Tag Archives: Japan

Europe’s search for raw materials and hopes for nanotechnology-enabled solutions

A Feb. 27, 2015 news item on Nanowerk highlights the concerns over the availability of raw materials and European efforts to address those concerns,

Critical raw materials’ are crucial to many European industries but they are vulnerable to scarcity and supply disruption. As such, it is vital that Europe develops strategies for meeting the demand for raw materials. One such strategy is finding methods or substances that can replace the raw materials that we currently use. With this in mind, four EU projects working on substitution in catalysis, electronics and photonics presented their work at the Third Innovation Network Workshop on substitution of Critical Raw Materials hosted by the CRM_INNONET project in Brussels earlier this month [February 2015].

A Feb. 26, 2015 CORDIS press release, which originated the news item, goes on to describe four European Union projects working on nanotechnology-enabled solutions,

NOVACAM

NOVACAM, a coordinated Japan-EU project, aims to develop catalysts using non-critical elements designed to unlock the potential of biomass into a viable energy and chemical feedstock source.

The project is using a ‘catalyst by design’ approach for the development of next generation catalysts (nanoscale inorganic catalysts), as NOVACAM project coordinator Prof. Emiel Hensen from Eindhoven University of Technology in the Netherlands explained. Launched in September 2013, the project is developing catalysts which incorporate non-critical metals to catalyse the conversion of lignocellulose into industrial chemical feedstocks and bio-fuels. The first part of the project has been to develop the principle chemistry while the second part is to demonstrate proof of process. Prof. Hensen predicts that perhaps only two of three concepts will survive to this phase.

The project has already made significant progress in glucose and ethanol conversion, according to Prof. Hensen, and has produced some important scientific publications. The consortium is working with and industrial advisory board comprising Shell in the EU and Nippon Shokubai in Japan.

FREECATS

The FREECATS project, presented by project coordinator Prof. Magnus Rønning from the Norwegian University of Science and Technology, has been working over the past three years to develop new metal-free catalysts. These would be either in the form of bulk nanomaterials or in hierarchically organised structures – both of which would be capable of replacing traditional noble metal-based catalysts in catalytic transformations of strategic importance.

Prof. Magnus Rønning explained that the application of the new materials could eliminate the need for the use for platinum group metals (PGM) and rare earth metals – in both cases Europe is very reliant on other countries for these materials. Over the course of its research, FREECATS targeted three areas in particular – fuel cells, the production of light olefins and water and wastewater purification.

By working to replace the platinum in fuel cells, the project is supporting the EU’s aim of replacing the internal combustion engine by 2050. However, as Prof. Rønning noted, while platinum has been optimized for use over several decades, the materials FREECATS are using are new and thus come with their new challenges which the project is addressing.

HARFIR

Prof. Atsufumi Hirohata of the University of York in the United Kingdom, project coordinator of HARFIR, described how the project aims to discover an antiferromagnetic alloy that does not contain the rare metal Iridium. Iridium is becoming more and more widely used in numerous spin electronic storage devices, including read heads in hard disk drives. The world supply depends on Platinum ore that comes mainly from South Africa. The situation is much worse than for other rare earth elements as the price has been shooting up over recent years, according to Prof. Hirohata.

The HARFIR team, divided between Europe and Japan, aims to replace Iridium alloys with Heusler alloys. The EU team, led by Prof. Hirohata, has been working on the preparation of polycrystalline and epitaxial thin films of Heusler Alloys, with the material design led by theoretical calculations. The Japanese team, led by Prof. Koki Takanashi at Tohoku University, is meanwhile working on the preparation of epitaxial thin films, measurements of fundamental properties and structural/magnetic characterisation by neutron and synchrotron x-ray beams.

One of the biggest challenges has been that Heusler alloys have a relatively complicated atomic structure. In terms of HARFIR’s work, if any atomic disordering at the edge of nanopillar devices, the magnetic properties that are needed are lost. The team is exploring solutions to this challenge.

IRENA

Prof. of Esko Kauppinen Aalto University in Finland closed off the first session of the morning with his presentation of the IRENA project. Launched in September 2013, the project will run until mid 2017 working towards the aim of developing high performance materials, specifically metallic and semiconducting single-walled carbon nanotube (SWCNT) thin films to completely eliminate the use of the critical metals in electron devices. The ultimate aim is to replace Indium in transparent conducting films, and Indium and Gallium as a semiconductor in thin film field effect transistors (TFTs).

The IRENA team is developing an alternative that is flexible, transparent and stretchable so that it can meet the demands of the electronics of the future – including the possibility to print electronics.

IRENA involves three partners from Europe and three from Japan. The team has expertise in nanotube synthesis, thin film manufacturing and flexible device manufacturing, modelling of nanotube growth and thin film charge transport processes, and the project has benefitted from exchanges of team members between institutions. One of the key achievements so far is that the project has succeeded in using a nanotube thin film for the first time as the both the electrode and hole blocking layer in an organic solar cell.

You’ll note that Japan is a partner in all of these projects. In all probability, these initiatives have something to do with rare earths which are used in much of today’s electronics technology and Japan is sorely lacking in those materials. China, by comparison, has dominated the rare earths export industry and here’s an excerpt from my Nov. 1, 2013 posting where I outline the situation (which I suspect hasn’t changed much since),

As for the short supply mentioned in the first line of the news item, the world’s largest exporter of rare earth elements at 90% of the market, China, recently announced a cap according to a Sept. 6, 2013 article by David Stanway for Reuters. The Chinese government appears to be curtailing exports as part of an ongoing, multi-year strategy. Here’s how Cientifica‘s (an emerging technologies consultancy, etc.) white paper (Simply No Substitute?) about critical materials published in 2012 (?), described the situation,

Despite their name, REE are not that rare in the Earth’s crust. What has happened in the past decade is that REE exports from China undercut prices elsewhere, leading to the closure of mines such as the Mountain Pass REE mine in California. Once China had acquired a dominant market position, prices began to rise. But this situation will likely ease. The US will probably begin REE production from the Mountain Pass mine later in 2012, and mines in other countries are expected to start operation soon as well.

Nevertheless, owing to their broad range of uses REE will continue to exert pressures on their supply – especially for countries without notable REE deposits. This highlights two aspects of importance for strategic materials: actual rarity and strategic supply issues such as these seen for REE. Although strategic and diplomatic supply issues may have easier solutions, their consideration for manufacturing industries will almost be the same – a shortage of crucial supply lines.

