee it was analyzing only one molecule at a time,” he said.

Rice’s researchers hope future nanosubs will be able to carry cargoes for medical and other purposes. “There’s a path forward,” García-López said. “This is the first step, and we’ve proven the concept. Now we need to explore opportunities and potential applications.”

Here’s a link to and a citation for the paper,

Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring by Víctor García-López, Pinn-Tsong Chiang, Fang Chen, Gedeng Ruan, Angel A. Martí, Anatoly B. Kolomeisky, Gufeng Wang, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b03764 Publication Date (Web): November 5, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

There is an illustration of the 244-atom submersible,

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

Graphene gains metallic powers after laser-burning

Rice University (Texas, US) researchers have developed a technique for embedding metallic nanoparticles in graphene with the hope of one day replacing platinum catalysts in fuel cells. From an August 20, 2015 news item on ScienceDaily,

Laser-induced graphene, created by the Rice lab of chemist James Tour last year, is a flexible film with a surface of porous graphene made by exposing a common plastic known as polyimide to a commercial laser-scribing beam. The researchers have now found a way to enhance the product with reactive metals.

An August 20, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides further description,

With the discovery, the material that the researchers call “metal oxide-laser induced graphene” (MO-LIG) becomes a new candidate to replace expensive metals like platinum in catalytic fuel-cell applications in which oxygen and hydrogen are converted to water and electricity.

“The wonderful thing about this process is that we can use commercial polymers, with simple inexpensive metal salts added,” Tour said. “We then subject them to the commercial laser scriber, which generates metal nanoparticles embedded in graphene. So much of the chemistry is done by the laser, which generates graphene in the open air at room temperature.

“These composites, which have less than 1 percent metal, respond as ‘super catalysts’ for fuel-cell applications. Other methods to do this take far more steps and require expensive metals and expensive carbon precursors.”

Initially, the researchers made laser-induced graphene with commercially available polyimide sheets. Later, they infused liquid polyimide with boron to produce laser-induced graphene with a greatly increased capacity to store an electrical charge, which made it an effective supercapacitor.

For the latest iteration, they mixed the liquid and one of three concentrations containing cobalt, iron or molybdenum metal salts. After condensing each mixture into a film, they treated it with an infrared laser and then heated it in argon gas for half an hour at 750 degrees Celsius.

That process produced robust MO-LIGs with metallic, 10-nanometer particles spread evenly through the graphene. Tests showed their ability to catalyze oxygen reduction, an essential chemical reaction in fuel cells. Further doping of the material with sulfur allowed for hydrogen evolution, another catalytic process that converts water into hydrogen, Tour said.

“Remarkably, simple treatment of the graphene-molybdenum oxides with sulfur, which converted the metal oxides to metal sulfides, afforded a hydrogen evolution reaction catalyst, underscoring the broad utility of this approach,” he said.

Here’s a link to and a citation for the paper,

In situ Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene by Ruquan Ye, Zhiwei Peng, Tuo Wang, Yunong Xu, Jibo Zhang, Yilun Li, Lizanne G. Nilewski, Jian Lin, and James M. Tour. ACS Nano, Just Accepted Manuscript DOI: 10.1021/acsnano.5b04138 Publication Date (Web): August 18, 2015
Copyright © 2015 American Chemical Society

This paper is open access provided you have an ACS ID, which is a free registration. ACS is the American Chemical Society.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

Graphene and radioactive waste

In fact, the material in question is graphene oxide and researchers at Rice University (Texas) and Lomonosov Moscow State University have found that it can rapidly remove radioactive material from water  From the Jan. 8, 2013 news item on ScienceDaily,

A collaborative effort by the Rice lab of chemist James Tour and the Moscow lab of chemist Stepan Kalmykov determined that microscopic, atom-thick flakes of graphene oxide bind quickly to natural and human-made radionuclides and condense them into solids. The flakes are soluble in liquids and easily produced in bulk.

The Rice University Jan. 8, 2013 news release, which originated the news item, was written by Mike Williams and provides additional insight and quotes from the researchers (Note: Links have been removed),

The discovery, Tour said, could be a boon in the cleanup of contaminated sites like the Fukushima nuclear plants damaged by the 2011 earthquake and tsunami. It could also cut the cost of hydraulic fracturing (“fracking”) for oil and gas recovery and help reboot American mining of rare earth metals, he said.

Graphene oxide’s large surface area defines its capacity to adsorb toxins, Kalmykov said. “So the high retention properties are not surprising to us,” he said. “What is astonishing is the very fast kinetics of sorption, which is key.”

“In the probabilistic world of chemical reactions where scarce stuff (low concentrations) infrequently bumps into something with which it can react, there is a greater likelihood that the ‘magic’ will happen with graphene oxide than with a big old hunk of bentonite,” said Steven Winston, a former vice president of Lockheed Martin and Parsons Engineering and an expert in nuclear power and remediation who is working with the researchers. “In short, fast is good.”

Here’s how it works (from the news release; Note: Links have been removed),

The researchers focused on removing radioactive isotopes of the actinides  and lanthanides  – the 30 rare earth elements in the periodic table – from liquids, rather than solids or gases. “Though they don’t really like water all that much, they can and do hide out there,” Winston said. “From a human health and environment point of view, that’s where they’re least welcome.”

