Tag Archives: Japan

Animating nanoparticles

It’s always good to find new tools for explaining/describing the nanoscale and this July 28, 2014 news item on Nanowerk, which highlights animation that simulates interactions between nanoparticles, helps to fill the bill,

Panagiotis Grammatikopoulos in the OIST [Okinawa Institute of Science and Technology] Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles’ behavior, he uses a technique called molecular dynamics. This means that every trillionth of a second, he calculates the location of each individual atom in the particle based on where it is and which forces apply. He uses a computer program to make the calculations, and then animates the motion of the atoms using visualization software. The resulting animation illuminates what happens, atom-by-atom, when two nanoparticles collide.

A July 25, 2014 OIST news release by Poncie Rutsch, which originated the news item, details the process Grammatikopoulos follows, (Note: A link has been removed)

Grammatikopoulos calls this a virtual experiment. He knows what the atoms in his starting nanoparticles look like. He knows their motion follows the laws of Newtonian physics. His colleagues have seen what the resulting particles look like after collision experiments.  Once his simulation is complete, Grammatikopoulos compares his end products with his colleagues to check his accuracy.

Grammatikopoulos most recently simulated how palladium nanoparticles interact, published in Scientific Reports on July 22, 2014. Palladium is an expensive but highly efficient catalyst that lowers the energy required to start many chemical reactions. Researchers can make palladium even more efficient by designing palladium nanoparticles, which use the same mass of palladium in tinier pieces, increasing surface area. The more surface area a catalyst has, the more effective it is, because there are more active sites where elements can meet and reactions can occur.

However, shrinking a material to only a few nanometers can change some of the properties of that material. For example, all nanoparticles melt at cooler temperatures than they would normally, which changes what happens when two particles collide. Ordinarily, two particles will collide and release a small amount of heat, but the particles remain more or less the same. But when two nanoparticles collide, sometimes the heat released melts the surface of the two particles, and they fuse together.

Grammatikopoulos simulated palladium nanoparticles colliding and fusing at different temperatures. He determined that each time the particles fused, their atoms would start to crystallize into orderly rows and planes. At higher temperatures, the particles fuse into one homogeneous structure. At lower temperatures, the products look like classic snowmen, with a few parts that had crystallized with different orientations.

“The simulation gives you an understanding of physical processes,” said Grammatikopoulos. Before his research, Grammatikopoulos could not explain why all the palladium nanoparticles his lab created had a crystalline structure. Furthermore, he noticed that many palladium nanoparticles grew protrusions, giving the particles a lumpy shape. “Since the protrusions stick out, they bond more easily with other molecules,” Grammatikopoulos explained. “I’m not sure yet if it’s beneficial, but it’s definitely affecting the catalytic properties.”

Here’s an image illustrating the process,

Grammatikopoulos simulated two palladium nanoparticles colliding at different temperatures. The hotter the temperature, the more homogenous the resulting product, and the further the atoms in the particle crystallize. Courtesy: OIST

The news release goes on to explain the impact this information could have,

This study establishes some ground rules and explains certain properties of palladium nanoparticles. Understanding these properties could help design other nanoparticles out of other materials that would rival palladium’s abilities as a catalyst.  Palladium plays a role in thousands of important reactions, from making drugs to creating new biofuels. For example, Prof. Mukhles Sowwan’s Nanoparticles by Design Unit and Prof. Igor Goryanin’s Biological Systems Unit at OIST are working with palladium-catalyzed reactions to improve the efficiency of microbial fuel cells. Better palladium nanoparticles will propel this research forward.

“We need to understand the basic science,” explained Sowwan, who is Grammatikopoulos’ advisor. Sowwan says that the field of nanoscience is only starting to move towards applying the research, because there is still so much to learn about the properties of nanoparticles. “If you build something without understanding the basics,” Sowwan said, “you will not be able to explain the results.”

The researchers have made videos available, here’s a video of palladium crystallization at 300K,

As per the information provided by OIST,

Published on Jul 24, 2014

Grammatikopoulos created this simulation of palladium nanoparticles colliding at 300 Kelvin, or about 27 degrees Celsius. The nanoparticles meet, then fuse, then crystallize in orderly planes.

Here’s a link to and a citation for the paper,

Coalescence-induced crystallisation wave in Pd nanoparticles by Panagiotis Grammatikopoulos, Cathal Cassidy, Vidyadhar Singh, & Mukhles Sowwan. Scientific Reports 4, Article number: 5779 doi:10.1038/srep05779 Published 22 July 2014

This is an  open access paper.