Furthermore, as the example of REE shows, the identification of long-term supply problems can often be difficult, and not every government has the same strategic foresight that the Chinese demonstrated. And as new technologies emerge, new elements may see an unexpected, sudden demand in supply. (pp. 16-17)

Meanwhile, in response to China’s decision to cap its 2013 REE exports, the Russian government announced a $1B investment to 2018 in rare earth production,, according to a Sept. 10, 2013 article by Polina Devitt for Reuters.

I’m not sure you’ll be able to access Tim Harper’s white paper as he is now an independent, serial entrepreneur. I most recently mentioned him in relation to his articles (on Azonano) about the nanotechnology scene in a Feb. 12, 2015 posting where you’ll also find contact details for him.

Graphene with a pentagonal pattern

Graphene has been viewed, until now, as having an hexgonal (six-sided) pattern. However, researchers have discovered a new graphene pattern according to a Feb. 3, 2015 news item on Nanowerk,

Researchers at Virginia Commonwealth University and universities in China and Japan have discovered a new structural variant of carbon called “penta-graphene” – a very thin sheet of pure carbon that has a unique structure inspired by a pentagonal pattern of tiles found paving the streets of Cairo.

The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.

A Feb. 3, 2015 Virginia Commonwealth University (VCU) news release by Brian McNeill (also on EurekAlert), which originated the news item, provides more information about the research,

“The three last important forms of carbon that have been discovered were fullerene, the nanotube and graphene. Each one of them has unique structure. Penta-graphene will belong in that category,” said the paper’s senior author, Puru Jena, Ph.D., distinguished professor in the Department of Physics in VCU’s College of Humanities and Sciences.

Qian Wang, Ph.D., a professor at Peking University and an adjunct professor at VCU, was dining in a restaurant in Beijing with her husband when she noticed artwork on the wall depicting pentagon tiles from the streets of Cairo.

“I told my husband, “Come, see! This is a pattern composed only of pentagons,'” she said. “I took a picture and sent it to one of my students, and said, ‘I think we can make this. It might be stable. But you must check it carefully.’ He did, and it turned out that this structure is so beautiful yet also very simple.”

Most forms of carbon are made of hexagonal building blocks, sometimes interspersed with pentagons. Penta-graphene would be a unique two-dimensional carbon allotrope composed exclusively of pentagons.

Along with Jena and Wang, the paper’s authors include Shunhong Zhang, Ph.D candidate, from Peking University; Jian Zhou, Ph.D., a postdoctoral researcher at VCU; Xiaoshuang Chen, Ph.D., from the Chinese Academy of Science in Shanghai; and Yoshiyuki Kawazoe, Ph.D., from Tohoku University in Sendai, Japan.

The researchers simulated the synthesis of penta-graphene using computer modelling. The results suggest that the material might outperform graphene in certain applications, as it would be mechanically stable, possess very high strength, and be capable of withstanding temperatures of up to 1,000 degrees Kelvin.

“You know the saying, diamonds are forever? That’s because it takes a lot of energy to convert diamond back into graphite,” Jena said. “This will be similar.”

Penta-graphene has several interesting and unusual properties, Jena said. For example, penta-graphene is a semiconductor, whereas graphene is a conductor of electricity.

“When you take graphene and roll it up, you make what is called a carbon nanotube which can be metallic or semiconducting,” Jena said. “Penta-graphene, when you roll it up, will also make a nanotube, but it is always semiconducting.”

The way the material stretches is also highly unusual, the researchers said.

“If you stretch graphene, it will expand along the direction it is stretched, but contract along the perpendicular direction.” Wang said. “However, if you stretch penta-graphene, it will expand in both directions.”

The material’s mechanical strength, derived from a rare property known as Negative Poisson’s Ratio, may hold especially interesting applications for technology, the researchers said.

Penta-graphene’s properties suggest that it may have applications in electronics, biomedicine, nanotechnology and more.

The next step, Jena said, is for scientists to synthesize penta-graphene.

“Once you make it, it [will be] very stable. So the question becomes, how do you make it? In this paper, we have some ideas. Right now, the project is theoretical. It’s based on computer modelling, but we believe in this prediction quite strongly. And once you make it, it will open up an entirely new branch of carbon science. Two-dimensional carbon made completely of pentagons has never been known.”

Here’s a graphic representation of the new graphene material,

Caption: The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable. Credit: Virginia Commonwealth University

Caption: The newly discovered material, called penta-graphene, is a single layer of carbon pentagons that resembles the Cairo tiling, and that appears to be dynamically, thermally and mechanically stable.
Credit: Virginia Commonwealth University

Here’s a link to and a citation for the paper,

Penta-graphene: A new carbon allotrope by Shunhong Zhanga, Jian Zhou, Qian Wanga, Xiaoshuang Chen, Yoshiyuki Kawazoe, and Puru Jena. PNAS February 2, 2015 doi: 10.1073/pnas.1416591112 Published online before print February 2, 2015

This paper is behind a paywall.

Nano and stem cell differentiation at Rutgers University (US)

A Nov. 14, 2014 news item on Azonano features a nanoparticle-based platform for differentiating stem cells,

Rutgers University Chemistry Associate Professor Ki-Bum Lee has developed patent-pending technology that may overcome one of the critical barriers to harnessing the full therapeutic potential of stem cells.

A Nov. 1, 2104 Rutgers University news release, which originated the news item, describes the challenge in more detail,

One of the major challenges facing researchers interested in regenerating cells and growing new tissue to treat debilitating injuries and diseases such as Parkinson’s disease, heart disease, and spinal cord trauma, is creating an easy, effective, and non-toxic methodology to control differentiation into specific cell lineages. Lee and colleagues at Rutgers and Kyoto University in Japan have invented a platform they call NanoScript, an important breakthrough for researchers in the area of gene expression. Gene expression is the way information encoded in a gene is used to direct the assembly of a protein molecule, which is integral to the process of tissue development through stem cell therapeutics.

Stem cells hold great promise for a wide range of medical therapeutics as they have the ability to grow tissue throughout the body. In many tissues, stem cells have an almost limitless ability to divide and replenish other cells, serving as an internal repair system.