Naturally occurring radionuclides are also unwelcome in fracking fluids that bring them to the surface in drilling operations, Tour said. “When groundwater comes out of a well and it’s radioactive above a certain level, they can’t put it back into the ground,” he said. “It’s too hot. Companies have to ship contaminated water to repository sites around the country at very large expense.” The ability to quickly filter out contaminants on-site would save a great deal of money, he said.

He sees even greater potential benefits for the mining industry. Environmental requirements have “essentially shut down U.S. mining of rare earth metals, which are needed for cell phones,” Tour said. “China owns the market because they’re not subject to the same environmental standards. So if this technology offers the chance to revive mining here, it could be huge.”

Tour said that capturing radionuclides does not make them less radioactive, just easier to handle. “Where you have huge pools of radioactive material, like at Fukushima, you add graphene oxide and get back a solid material from what were just ions in a solution,” he said. “Then you can skim it off and burn it. Graphene oxide burns very rapidly and leaves a cake of radioactive material you can then reuse.”

The low cost and biodegradable qualities of graphene oxide should make it appropriate for use in permeable reactive barriers, a fairly new technology for in situ groundwater remediation, he said.

Romanchuk, Slesarev, Kalmykov and Tour are co-authors of the paper with Dmitry Kosynkin, a former postdoctoral researcher at Rice, now with Saudi Aramco. Kalmykov is radiochemistry division head and a professor at Lomonosov Moscow State University. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

Here’s a ‘before’ shot of solution with graphene oxide and an ‘after’ shot where radionuclides have been added and begun to clump,

A new method for removing radioactive material from solutions is the result of collaboration between Rice University and Lomonosov Moscow State University. The vial at left holds microscopic particles of graphene oxide in a solution. At right, graphene oxide is added to simulated nuclear waste, which quickly clumps for easy removal. Image by Anna Yu. Romanchuk/Lomonosov Moscow State University

A new method for removing radioactive material from solutions is the result of collaboration between Rice University and Lomonosov Moscow State University. The vial at left holds microscopic particles of graphene oxide in a solution. At right, graphene oxide is added to simulated nuclear waste, which quickly clumps for easy removal. Image by Anna Yu. Romanchuk/Lomonosov Moscow State University

As noted in the ScienceDaily news item, the research has been published in the Royal Society’s Physical Chemistry Chemical Physics journal,

Anna Yu. Romanchuk, Alexander Slesarev, Stepan N. Kalmykov, Dmitry Kosynkin, James M Tour. Graphene Oxide for Effective Radionuclide Removal. Physical Chemistry Chemical Physics, 2012; DOI: 10.1039/C2CP44593J

This article is behind a paywall.

Graphene dreams of the Morph

For anyone who’s not familiar with the Morph, it’s an idea that Nokia and the University of Cambridge’s Nanoscience Centre have been working on for the last few years. Originally announced as a type of flexible phone that you could wrap around your wrist, the Morph is now called a concept.  Here’s an animation illustrating some of the concepts which include flexibility and self-cleaning,

There have been very few announcements of any kind about the Morph or the technology that will support this concept. A few months ago, they did make an announcement about researching graphene as a means of actualizing the concept (noted in my May 6, 2011 posting [scroll down about 1/2 way]).

Interestingly the latest research published  on graphene and the flexible, transparent screens that are necessary to making something like the Morph a reality has come from a lab at Rice University. From the August 1, 2011 news item on Nanowerk,

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano (“Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes”).

Flexible, see-through video screens may be the “killer app” that finally puts graphene — the highly touted single-atom-thick form of carbon — into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything. [emphasis mine]

The lab’s hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It’s the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

Here’s James Tour and Yu Zhu, the paper’s lead author, explaining how the flexible screen was developed,

There are other flexible screens and competitors to the Morph notably the PaperPhone mentioned in my May 6,2011 posting (scroll down about 2/3 of the way) and in my May 12, 2011 posting featuring an interview with Roel Vertegaal of Queen’s University, Ontario, Canada, about the PaperPhone. (We did not discuss the role that graphene might or might not play in the development of the Paperphone’s screens.)

I wonder what impact this work at Rice will have not only for the Morph and the PaperPhone but on the European Union’s pathfinder research competition (the prize is $1B Euros), mentioned in my June 13, 2011 posting about graphene (scroll down about 1/3 of the way). Graphene is one of the research areas being considered for the prize.

ETA Aug. 5, 2011: Tour’s team just published another paper on graphene, one that proves you can make it from anything containing carbon according the Aug. 4, 2011 news item, One Box of Girl Scout Cookies Worth $15 Billion: Lab Shows Troop How Any Carbon Source Can Become Valuable Graphene, on Science Daily,

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

“I said we could grow it from any carbon source — for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time,” Tour recalled. “So one of the people in the room said, ‘Yes, please do it. … Let’s see that happen.'”

Members of Girl Scouts of America Troop 25080 came to Rice’s Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene — $250 for a two-inch square — a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

Here’s the full reference for this second paper,

Gedeng Ruan, Zhengzong Sun, Zhiwei Peng, James M. Tour. Growth of Graphene from Food, Insects and Waste. ACS Nano, 2011; 110729113834087 DOI: 10.1021/nn202625c

The article is behind a paywall.