First ever Nanoscience and Nanotechnology Symposium in English-speaking Caribbean

A July 12, 2014 news item on Nanowerk heralds this new International symposium on nanoscience and nanotechnology,

The ‘International Symposium on Nanoscience and Nanotechnology’ will be hosted at The University of the West Indies (UWI), St. Augustine [in Trinidad and Tobago], from July 15-17, 2014. The symposium, focused on the frontier areas of science, medicine and technology, is the first of its kind in the English-speaking Caribbean and is organised jointly by CARISCIENCE, The UWI and the University of Trinidad and Tobago. The symposium consists of a Public Lecture on Day 1 and Scientific Sessions over Days 2 and 3.

This international symposium is important and ground-breaking since these are widely viewed as revolutionary fields. Nanoscience and nanotechnology are considered to have huge potential to bring benefits to many areas of research and application and are attracting rapidly increasing investments from governments and businesses in many parts of the world.

Despite developments in nanoscience and nanotechnology, the Caribbean as a region has not been involved to the extent that more advanced countries have. As such, this symposium aims to provide a stronger focus on the impact and implications of developments in nanoscience/nanotechnology for stakeholders within the Caribbean region, including researchers, academics, university students, government and policy makers, industry partners and the wider public. The symposium will explore various topics under the following themes:

Nanotechnology for Sustainable Energy and Industrial Applications
Nanotechnology for Electronic Device and Sensor Applications
Nanotechnology in Biology, Medicine and Pharmaceuticals
Nanoscale Synthesis, Nanofabrication and Characterization

A July 11, 2014 UWI news release, which originated the news item, provides details about the speakers and more,

An impressive line-up of leading, globally recognised experts from world-class international and regional institutes awaits, including the Public Lecture titled “Science and the Elements of Daily Life,” to be delivered by world-renowned scientist, Professor Anthony K. Cheetham FRS, University of Cambridge, Vice President and Treasurer of The Royal Society. Additionally, the Keynote Address at the Opening Ceremony will be delivered by The Right Honourable Keith Mitchell, Prime Minister of Grenada, with responsibility for Science and Technology in CARICOM.

Speakers at the scientific sessions include Professor Fidel Castro Díaz-Balart (Scientific Advisor to the President of the Republic of Cuba and Vice President of The Academy of Science, Cuba); Professor Frank Gu (University of Waterloo, Canada); Professor Christopher Backhouse (former Director of the Waterloo Institute of Nanotechnology, University of Waterloo, Canada); Professor G. U. Kulkarni (JNCASR, India) and Professor Masami Okamoto (Toyota Technology Institute, Japan).

Students, teachers, academics and the wider public, are all invited and encouraged to attend and use this unique opportunity to engage these leading scientists.

The free Public Lecture is scheduled for Tuesday July 15, 2014, from 5pm-7.30pm, at the Daaga Auditorium, The UWI, St. Augustine Campus. [emphasis mine] The Scientific Sessions take place on Wednesday and Thursday July 16 and 17, 2014, from 8.30am-5pm, at Lecture Theatre A1, UWI Teaching and Learning Complex, Circular Road, St. Augustine. There will also be a small Poster Session to highlight some research done in the areas of Nanoscience and nanotechnology in the Caribbean.

All attendees (to the scientific sessions) must complete and send registration forms to the email address [email protected] by Sunday, July 13, 2014. Registration forms may be downloaded at the Campus Events Calendar entry by visiting www.sta.uwi.edu/news/ecalendar.

A registration fee must be paid in cash at the registration desk on Wednesday July 16, 2014, Day 2, at the start of the scientific sessions.

  • Academic and non-academic:  TT$ 600
  • Graduate student: TT$ 150
  • Undergraduate student: no cost

For further information on the symposium, please visit the Campus Events Calendar at www.sta.uwi.edu/news/ecalendar

I wish them all the best. They seem (judging by the institutions represented) to have attracted a stellar roster of speakers.

What about the heart? and the quest to make androids lifelike

Japanese scientist Hiroshi Ishiguro has been mentioned here several times in the context of ‘lifelike’ robots. Accordingly, it’s no surprise to see Ishiguro’s name in a June 24, 2014 news item about uncannily lifelike robotic tour guides in a Tokyo museum (CBC (Canadian Broadcasting Corporation) News online),

The new robot guides at a Tokyo museum look so eerily human and speak so smoothly they almost outdo people — almost.

Japanese robotics expert Hiroshi Ishiguro, an Osaka University professor, says they will be useful for research on how people interact with robots and on what differentiates the person from the machine.

“Making androids is about exploring what it means to be human,” he told reporters Tuesday [June 23, 2014], “examining the question of what is emotion, what is awareness, what is thinking.”

In a demonstration, the remote-controlled machines moved their pink lips in time to a voice-over, twitched their eyebrows, blinked and swayed their heads from side to side. They stay seated but can move their hands.

Ishiguro and his robots were also mentioned in a May 29, 2014 article by Carey Dunne for Fast Company. The article concerned a photographic project of Luisa Whitton’s.