Transcription factor (TF) proteins are master regulators of gene expression. TF proteins play a pivotal role in regulating stem cell differentiation. Although some have tried to make synthetic molecules that perform the functions of natural transcription factors, NanoScript is the first nanomaterial TF protein that can interact with endogenous DNA. …

“Our motivation was to develop a highly robust, efficient nanoparticle-based platform that can regulate gene expression and eventually stem cell differentiation,” said Lee, who leads a Rutgers research group primarily focused on developing and integrating nanotechnology with chemical biology to modulate signaling pathways in cancer and stem cells. “Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential to do exactly that. The field of stem cell biology now has another platform to regulate differentiation while the field of nanotechnology has demonstrated for the first time that we can regulate gene expression at the transcriptional level.”

Here’s an image illustrating NanoScript and gold nanoparticles,

Courtesy Rutgers University

Courtesy Rutgers University

The news release goes on to describe the platform’s use of gold nanoparticles,

NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles.

“NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by up to 30-fold,” said Sahishnu Patel, Rutgers Chemistry graduate student and co-author of the ACS Nano publication. “NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner.”

Lee said the next step for his research is to study what happens to the gold nanoparticles after NanoScript is utilized, to ensure no toxic effects arise, and to ensure the effectiveness of NanoScript over long periods of time.

“Due to the unique tunable properties of NanoScript, we are highly confident this platform not only will serve as a desirable alternative to conventional gene-regulating methods,” Lee said, “but also has direct employment for applications involving gene manipulation such as stem cell differentiation, cancer therapy, and cellular reprogramming. Our research will continue to evaluate the long-term implications for the technology.”

Lee, originally from South Korea, joined the Rutgers faculty in 2008 and has earned many honors including the NIH Director’s New Innovator Award. Lee received his Ph.D. in Chemistry from Northwestern University where he studied with Professor Chad. A. Mirkin, a pioneer in the coupling of nanotechnology and biomolecules. Lee completed his postdoctoral training at The Scripps Research Institute with Professor Peter G. Schultz. Lee has served as a Visiting Scholar at both Princeton University and UCLA Medical School.

The primary interest of Lee’s group is to develop and integrate nanotechnologies and chemical functional genomics to modulate signaling pathways in mammalian cells towards specific cell lineages or behaviors. He has published more than 50 articles and filed for 17 corresponding patents.

Here’s a link to and a citation for the paper,

NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation by Sahishnu Patel, Dongju Jung, Perry T. Yin, Peter Carlton, Makoto Yamamoto, Toshikazu Bando, Hiroshi Sugiyama, and Ki-Bum Lee. ACS Nano, 2014, 8 (9), pp 8959–8967 DOI: 10.1021/nn501589f Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Nestling a two-element atomic chain inside a carbon nanotube

While there doesn’t seem to be a short-term application for this research from Japan, the idea of nestling a chain of two elements inside a carbon nanotube is intriguing, from an Oct. 16, 2014 news item on Nanowerk,

Kazutomo Suenaga of the Nanotube Research Center (NTRC) of the National Institute of Advanced Industrial Science and Technology (AIST) and Ryosuke Senga of the Nano-carbon Characterization Team, NTRC, AIST, have synthesized an atomic chain in which two elements are aligned alternately and have evaluated its physical properties on an atomic level.

An ionic crystalline atomic chain of cesium iodine (CsI) has been synthesized by aligning a cesium ion (Cs+), a cation and an iodine ion (I-), an anion, alternately by encapsulating CsI in the microscopic space inside a carbon nanotube. Furthermore, by using an advanced aberration-corrected electron microscope, the physical phenomena unique to the CsI atomic chain, such as the difference in dynamic behavior of its cations and anions, have been discovered. In addition, from theoretical calculation using density functional theory (DFT), this CsI atomic chain has been found to indicate different optical properties from a three-dimensional CsI crystal, and applications to new optical devices are anticipated.

An Oct. 16, 2014 National Institute of Advanced Industrial Science and Technology (AIST) press release, which originated the news item, situates the research within a social and historical context,

Social Background of Research

In the accelerating and ballooning information society, electronic devices used in computers and smartphones has constantly demanded higher performance and efficiency. The materials currently drawing expectations are low-dimensional materials with a single to few-atom width and thickness. Two-dimensional materials, typified by graphene, indicate unique physical characteristics not found in three-dimensional materials, such as its excellent electrical transport properties, and are being extensively researched.

An atomic chain, which has an even finer structure with a width of only one atom, has been predicted to display excellent electrical transport properties, like two-dimensional materials. Although expectations were higher than for two-dimensional materials from the viewpoint of integration, it had attracted little attention until now. This is because of the technological difficulties faced by the various processes of academic research from synthesis to analysis of atomic chains, and academic understanding has not progressed far (Fig. 1).

Figure 1
Figure 1 : Transition of target materials in material research

History of Research

AIST has been developing element analysis methods on a single-atom level to detect certain special structures including impurities, dopants and defects, that affect the properties of low-dimensional materials such as carbon nanotubes and graphene (AIST press releases on July 6, 2009, January 12, 2010, December 16, 2010 and July 9, 2012). In this research, efforts were made for the synthesis and analysis of the atomic chain, a low-dimensional material, using the accumulated technological expertise. This research has been supported by both the Strategic Basic Research Program of the Japan Science and Technology Agency (FY2012 to FY2016), and the Grants-in-aid for Scientific Research of the Japan Society for the Promotion of Science, “Development of elemental technology for the atomic-scale evaluation and application of low-dimensional materials using nano-space” (FY2014 to FY2016).

The press release also offers more details about the research and future applications,

Details of Research

The developed technology is the technology to expose carbon nanotubes, with a diameter of 1 nm or smaller, to CsI vapor to encapsulate CsI in the microscopic space inside the carbon nanotubes, to synthesize an atomic chain in which two elements, Cs and I, are aligned alternately. Furthermore, by combining aberration-corrected electron microscopy and an electronic spectroscopic technique known as electron energy-loss spectroscopy (EELS) detailed structural analysis of this atomic chain was conducted. In order to identify each atom aligned at a distance of 1 nm or less without destroying them, the accelerating voltage of the electron microscope was significantly lowered to 60 kV to reduce damage to the sample by electron beams, while maintaining sufficient spatial resolution of around 1 nm. Figure 2 indicates the smallest CsI crystal confirmed so far, and the CsI atomic chain synthesized in this research.