In her series “What About the Heart?,” British photographer Luisa Whitton documents one of the creepiest niches of the Japanese robotics industry--androids. Here, an eerily lifelike face made for a robot. [dowloaded from http://www.fastcodesign.com/3031125/exposure/japans-uncanny-quest-to-humanize-robots?partner=rss]

In her series “What About the Heart?,” British photographer Luisa Whitton documents one of the creepiest niches of the Japanese robotics industry–androids. Here, an eerily lifelike face made for a robot. [dowloaded from http://www.fastcodesign.com/3031125/exposure/japans-uncanny-quest-to-humanize-robots?partner=rss]

From Dunne’s May 29, 2014 article (Note: Links have been removed),

We’re one step closer to a robot takeover. At least, that’s one interpretation of “What About the Heart?” a new series by British photographer Luisa Whitton. In 17 photos, Whitton documents one of the creepiest niches of the Japanese robotics industry–androids. These are the result of a growing group of scientists trying to make robots look like living, breathing people. Their efforts pose a question that’s becoming more relevant as Siri and her robot friends evolve: what does it mean to be human as technology progresses?

Whitton spent several months in Japan working with Hiroshi Ishiguro, a scientist who has constructed a robotic copy of himself. Ishiguro’s research focused on whether his robotic double could somehow possess his “Sonzai-Kan,” a Japanese term that translates to the “presence” or “spirit” of a person. It’s work that blurs the line between technology, philosophy, psychology, and art, using real-world studies to examine existential issues once reserved for speculation by the likes of Philip K. Dick or Sigmund Freud. And if this sounds like a sequel to Blade Runner, it gets weirder: after Ishiguro aged, he had plastic surgery so that his face still matched that of his younger, mechanical doppelganger.

I profiled Ishiguro’s robots (then called Geminoids) in a March 10, 2011 posting which featured a Danish philosopher, Henrik Scharfe, who’d commissioned a Geminoid identical to himself for research purposes. He doesn’t seem to have published any papers about his experience but there is this interview of Scharfe and his Geminoid twin by Aldith Hunkar (she’s very good) at a 2011 TEDxAmsterdam,

Mary King’s 2007 research project notes a contrast, Robots and AI in Japan and The West and provides an excellent primer (Note: A link has been removed),

The Japanese scientific approach and expectations of robots and AI are far more down to earth than those of their Western counterparts. Certainly, future predictions made by Japanese scientists are far less confrontational or sci-fi-like. In an interview via email, Canadian technology journalist Tim N. Hornyak described the Japanese attitude towards robots as being “that of the craftsman, not the philosopher” and cited this as the reason for “so many rosy imaginings of a future Japan in which robots are a part of people’s everyday lives.”

Hornyak, who is author of “Loving the Machine: The Art and Science of Japanese Robots,” acknowledges that apocalyptic visions do appear in manga and anime, but emphasizes that such forecasts do not exist in government circles or within Japanese companies. Hornyak also added that while AI has for many years taken a back seat to robot development in Japan, this situation is now changing. Honda, for example, is working on giving better brains to Asimo, which is already the world’s most advanced humanoid robot. Japan is also already legislating early versions of Asimov’s laws by introducing design requirements for next-generation mobile robots.

It does seem there might be more interest in the philosophical issues in Japan these days or possibly it’s a reflection of Ishiguro’s own current concerns (from Dunne’s May 29, 2014 article),

The project’s title derives from a discussion with Ishiguro about what it means to be human. “The definition of human will be more complicated,” Ishiguro said.

Dunne reproduces a portion of Whitton’s statement describing her purpose for these photographs,

Through Ishiguro, Whitton got in touch with a number of other scientists working on androids. “In the photographs, I am trying to subvert the traditional formula of portraiture and allure the audience into a debate on the boundaries that determine the dichotomy of the human/not human,” she writes in her artist statement. “The photographs become documents of objects that sit between scientific tool and horrid simulacrum.”

I’m not sure what she means by “horrid simulacrum” but she seems to be touching on the concept of the ‘uncanny valley’. Here’s a description I provided in a May 31, 2013 posting about animator Chris Landreth and his explorations of that valley within the context of his animated film, Subconscious Password,,

Landreth also discusses the ‘uncanny valley’ and how he deliberately cast his film into that valley. For anyone who’s unfamiliar with the ‘uncanny valley’ I wrote about it in a Mar. 10, 2011 posting concerning Geminoid robots,

It seems that researchers believe that the ‘uncanny valley’ doesn’t necessarily have to exist forever and at some point, people will accept humanoid robots without hesitation. In the meantime, here’s a diagram of the ‘uncanny valley’,

From the article on Android Science by Masahiro Mori (translated by Karl F. MacDorman and Takashi Minato)

Here’s what Mori (the person who coined the term) had to say about the ‘uncanny valley’ (from Android Science),

Recently there are many industrial robots, and as we know the robots do not have a face or legs, and just rotate or extend or contract their arms, and they bear no resemblance to human beings. Certainly the policy for designing these kinds of robots is based on functionality. From this standpoint, the robots must perform functions similar to those of human factory workers, but their appearance is not evaluated. If we plot these industrial robots on a graph of familiarity versus appearance, they lie near the origin (see Figure 1 [above]). So they bear little resemblance to a human being, and in general people do not find them to be familiar. But if the designer of a toy robot puts importance on a robot’s appearance rather than its function, the robot will have a somewhat humanlike appearance with a face, two arms, two legs, and a torso. This design lets children enjoy a sense of familiarity with the humanoid toy. So the toy robot is approaching the top of the first peak.

Of course, human beings themselves lie at the final goal of robotics, which is why we make an effort to build humanlike robots. For example, a robot’s arms may be composed of a metal cylinder with many bolts, but to achieve a more humanlike appearance, we paint over the metal in skin tones. These cosmetic efforts cause a resultant increase in our sense of the robot’s familiarity. Some readers may have felt sympathy for handicapped people they have seen who attach a prosthetic arm or leg to replace a missing limb. But recently prosthetic hands have improved greatly, and we cannot distinguish them from real hands at a glance. Some prosthetic hands attempt to simulate veins, muscles, tendons, finger nails, and finger prints, and their color resembles human pigmentation. So maybe the prosthetic arm has achieved a degree of human verisimilitude on par with false teeth. But this kind of prosthetic hand is too real and when we notice it is prosthetic, we have a sense of strangeness. So if we shake the hand, we are surprised by the lack of soft tissue and cold temperature. In this case, there is no longer a sense of familiarity. It is uncanny. In mathematical terms, strangeness can be represented by negative familiarity, so the prosthetic hand is at the bottom of the valley. So in this case, the appearance is quite human like, but the familiarity is negative. This is the uncanny valley.

[keep scrolling, I'm having trouble getting rid of this extra space below]

It seems that Mori is suggesting that as the differences between the original and the simulacrum become fewer and fewer, the ‘uncanny valley’ will disappear. It’s possible but I suspect before that day occurs those of us who were brought up in a world without synthetic humans (androids) may experience an intensification of the feelings aroused by an encounter with the uncanny valley even as it disappears. For those who’d like a preview, check out Luisa Whitton’s What About The Heart? project.

Canon-Molecular Imprints deal and its impact on shrinking chips (integrated circuits)

There’s quite an interesting April 20, 2014 essay on Nanotechnology Now which provides some insight into the nanoimprinting market. I recommend reading it but for anyone who is not intimately familiar with the scene, here are a few excerpts along with my attempts to decode this insider’s (from Martini Tech) view,

About two months ago, important news shook the small but lively Japanese nanoimprint community: Canon has decided to acquire, making it a wholly-owned subsidiary, Texas-based Molecular Imprints, a strong player in the nanotechnology industry and one of the main makers of nanoimprint devices such as the Imprio 450 and other models.

So, Canon, a Japanese company, has made a move into the nanoimpriting sector by purchasing Molecular Imprints, a US company based in Texas, outright.

This next part concerns the expiration of Moore’s Law (i.e., every 18 months computer chips get smaller and faster) and is why the major chip makers are searching for new solutions as per the fifth paragraph in this excerpt,

Molecular Imprints` devices are aimed at the IC [integrated circuits, aka chips, I think] patterning market and not just at the relatively smaller applications market to which nanoimprint is usually confined: patterning of bio culture substrates, thin film applications for the solar industry, anti-reflection films for smartphone and LED TV screens, patterning of surfaces for microfluidics among others.

While each one of the markets listed above has the potential of explosive growth in the medium-long term future, at the moment none of them is worth more than a few percentage points, at best, of the IC patterning market.

The mainstream technology behind IC patterning is still optical stepper lithography and the situation is not likely to change in the near term future.

However, optical lithography has its limitations, the main challenge to its 40-year dominance not coming only from technological and engineering issues, but mostly from economical ones.

While from a strictly technological point of view it may still be possible for the major players in the chip industry (Intel, GF, TSMC, Nvidia among others) to go ahead with optical steppers and reach the 5nm node using multi-patterning and immersion, the cost increases associated with each die shrink are becoming staggeringly high.

A top-of-the-notch stepper in the early 90s could have been bought for a few millions of dollars, now the price has increased to some tens of millions for the top machines

The essay describes the market impact this acquisition may have for Canon,

Molecular Imprints has been a company on the forefront of commercialization of nanoimprint-based solutions for IC manufacturing, but so far their solutions have yet to become a viable alternative HVM IC manufacturing market.

The main stumbling blocks for IC patterning using nanoimprint technology are: the occurrence of defects on the mask that inevitably replicates them on each substrate and the lack of alignment precision between the mold and the substrate needed to pattern multi-layered structures.