Figure 2
Figure 2 : Comparison of CsI atomic chain and CsI crystal
(Top: Actual annular dark-field images, Bottom: Corresponding models)

Figure 3 shows the annular dark-field (ADF) image of the CsI atomic chain and the element mapping for Cs and I, respectively, obtained by EELS. It can be seen that the two elements are aligned alternately. There has not been any report of this simple and ideal structure actually being produced and observed, and it can be said to be a fundamental, important finding in material science.

Normally, in an ADF image, those with larger atomic numbers appear brighter. However, in this CsI atomic chain, I (atomic number 53) appears brighter than Cs (atomic number 55). This is because Cs, being a cation, moves more actively (more accurately, the total amount of electrons scattered by the Cs atom is not very different from those of the I atom, but the electrons scattered by the moving Cs atom generate spatial expansion), indicating a difference in dynamic behavior of the cation and the anion that cannot occur in a large three-dimensional crystal. Locations where single Cs atom or I atom is absent, namely vacancies, were also found (Fig. 3, right).

The unique behavior and structure influence various physical properties. When optical absorption spectra were calculated using DFT, the response of the CsI atomic chain to light differed with the direction of incidence. Furthermore, it was found that in a CsI atomic chain with vacancies, the electron state of vacancy sites where the I atom is absent possess a donor level at which electrons were easily released, while vacancy sites where the Cs atom is absent possess a receptor level at which electrons were easily received. By making use of these physical properties, applications to new electro-optical devices, such as a micro-light source and an optical switch using light emission from a single vacancy in the CsI atomic chain, are conceivable. In addition, further research into combinations of other elements triggered by the present results may lead to the development of new materials and device applications. There are expectations for atomic chains to be the next-generation materials for devices in search of further miniaturization and integration.

Figure 3
Figure 3 : Synthesized CsI atomic chain, encapsulated in double-walled carbon nanotube
(From left: ADF image, element maps for Cs and I, model, ADF image of CsI atomic chains with vacancies)

Future Plans

Since the CsI atomic chain displays optical properties significantly different from large crystals that can be seen by the human eye, there are expectations for its application for new electro-optical devices such as a micro-light source and an optical switch using light emission from a single vacancy in the CsI atomic chain. The researchers will conduct experimental research in its application, focused on detailed study of its various physical properties, starting with its optical properties. In addition to CsI, efforts will also be made in the development of new materials that combine various elements, by applying this technology to other materials.

Furthermore, the mechanism of all adsorbents of radioactive substances (carbon nanotubes, zeolite, Prussian blue, etc.) currently being developed for commercial use are methods of encapsulating radioactive atoms inside microscopic space in the material. The researchers hope to utilize the knowledge of the behavior of the Cs atom in a microscopic space obtained in this research, to improve adsorption performance.

Here’s a link to and a citation for the research paper,

Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside ​carbon nanotubes by Ryosuke Senga, Hannu-Pekka Komsa, Zheng Liu, Kaori Hirose-Takai, Arkady V. Krasheninnikov, & Kazu Suenaga. Nature Materials (2014) doi:10.1038/nmat4069 Published online 14 September 2014

This paper is behind a paywall.

Replacing copper wire in motors?

Finnish researchers at Lappeenranta University of Technology (LUT) believe it may be possible to replace copper wire used in motors with spun carbon nanotubes. From an Oct. 15, 2014 news item on Azonano,

Lappeenranta University of Technology (LUT) introduces the first electrical motor applying carbon nanotube yarn. The material replaces copper wires in windings. The motor is a step towards lightweight, efficient electric drives. Its output power is 40 W and rotation speed 15000 rpm.

Aiming at upgrading the performance and energy efficiency of electrical machines, higher-conductivity wires are searched for windings. Here, the new technology may revolutionize the industry. The best carbon nanotubes (CNTs) demonstrate conductivities far beyond the best metals; CNT windings may have double the conductivity of copper windings.

”If we keep the design parameters unchanged only replacing copper with carbon nanotube yarns, the Joule losses in windings can be reduced to half of present machine losses. By lighter and more ecological CNT yarn, we can reduce machine dimensions and CO2 emissions in manufacturing and operation. Machines could also be run in higher temperatures,” says Professor Pyrhönen [Juha Pyrhönen], leading the prototype design at LUT.

An Oct. ??, 2014 (?) LUT press release, which originated the news item, further describes the work,

Traditionally, the windings in electrical machines are made of copper, which has the second best conductivity of metals at room temperature. Despite the high conductivity of copper, a large proportion of the electrical machine losses occur in the copper windings. For this reason, the Joule losses are often referred to as copper losses. The carbon nanotube yarn does not have a definite upper limit for conductivity (e.g. values of 100 MS/m have already been measured).

According to Pyrhönen, the electrical machines are so ubiquitous in everyday life that we often forget about their presence. In a single-family house alone there can be tens of electrical machines in various household appliances such as refrigerators, washing machines, hair dryers, and ventilators.

“In the industry, the number of electrical motors is enormous: there can be up to tens of thousands of motors in a single process industry unit. All these use copper in the windings. Consequently, finding a more efficient material to replace the copper conductors would lead to major changes in the industry,” tells Professor Pyrhönen.

There are big plans for this work according to the press release,

The prototype motor uses carbon nanotube yarns spun and converted into an isolated tape by a Japanese-Dutch company Teijin Aramid, which has developed the spinning technology in collaboration with Rice University, the USA. The industrial applications of the new material are still in their infancy; scaling up the production capacity together with improving the yarn performance will facilitate major steps in the future, believes Business Development Manager Dr. Marcin Otto from Teijin Aramid, agreeing with Professor Pyrhönen.

“There is a significant improvement potential in the electrical machines, but we are now facing the limits of material physics set by traditional winding materials. Superconductivity appears not to develop to such a level that it could, in general, be applied to electrical machines. Carbonic materials, however, seem to have a pole position: We expect that in the future, the conductivity of carbon nanotube yarns could be even three times the practical conductivity of copper in electrical machines. In addition, carbon is abundant while copper needs to be mined or recycled by heavy industrial processes.”