Therefore, applications for nanoimprint have been limited to markets where no non-periodical structure patterning is needed and where one-layered patterning is sufficient.

But the big market where everyone is aiming for is, of course, IC patterning and this is where much of the R&D effort goes.

While logic patterning with nanoimprint may still be years away, simple patterning of NAND structures may be feasible in the near future, and the purchase of Molecular Imprints by Canon is a step in this direction

Patterning of NAND structures may still require multi-layered structures, but the alignment precision needed is considerably lower than logic.

Moreover, NAND requirements for defectivity are more relaxed than for logic due to the inherent redundancy of the design, therefore, NAND manufacturing is the natural first step for nanoimprint in the IC manufacturing market and, if successful, it may open a whole new range of opportunities for the whole sector.

Assuming I’ve read the rest of this essay rightly, here’s my summary: there are a number of techniques being employed to make chips smaller and more efficient. Canon has purchased a company that is versed in a technique that creates NAND (you can find definitions here) structures in the hope that this technique can be commercialized so that Canon becomes dominant in the sector because (1) they got there first and/or because (2) NAND manufacturing becomes a clear leader, crushing competition from other technologies. This could cover short-term goals and, I imagine Canon hopes, long-term goals.

It was a real treat coming across this essay as it’s an insider’s view. So, thank you to the folks at Martini Tech who wrote this. You can find Molecular Imprints here.

Earth Day, Water Day, and every day

I’m blaming my confusion on the American Chemical Society (ACS) which seemed to be celebrating Earth Day on April 15, 2014 as per its news release highlighting their “Chemists Celebrate Earth Day” video series  while in Vancouver, Canada, we’re celebrating it on April 26, 2014 and elsewhere it seems to be on April 20, this year. Regardless, here’s more about how chemist’s are celebrating from the ACS news release,

Water is arguably the most important resource on the planet. In celebration of Earth Day, the American Chemical Society (ACS) is showcasing three scientists whose research keeps water safe, clean and available for future generations. Geared toward elementary and middle school students, the “Chemists Celebrate Earth Day” series highlights the important work that chemists and chemical engineers do every day. The videos are available at http://bit.ly/CCED2014.

The series focuses on the following subjects:

  • Transforming Tech Toys- Featuring Aydogan Ozcan, Ph.D., of UCLA: Ozcan takes everyday gadgets and turns them into powerful mobile laboratories. He’s made a cell phone into a blood analyzer and a bacteria detector, and now he’s built a device that turns a cell phone into a water tester. It can detect very harmful mercury even at very low levels.
  • All About Droughts - Featuring Collins Balcombe of the U.S. Bureau of Reclamation: Balcombe’s job is to keep your drinking water safe and to find new ways to re-use the water that we flush away everyday so that it doesn’t go to waste, especially in areas that don’t get much rain.
  • Cleaning Up Our Water – Featuring Anne Morrissey, Ph.D., of Dublin City University: We all take medicines, but did you know that sometimes the medicine doesn’t stay in our bodies? It’s up to Anne Morrissey to figure out how to get potentially harmful pharmaceuticals out of the water supply, and she’s doing it using one of the most plentiful things on the planet: sunlight.

Sadly, I missed marking World Water Day which according to a March 21, 2014 news release I received was being celebrated on Saturday, March 22, 2014 with worldwide events and the release of a new UN report,

World Water Day: UN Stresses Water and Energy Issues 

Tokyo Leads Public Celebrations Around the World

Tokyo — March 21 — The deep-rooted relationships between water and energy were highlighted today during main global celebrations in Tokyo marking the United Nations’ annual World Water Day.

“Water and energy are among the world’s most pre-eminent challenges. This year’s focus of World Water Day brings these issues to the attention of the world,” said Michel Jarraud, Secretary-General of the World Meteorological Organization and Chair of UN-Water, which coordinates World Water Day and freshwater-related efforts UN system-wide.

The UN predicts that by 2030 the global population will need 35% more food, 40% more water and 50% more energy. Already today 768 million people lack access to improved water sources, 2.5 billion people have no improved sanitation and 1.3 billion people cannot access electricity.

“These issues need urgent attention – both now and in the post-2015 development discussions. The situation is unacceptable. It is often the same people who lack access to water and sanitation who also lack access to energy, ” said Mr. Jarraud.

The 2014 World Water Development Report (WWDR) – a UN-Water flagship report, produced and coordinated by the World Water Assessment Programme, which is hosted and led by UNESCO – is released on World Water Day as an authoritative status report on global freshwater resources. It highlights the need for policies and regulatory frameworks that recognize and integrate approaches to water and energy priorities.

WWDR, a triennial report from 2003 to 2012, this year becomes an annual edition, responding to the international community’s expression of interest in a concise, evidence-based and yearly publication with a specific thematic focus and recommendations.

WWDR 2014 underlines how water-related issues and choices impact energy and vice versa. For example: drought diminishes energy production, while lack of access to electricity limits irrigation possibilities.

The report notes that roughly 75% of all industrial water withdrawals are used for energy production. Tariffs also illustrate this interdependence: if water is subsidized to sell below cost (as is often the case), energy producers – major water consumers – are less likely to conserve it.  Energy subsidies, in turn, drive up water usage.

The report stresses the imperative of coordinating political governance and ensuring that water and energy prices reflect real costs and environmental impacts.

“Energy and water are at the top of the global development agenda,” said the Rector of United Nations University, David Malone, this year’s coordinator of World Water Day on behalf of UN-Water together with the United Nations Industrial Development Organization (UNIDO).

“Significant policy gaps exist in this nexus at present, and the UN plays an instrumental role in providing evidence and policy-relevant guidance. Through this day, we seek to inform decision-makers, stakeholders and practitioners about the interlinkages, potential synergies and trade-offs, and highlight the need for appropriate responses and regulatory frameworks that account for both water and energy priorities. From UNU’s perspective, it is essential that we stimulate more debate and interactive dialogue around possible solutions to our energy and water challenges.”

UNIDO Director-General LI Yong, emphasized the importance of water and energy for inclusive and sustainable industrial development.

“There is a strong call today for integrating the economic dimension, and the role of industry and manufacturing in particular, into the global post-2015 development priorities. Experience shows that environmentally sound interventions in manufacturing industries can be highly effective and can significantly reduce environmental degradation. I am convinced that inclusive and sustainable industrial development will be a key driver for the successful integration of the economic, social and environmental dimensions,” said Mr. LI.

Rather unusually, Michael Bergerrecently published two Nanowerk Spotlight articles about water (is there theme, anyone?) within 24 hours of each other. In his March 26, 2014 Spotlight article, Michael Berger focuses on graphene and water remediation (Note: Links have been removed),

The unique properties of nanomaterials are beneficial in applications to remove pollutants from the environment. The extremely small size of nanomaterial particles creates a large surface area in relation to their volume, which makes them highly reactive, compared to non-nano forms of the same materials.

The potential impact areas for nanotechnology in water applications are divided into three categories: treatment and remediation; sensing and detection: and pollution prevention (read more: “Nanotechnology and water treatment”).

Silver, iron, gold, titanium oxides and iron oxides are some of the commonly used nanoscale metals and metal oxides cited by the researchers that can be used in environmental remediation (read more: “Overview of nanomaterials for cleaning up the environment”).

A more recent entrant into this nanomaterial arsenal is graphene. Individual graphene sheets and their functionalized derivatives have been used to remove metal ions and organic pollutants from water. These graphene-based nanomaterials show quite high adsorption performance as adsorbents. However they also cause additional cost because the removal of these adsorbent materials after usage is difficult and there is the risk of secondary environmental pollution unless the nanomaterials are collected completely after usage.

One solution to this problem would be the assembly of individual sheets into three-dimensional (3D) macroscopic structures which would preserve the unique properties of individual graphene sheets, and offer easy collecting and recycling after water remediation.

The March 27, 2014 Nanowerk Spotlight article was written by someone at Alberta’s (Canada) Ingenuity Lab and focuses on their ‘nanobiological’ approach to water remediation (Note: Links have been removed),

At Ingenuity Lab in Edmonton, Alberta, Dr. Carlo Montemagno and a team of world-class researchers have been investigating plausible solutions to existing water purification challenges. They are building on Dr. Montemagno’s earlier patented discoveries by using a naturally-existing water channel protein as the functional unit in water purification membranes [4].

Aquaporins are water-transport proteins that play an important osmoregulation role in living organisms [5]. These proteins boast exceptionally high water permeability (~ 1010 water molecules/s), high selectivity for pure water molecules, and a low energy cost, which make aquaporin-embedded membrane well suited as an alternative to conventional RO membranes.

Unlike synthetic polymeric membranes, which are driven by the high pressure-induced diffusion of water through size selective pores, this technology utilizes the biological osmosis mechanism to control the flow of water in cellular systems at low energy. In nature, the direction of osmotic water flow is determined by the osmotic pressure difference between compartments, i.e. water flows toward higher osmotic pressure compartment (salty solution or contaminated water). This direction can however be reversed by applying a pressure to the salty solution (i.e., RO).

The principle of RO is based on the semipermeable characteristics of the separating membrane, which allows the transport of only water molecules depending on the direction of osmotic gradient. Therefore, as envisioned in the recent publication (“Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications”), the core of Ingenuity Lab’s approach is to control the direction of water flow through aquaporin channels with a minimum level of pressure and to use aquaporin-embedded biomimetic membranes as an alternative to conventional RO membranes.

Here’s a link to and a citation for Montemagno’s and his colleague’s paper,

Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications by Hyo-Jick Choi and Carlo D. Montemagno. Materials 2013, 6(12), 5821-5856; doi:10.3390/ma6125821

This paper is open access.