The researchers have produced this video about their research,

There’s a reference to some work done at Rice University (Texas, US) with Teijin Armid (Japanese-Dutch company) and Technion Institute (Israel) with spinning carbon nanotubes into threads that look like black cotton (you’ll see the threads in the video). It’s this work that has made the latest research in Finland possible. I have more about the the Rice/Teijin Armid/Technion CNT project in my Jan. 11, 2013 posting, Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel).

Silver nanoparticles: liquid on the outside, crystal on the inside

Research from the Massachusetts Institute of Technology (MIT) has revealed a new property of metal nanoparticles, in this case, silver. From an Oct. 12, 2014 news item on ScienceDaily,

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration.

The research team behind the finding, led by MIT professor Ju Li, says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

The results, published in the journal Nature Materials, come from a combination of laboratory analysis and computer modeling, by an international team that included researchers in China, Japan, and Pittsburgh, as well as at MIT.

An Oct. 12, 2014 MIT news release (also on EurekAlert), which originated the news item, offers both more information about the research and a surprising comparison of nanometers to the width of a human hair,

The experiments were conducted at room temperature, with particles of pure silver less than 10 nanometers across — less than one-thousandth of the width of a human hair. [emphasis mine] But the results should apply to many different metals, says Li, senior author of the paper and the BEA Professor of Nuclear Science and Engineering.

Silver has a relatively high melting point — 962 degrees Celsius, or 1763 degrees Fahrenheit — so observation of any liquidlike behavior in its nanoparticles was “quite unexpected,” Li says. Hints of the new phenomenon had been seen in earlier work with tin, which has a much lower melting point, he says.

The use of nanoparticles in applications ranging from electronics to pharmaceuticals is a lively area of research; generally, Li says, these researchers “want to form shapes, and they want these shapes to be stable, in many cases over a period of years.” So the discovery of these deformations reveals a potentially serious barrier to many such applications: For example, if gold or silver nanoligaments are used in electronic circuits, these deformations could quickly cause electrical connections to fail.

It was a bit surprising to see the reference to 10 nanometers as being less than 1/1,000th (one/one thousandth) of the width of a human hair in a news release from MIT. Generally, a nanometer has been described as being anywhere from less than 1/50,000th to 1/120,000th of the width of a human hair with less than 1/100,000th being one of the most common descriptions. While it’s true that 10 nanometers is less than 1/1,000th of the width of a human hair, it seems a bit misleading when it could be described, in keeping with the more common description, as less than 1/10,000th.

Getting back to the research, the news release offers more details as to how it was conducted,

The researchers’ detailed imaging with a transmission electron microscope and atomistic modeling revealed that while the exterior of the metal nanoparticles appears to move like a liquid, only the outermost layers — one or two atoms thick — actually move at any given time. As these outer layers of atoms move across the surface and redeposit elsewhere, they give the impression of much greater movement — but inside each particle, the atoms stay perfectly lined up, like bricks in a wall.

“The interior is crystalline, so the only mobile atoms are the first one or two monolayers,” Li says. “Everywhere except the first two layers is crystalline.”

By contrast, if the droplets were to melt to a liquid state, the orderliness of the crystal structure would be eliminated entirely — like a wall tumbling into a heap of bricks.

Technically, the particles’ deformation is pseudoelastic, meaning that the material returns to its original shape after the stresses are removed — like a squeezed rubber ball — as opposed to plasticity, as in a deformable lump of clay that retains a new shape.

The phenomenon of plasticity by interfacial diffusion was first proposed by Robert L. Coble, a professor of ceramic engineering at MIT, and is known as “Coble creep.” “What we saw is aptly called Coble pseudoelasticity,” Li says.

Now that the phenomenon has been understood, researchers working on nanocircuits or other nanodevices can quite easily compensate for it, Li says. If the nanoparticles are protected by even a vanishingly thin layer of oxide, the liquidlike behavior is almost completely eliminated, making stable circuits possible.

There are some benefits to this insight (from the news release),

On the other hand, for some applications this phenomenon might be useful: For example, in circuits where electrical contacts need to withstand rotational reconfiguration, particles designed to maximize this effect might prove useful, using noble metals or a reducing atmosphere, where the formation of an oxide layer is destabilized, Li says.

The new finding flies in the face of expectations — in part, because of a well-understood relationship, in most materials, in which mechanical strength increases as size is reduced.

“In general, the smaller the size, the higher the strength,” Li says, but “at very small sizes, a material component can get very much weaker. The transition from ‘smaller is stronger’ to ‘smaller is much weaker’ can be very sharp.”

That crossover, he says, takes place at about 10 nanometers at room temperature — a size that microchip manufacturers are approaching as circuits shrink. When this threshold is reached, Li says, it causes “a very precipitous drop” in a nanocomponent’s strength.

The findings could also help explain a number of anomalous results seen in other research on small particles, Li says.

For more details about the various attempts to create smaller computer chips, you can read my July 11, 2014 posting about IBM and its proposed 7 nanometer chip where you will also find links to announcements and posts about Intel’s smaller chips and HP Labs’ attempt to recreate computers.

As for the research into liquid-like metallic (silver) nanoparticles, here’s a link to and a citation for the paper,

Liquid-like pseudoelasticity of sub-10-nm crystalline ​silver particle by Jun Sun, Longbing He, Yu-Chieh Lo, Tao Xu, Hengchang Bi, Litao Sun, Ze Zhang, Scott X. Mao, & Ju Li. Nature Materials (2014) doi:10.1038/nmat4105 Published online 12 October 2014

This paper is behind a paywall. There is a free preview via ReadCube Access.

Russians and Chinese get cozy and talk nano

The Moscow Times has a couple of interesting stories about China and Russia. The first one to catch my eye was this one about Rusnano (Russian Nanotechnologies Corporation) and its invitation to create a joint China-Russian nanotechnology investment fund. From a Sept. 9, 2014 Moscow Times news item,

Rusnano has invited Chinese partners to create a joint fund for investment in nanotechnology, Anatoly Chubais, head of the state technology enterprise, was quoted as saying Tuesday [Sept. 9, 2014] by Prime news agency.

Russia is interested in working with China on nanotechnology as Beijing already invests “gigantic” sums in that sphere, Chubais said.