Returning to where I started, here’s a water video featuring graphene from the ACS celebration of Earth Day 2014,

Happy Earth Day!

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Storing isotopes in nanocontainers for safer radiation therapy

While it can be effective, radiation therapy is known to be destructive  for cancerous cells and healthy cells. Researchers at Kansas State University and their colleagues in other institutions have devised a new technique that contains the isotopes so they reach the cancerous cells only. From an April 2, 2014 news item in ScienceDaily,

Researchers have discovered that microscopic “bubbles” developed at Kansas State University are safe and effective storage lockers for harmful isotopes that emit ionizing radiation for treating tumors.

The findings can benefit patient health and advance radiation therapy used to treat cancer and other diseases, said John M. Tomich, a professor of biochemistry and molecular biophysics who is affiliated with the university’s Johnson Cancer Research Center.

Tomich conducted the study with Ekaterina Dadachova, a radiochemistry specialist at Albert Einstein College of Medicine in New York, along with researchers from his group at Kansas State University, the University of Kansas, Jikei University School of Medicine in Japan and the Institute for Transuranium Elements in Germany. They recently published their findings in the study “Branched Amphiphilic Peptide Capsules: Cellular Uptake and Retention of Encapsulated Solutes,” which appears in the scientific journal Biochimica et Biophysica Acta.

The study looks at the ability of nontoxic molecules to store and deliver potentially harmful alpha emitting radioisotopes — one of the most effective forms of radiation therapy.

An April 2, 2014 Kansas State University news release (also on EurekAlert), which originated the news item, provides more details about this research that in some ways dates from 2012,

The study looks at the ability of nontoxic molecules to store and deliver potentially harmful alpha emitting radioisotopes — one of the most effective forms of radiation therapy.

In 2012, Tomich and his research lab team combined two related sequences of amino acids to form a very small, hollow nanocapsule similar to a bubble.

“We found that the two sequences come together to form a thin membrane that assembled into little spheres, which we call capsules,” Tomich said. “While other vesicles have been created from lipids, most are much less stable and break down. Ours are like stones, though. They’re incredibly stable and are not destroyed by cells in the body.”

The ability of the capsules to stay intact with the isotope inside and remain undetected by the body’s clearance systems prompted Tomich to investigate using the capsules as unbreakable storage containers that can be used for biomedical research, particularly in radiation therapies.

“The problem with current alpha-particle radiation therapies used to treat cancer is that they lead to the release of nontargeted radioactive daughter ions into the body,” Tomich said. “Radioactive atoms break down to form new atoms, called daughter ions, with the release of some form of energy or energetic particles. Alpha emitters give off an energetic particle that comes off at nearly the speed of light.”

These particles are like a car careening on ice, Tomich said. They are very powerful but can only travel a short distance. On collision, the alpha particle destroys DNA and whatever vital cellular components are in its path. Similarly, the daughter ions recoil with high energy on ejection of the alpha particle — similar to how a gun recoils as it is fired. The daughter ions have enough energy to escape the targeting and containment molecules that currently are in use.

“Once freed, the daughter isotopes can end up in places you don’t want them, like bone marrow, which can then lead to leukemia and new challenges,” Tomich said. “We don’t want any stray isotopes because they can harm the body. The trick is to get the radioactive isotopes into and contained in just diseases cells where they can work their magic.”

The radioactive compound that the team works with is 225Actinium, which on decay releases four alpha particles and numerous daughter ions.

Tomich and Dadachova tested the retention and biodistribution of alpha-emitting particles trapped inside the peptide capsules in cells. The capsules readily enter cells. Once inside, they migrate to a position alongside the nucleus, where the DNA is.

Tomich and Dadachova found that as the alpha particle-emitting isotopes decayed, the recoiled daughter ion collides with the capsule walls and essentially bounces off them and remains trapped inside the capsule. This completely blocked the release of the daughter ions, which prevented uptake in certain nontarget tissues and protected the subject from harmful radiation that would have otherwise have been releases into the body.

Tomich said that more studies are needed to add target molecules to the surface of the capsules. He anticipates that this new approach will provide a safer option for treating tumors with radiation therapy by reducing the amount of radioisotope required for killing the cancer cells and reducing the side effects caused by off-target accumulation of the radioisotopes.

“These capsules are easy to make and easy to work with,” Tomich said. “I think we’re just scratching the surface of what we can do with them to improve human health and nanomaterials.”

I hope this new technique proves effective and travels soon from the laboratory to clinical practice in the foreseeable future.