Perhaps the most interesting piece of news was in the last paragraph of that news item,

Moscow is pivoting toward the east to soften the impact of Western sanctions imposed on Russia over its role in Ukraine. …

Another Sept. 9, 2014 Moscow Times news item expands on the theme of Moscow pivoting east,

Russia and China pledged on Tuesday [Sept. 9, 2014] to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions [as a consequence of the situation in the Ukraine].

Russia and China pledged on Tuesday to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions.

For China, curtailing [the] dollar’s influence fits well with its ambitions to increase the clout of the yuan and turn it into a global reserve currency one day. With 32 percent of its $4 trillion foreign exchange reserves invested in U.S. government debt, Beijing wants to curb investment risks in dollars.

….

China and Russia signed a $400 billion gas supply deal in May [2014], securing the world’s top energy user a major source of cleaner fuel and opening a new market for Moscow as it risks losing European clients over the Ukraine crisis.

This is an interesting turn of events given that China and Russia (specifically the entity known as Soviet Union) have not always had the friendliest of relations almost going to war in 1969 over territorial disputes (Wikipedia entries: Sino-Soviet border conflict and China-Russian Border).

In any event, China may have its own reasons for turning to Russia at this time. According to Jack Chang of Associated Press (Sept. 11, 2014 article on the American Broadcasting News website), there is a major military buildup taking place in Asia as the biggest defence budget in Japan’s history has been requested, Vietnam doubles military spending, and the Philippines assembles a larger naval presence. In addition, India and South Korea are also investing in their military forces. (I was at a breakfast meeting [scroll down for the speaker’s video] in Jan. 2014 about Canada’s trade relations with Asia when a table companion [who’d worked for the Canadian International Development Agency, knew the Asian region very well, and had visited recently] commented that many countries such as Laos and Cambodia were very tense about China’s resurgence and its plans for the region.)

One final tidbit, this comes at an interesting juncture in the US science enterprise. After many years of seeing funding rise, the US National Nanotechnology Initiative (NNI) saw its 2015 budget request shrink by $200M US from its 2014 budget allotment (first mentioned here in a March 31, 2014 posting).

Sometimes an invitation to create a joint investment fund isn’t just an invitation.

Animating nanoparticles

It’s always good to find new tools for explaining/describing the nanoscale and this July 28, 2014 news item on Nanowerk, which highlights animation that simulates interactions between nanoparticles, helps to fill the bill,

Panagiotis Grammatikopoulos in the OIST [Okinawa Institute of Science and Technology] Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles’ behavior, he uses a technique called molecular dynamics. This means that every trillionth of a second, he calculates the location of each individual atom in the particle based on where it is and which forces apply. He uses a computer program to make the calculations, and then animates the motion of the atoms using visualization software. The resulting animation illuminates what happens, atom-by-atom, when two nanoparticles collide.

A July 25, 2014 OIST news release by Poncie Rutsch, which originated the news item, details the process Grammatikopoulos follows, (Note: A link has been removed)

Grammatikopoulos calls this a virtual experiment. He knows what the atoms in his starting nanoparticles look like. He knows their motion follows the laws of Newtonian physics. His colleagues have seen what the resulting particles look like after collision experiments.  Once his simulation is complete, Grammatikopoulos compares his end products with his colleagues to check his accuracy.

Grammatikopoulos most recently simulated how palladium nanoparticles interact, published in Scientific Reports on July 22, 2014. Palladium is an expensive but highly efficient catalyst that lowers the energy required to start many chemical reactions. Researchers can make palladium even more efficient by designing palladium nanoparticles, which use the same mass of palladium in tinier pieces, increasing surface area. The more surface area a catalyst has, the more effective it is, because there are more active sites where elements can meet and reactions can occur.

However, shrinking a material to only a few nanometers can change some of the properties of that material. For example, all nanoparticles melt at cooler temperatures than they would normally, which changes what happens when two particles collide. Ordinarily, two particles will collide and release a small amount of heat, but the particles remain more or less the same. But when two nanoparticles collide, sometimes the heat released melts the surface of the two particles, and they fuse together.

Grammatikopoulos simulated palladium nanoparticles colliding and fusing at different temperatures. He determined that each time the particles fused, their atoms would start to crystallize into orderly rows and planes. At higher temperatures, the particles fuse into one homogeneous structure. At lower temperatures, the products look like classic snowmen, with a few parts that had crystallized with different orientations.

“The simulation gives you an understanding of physical processes,” said Grammatikopoulos. Before his research, Grammatikopoulos could not explain why all the palladium nanoparticles his lab created had a crystalline structure. Furthermore, he noticed that many palladium nanoparticles grew protrusions, giving the particles a lumpy shape. “Since the protrusions stick out, they bond more easily with other molecules,” Grammatikopoulos explained. “I’m not sure yet if it’s beneficial, but it’s definitely affecting the catalytic properties.”

Here’s an image illustrating the process,

Grammatikopoulos simulated two palladium nanoparticles colliding at different temperatures. The hotter the temperature, the more homogenous the resulting product, and the further the atoms in the particle crystallize. Courtesy: OIST

The news release goes on to explain the impact this information could have,

This study establishes some ground rules and explains certain properties of palladium nanoparticles. Understanding these properties could help design other nanoparticles out of other materials that would rival palladium’s abilities as a catalyst.  Palladium plays a role in thousands of important reactions, from making drugs to creating new biofuels. For example, Prof. Mukhles Sowwan’s Nanoparticles by Design Unit and Prof. Igor Goryanin’s Biological Systems Unit at OIST are working with palladium-catalyzed reactions to improve the efficiency of microbial fuel cells. Better palladium nanoparticles will propel this research forward.

“We need to understand the basic science,” explained Sowwan, who is Grammatikopoulos’ advisor. Sowwan says that the field of nanoscience is only starting to move towards applying the research, because there is still so much to learn about the properties of nanoparticles. “If you build something without understanding the basics,” Sowwan said, “you will not be able to explain the results.”

The researchers have made videos available, here’s a video of palladium crystallization at 300K,

As per the information provided by OIST,

Published on Jul 24, 2014

Grammatikopoulos created this simulation of palladium nanoparticles colliding at 300 Kelvin, or about 27 degrees Celsius. The nanoparticles meet, then fuse, then crystallize in orderly planes.

Here’s a link to and a citation for the paper,

Coalescence-induced crystallisation wave in Pd nanoparticles by Panagiotis Grammatikopoulos, Cathal Cassidy, Vidyadhar Singh, & Mukhles Sowwan. Scientific Reports 4, Article number: 5779 doi:10.1038/srep05779 Published 22 July 2014

This is an  open access paper.

First ever Nanoscience and Nanotechnology Symposium in English-speaking Caribbean

A July 12, 2014 news item on Nanowerk heralds this new International symposium on nanoscience and nanotechnology,

The ‘International Symposium on Nanoscience and Nanotechnology’ will be hosted at The University of the West Indies (UWI), St. Augustine [in Trinidad and Tobago], from July 15-17, 2014. The symposium, focused on the frontier areas of science, medicine and technology, is the first of its kind in the English-speaking Caribbean and is organised jointly by CARISCIENCE, The UWI and the University of Trinidad and Tobago. The symposium consists of a Public Lecture on Day 1 and Scientific Sessions over Days 2 and 3.

This international symposium is important and ground-breaking since these are widely viewed as revolutionary fields. Nanoscience and nanotechnology are considered to have huge potential to bring benefits to many areas of research and application and are attracting rapidly increasing investments from governments and businesses in many parts of the world.

Despite developments in nanoscience and nanotechnology, the Caribbean as a region has not been involved to the extent that more advanced countries have. As such, this symposium aims to provide a stronger focus on the impact and implications of developments in nanoscience/nanotechnology for stakeholders within the Caribbean region, including researchers, academics, university students, government and policy makers, industry partners and the wider public. The symposium will explore various topics under the following themes:

Nanotechnology for Sustainable Energy and Industrial Applications
Nanotechnology for Electronic Device and Sensor Applications
Nanotechnology in Biology, Medicine and Pharmaceuticals
Nanoscale Synthesis, Nanofabrication and Characterization

A July 11, 2014 UWI news release, which originated the news item, provides details about the speakers and more,

An impressive line-up of leading, globally recognised experts from world-class international and regional institutes awaits, including the Public Lecture titled “Science and the Elements of Daily Life,” to be delivered by world-renowned scientist, Professor Anthony K. Cheetham FRS, University of Cambridge, Vice President and Treasurer of The Royal Society. Additionally, the Keynote Address at the Opening Ceremony will be delivered by The Right Honourable Keith Mitchell, Prime Minister of Grenada, with responsibility for Science and Technology in CARICOM.

Speakers at the scientific sessions include Professor Fidel Castro Díaz-Balart (Scientific Advisor to the President of the Republic of Cuba and Vice President of The Academy of Science, Cuba); Professor Frank Gu (University of Waterloo, Canada); Professor Christopher Backhouse (former Director of the Waterloo Institute of Nanotechnology, University of Waterloo, Canada); Professor G. U. Kulkarni (JNCASR, India) and Professor Masami Okamoto (Toyota Technology Institute, Japan).

Students, teachers, academics and the wider public, are all invited and encouraged to attend and use this unique opportunity to engage these leading scientists.

The free Public Lecture is scheduled for Tuesday July 15, 2014, from 5pm-7.30pm, at the Daaga Auditorium, The UWI, St. Augustine Campus. [emphasis mine] The Scientific Sessions take place on Wednesday and Thursday July 16 and 17, 2014, from 8.30am-5pm, at Lecture Theatre A1, UWI Teaching and Learning Complex, Circular Road, St. Augustine. There will also be a small Poster Session to highlight some research done in the areas of Nanoscience and nanotechnology in the Caribbean.

All attendees (to the scientific sessions) must complete and send registration forms to the email address [email protected] by Sunday, July 13, 2014. Registration forms may be downloaded at the Campus Events Calendar entry by visiting www.sta.uwi.edu/news/ecalendar.

A registration fee must be paid in cash at the registration desk on Wednesday July 16, 2014, Day 2, at the start of the scientific sessions.

  • Academic and non-academic:  TT$ 600
  • Graduate student: TT$ 150
  • Undergraduate student: no cost

For further information on the symposium, please visit the Campus Events Calendar at www.sta.uwi.edu/news/ecalendar

I wish them all the best. They seem (judging by the institutions represented) to have attracted a stellar roster of speakers.

What about the heart? and the quest to make androids lifelike

Japanese scientist Hiroshi Ishiguro has been mentioned here several times in the context of ‘lifelike’ robots. Accordingly, it’s no surprise to see Ishiguro’s name in a June 24, 2014 news item about uncannily lifelike robotic tour guides in a Tokyo museum (CBC (Canadian Broadcasting Corporation) News online),

The new robot guides at a Tokyo museum look so eerily human and speak so smoothly they almost outdo people — almost.

Japanese robotics expert Hiroshi Ishiguro, an Osaka University professor, says they will be useful for research on how people interact with robots and on what differentiates the person from the machine.

“Making androids is about exploring what it means to be human,” he told reporters Tuesday [June 23, 2014], “examining the question of what is emotion, what is awareness, what is thinking.”

In a demonstration, the remote-controlled machines moved their pink lips in time to a voice-over, twitched their eyebrows, blinked and swayed their heads from side to side. They stay seated but can move their hands.

Ishiguro and his robots were also mentioned in a May 29, 2014 article by Carey Dunne for Fast Company. The article concerned a photographic project of Luisa Whitton’s.

In her series “What About the Heart?,” British photographer Luisa Whitton documents one of the creepiest niches of the Japanese robotics industry--androids. Here, an eerily lifelike face made for a robot. [dowloaded from http://www.fastcodesign.com/3031125/exposure/japans-uncanny-quest-to-humanize-robots?partner=rss]

In her series “What About the Heart?,” British photographer Luisa Whitton documents one of the creepiest niches of the Japanese robotics industry–androids. Here, an eerily lifelike face made for a robot. [dowloaded from http://www.fastcodesign.com/3031125/exposure/japans-uncanny-quest-to-humanize-robots?partner=rss]

From Dunne’s May 29, 2014 article (Note: Links have been removed),

We’re one step closer to a robot takeover. At least, that’s one interpretation of “What About the Heart?” a new series by British photographer Luisa Whitton. In 17 photos, Whitton documents one of the creepiest niches of the Japanese robotics industry–androids. These are the result of a growing group of scientists trying to make robots look like living, breathing people. Their efforts pose a question that’s becoming more relevant as Siri and her robot friends evolve: what does it mean to be human as technology progresses?

Whitton spent several months in Japan working with Hiroshi Ishiguro, a scientist who has constructed a robotic copy of himself. Ishiguro’s research focused on whether his robotic double could somehow possess his “Sonzai-Kan,” a Japanese term that translates to the “presence” or “spirit” of a person. It’s work that blurs the line between technology, philosophy, psychology, and art, using real-world studies to examine existential issues once reserved for speculation by the likes of Philip K. Dick or Sigmund Freud. And if this sounds like a sequel to Blade Runner, it gets weirder: after Ishiguro aged, he had plastic surgery so that his face still matched that of his younger, mechanical doppelganger.

I profiled Ishiguro’s robots (then called Geminoids) in a March 10, 2011 posting which featured a Danish philosopher, Henrik Scharfe, who’d commissioned a Geminoid identical to himself for research purposes. He doesn’t seem to have published any papers about his experience but there is this interview of Scharfe and his Geminoid twin by Aldith Hunkar (she’s very good) at a 2011 TEDxAmsterdam,

Mary King’s 2007 research project notes a contrast, Robots and AI in Japan and The West and provides an excellent primer (Note: A link has been removed),

The Japanese scientific approach and expectations of robots and AI are far more down to earth than those of their Western counterparts. Certainly, future predictions made by Japanese scientists are far less confrontational or sci-fi-like. In an interview via email, Canadian technology journalist Tim N. Hornyak described the Japanese attitude towards robots as being “that of the craftsman, not the philosopher” and cited this as the reason for “so many rosy imaginings of a future Japan in which robots are a part of people’s everyday lives.”

Hornyak, who is author of “Loving the Machine: The Art and Science of Japanese Robots,” acknowledges that apocalyptic visions do appear in manga and anime, but emphasizes that such forecasts do not exist in government circles or within Japanese companies. Hornyak also added that while AI has for many years taken a back seat to robot development in Japan, this situation is now changing. Honda, for example, is working on giving better brains to Asimo, which is already the world’s most advanced humanoid robot. Japan is also already legislating early versions of Asimov’s laws by introducing design requirements for next-generation mobile robots.

It does seem there might be more interest in the philosophical issues in Japan these days or possibly it’s a reflection of Ishiguro’s own current concerns (from Dunne’s May 29, 2014 article),

The project’s title derives from a discussion with Ishiguro about what it means to be human. “The definition of human will be more complicated,” Ishiguro said.

Dunne reproduces a portion of Whitton’s statement describing her purpose for these photographs,

Through Ishiguro, Whitton got in touch with a number of other scientists working on androids. “In the photographs, I am trying to subvert the traditional formula of portraiture and allure the audience into a debate on the boundaries that determine the dichotomy of the human/not human,” she writes in her artist statement. “The photographs become documents of objects that sit between scientific tool and horrid simulacrum.”

I’m not sure what she means by “horrid simulacrum” but she seems to be touching on the concept of the ‘uncanny valley’. Here’s a description I provided in a May 31, 2013 posting about animator Chris Landreth and his explorations of that valley within the context of his animated film, Subconscious Password,,

Landreth also discusses the ‘uncanny valley’ and how he deliberately cast his film into that valley. For anyone who’s unfamiliar with the ‘uncanny valley’ I wrote about it in a Mar. 10, 2011 posting concerning Geminoid robots,

It seems that researchers believe that the ‘uncanny valley’ doesn’t necessarily have to exist forever and at some point, people will accept humanoid robots without hesitation. In the meantime, here’s a diagram of the ‘uncanny valley’,

From the article on Android Science by Masahiro Mori (translated by Karl F. MacDorman and Takashi Minato)

Here’s what Mori (the person who coined the term) had to say about the ‘uncanny valley’ (from Android Science),

Recently there are many industrial robots, and as we know the robots do not have a face or legs, and just rotate or extend or contract their arms, and they bear no resemblance to human beings. Certainly the policy for designing these kinds of robots is based on functionality. From this standpoint, the robots must perform functions similar to those of human factory workers, but their appearance is not evaluated. If we plot these industrial robots on a graph of familiarity versus appearance, they lie near the origin (see Figure 1 [above]). So they bear little resemblance to a human being, and in general people do not find them to be familiar. But if the designer of a toy robot puts importance on a robot’s appearance rather than its function, the robot will have a somewhat humanlike appearance with a face, two arms, two legs, and a torso. This design lets children enjoy a sense of familiarity with the humanoid toy. So the toy robot is approaching the top of the first peak.

Of course, human beings themselves lie at the final goal of robotics, which is why we make an effort to build humanlike robots. For example, a robot’s arms may be composed of a metal cylinder with many bolts, but to achieve a more humanlike appearance, we paint over the metal in skin tones. These cosmetic efforts cause a resultant increase in our sense of the robot’s familiarity. Some readers may have felt sympathy for handicapped people they have seen who attach a prosthetic arm or leg to replace a missing limb. But recently prosthetic hands have improved greatly, and we cannot distinguish them from real hands at a glance. Some prosthetic hands attempt to simulate veins, muscles, tendons, finger nails, and finger prints, and their color resembles human pigmentation. So maybe the prosthetic arm has achieved a degree of human verisimilitude on par with false teeth. But this kind of prosthetic hand is too real and when we notice it is prosthetic, we have a sense of strangeness. So if we shake the hand, we are surprised by the lack of soft tissue and cold temperature. In this case, there is no longer a sense of familiarity. It is uncanny. In mathematical terms, strangeness can be represented by negative familiarity, so the prosthetic hand is at the bottom of the valley. So in this case, the appearance is quite human like, but the familiarity is negative. This is the uncanny valley.

[keep scrolling, I’m having trouble getting rid of this extra space below]

It seems that Mori is suggesting that as the differences between the original and the simulacrum become fewer and fewer, the ‘uncanny valley’ will disappear. It’s possible but I suspect before that day occurs those of us who were brought up in a world without synthetic humans (androids) may experience an intensification of the feelings aroused by an encounter with the uncanny valley even as it disappears. For those who’d like a preview, check out Luisa Whitton’s What About The Heart? project.