In the meantime, here’s a link to and a citation for the paper,

Branched amphiphilic peptide capsules: Cellular uptake and retention of encapsulated solutes by Pinakin Sukthankar, L. Adriana Avila, Susan K. Whitaker, Takeo Iwamoto, Alfred Morgenstern, Christos Apostolidis, Ke Liu, Robert P. Hanzlik, Ekaterina Dadachova, and John M. Tomich. Biochimica et Biophysica Acta (BBA) – Biomembranes (Biochim Biophys Acta) 2014 Feb 22. pii: S0005-2736(14)00069-8. doi: 10.1016/j.bbamem.2014.02.005. Available online 22 February 2014

This paper is behind a paywall.

Smart nanofibers could make kidney dialysis machines obsolete

Kidney dialysis machines may become obsolete with the development of a specialized composite. From a March 4, 2014 news item on Nanowerk,

A simple way to treat kidney failure. A new technique for purifying blood using a nanofiber mesh could prove useful as a cheap, wearable alternative to kidney dialysis.

Kidney failure results in a build up of toxins and excess waste in the body. Dialysis is the most common treatment, performed daily either at home or in hospital. However, dialysis machines require electricity and careful maintenance, and are therefore more readily available in developed countries than poorer nations. Around one million people die each year worldwide from potentially preventable end-stage renal disease.

In addition to this, in the aftermath of disasters such as the Japanese earthquake and tsunami of 2011, dialysis patients are frequently left without treatment until normal hospital services are resumed. …

The March 4, 2014 International Center for Materials Nanoarchitectonics (MANA) research highlight, which originated the news item, describes the work in detail,

… Mitsuhiro Ebara and co-workers at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Ibaraki, Japan, have developed a way of removing toxins and waste from blood using a cheap, easy-to-produce nanofiber mesh1. The mesh could be incorporated into a blood purification product small enough to be worn on a patient’s arm, reducing the need for expensive, time-consuming dialysis.

The team made their nanofiber mesh using two components: a blood-compatible primary matrix polymer made from polyethylene-co-vinyl alchohol, or EVOH, and several different forms of zeolites – naturally occurring aluminosilicates. Zeolites have microporous structures capable of adsorbing toxins such as creatinine from blood.

The researchers generated the mesh using a versatile and cost-effective process called electrospinning – using an electrical charge to draw fibers from a liquid. Ebara and his team found that the silicon-aluminum ratio within the zeolites is critical to creatinine adsorption. Beta type 940-HOA zeolite had the highest capacity for toxin adsorption, and shows potential for a final blood purification product.
Although the new design is still in its early stages and not yet ready for production, Ebara and his team are confident that a product based on their nanofiber mesh will soon be a feasible, compact and cheap alternative to dialysis for kidney failure patients across the world.

The word “soon” may not mean the same thing to the research team as it does to a patient using kidney dialysis machines and, unfortunately, the researchers don’t offer specifics as to when this mesh might be available.

Here’s a link to and a citation for the researchers’ paper,

Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients by Koki Namekawa, Makoto Tokoro Schreiber, Takao Aoyagi and Mitsuhiro Ebara.  Biomater. Sci., 2014, Advance Article DOI: 10.1039/C3BM60263J First published online 31 Jan 2014

It is an open access paper although you will need to ‘log in’ in some fashion.

Freezing transient events (frozen magnetic monopoles)

A Jan. 20, 2014 news item on Nanowerk highlights a new phase in laboratory physics (Note: A link has been removed),

Many of the most interesting things in nature – from spectacular lightning strikes to the subtlety of life itself – are transient, or far-from-equilibrium. To discover the secrets of far from equilibrium states, physicists need simple yet appealing laboratory systems. Now a researcher at the London Centre for Nanotechnology [UK] has collaborated with workers in Grenoble (France), Cardiff [Wales], Oxford [UK] and Kitakyushu (Japan), to create just such a system in the magnetic material known as “spin ice” (“Far-from-equilibrium monopole dynamics in spin ice”).

The Jan. 19 (?), 2014 (?) London Centre for Nanotechnology (LCN) research brief by Steve Bramwell, which originated the news item. explains ‘spin ice’ in greater detail and the trickery employed by the scientists’,

Spin ice is an unusual magnetic material in that it contains the magnetic equivalent of electrical charges – so called magnetic monopoles. It has attracted great interest on account of the currents of these charges forming a magnetic equivalent of electricity or “magnetricity”.

The number of magnetic monopoles in spin ice diminishes as the temperature goes down in much the same way as does the number of electrical charge carriers in semiconducting materials such as silicon – the basis of the electronics industry. The monopoles or charges disappear at low temperatures by positive and negative charges annihilating each other.

The researchers found a trick that used magnetic fields to create a hot “gas” of magnetic monopoles in very cold surroundings. The surroundings then sucked the heat out of the magnetic monopole gas, resulting in many magnetic monopoles trapped at a fraction of a degree above the absolute zero. The frozen monopoles no longer annihilated each other but instead could be made to flow by applying magnetic fields.

“Our low temperature experiments will tell us a lot about how magnetic monopoles move, as well as about the physics of far-from equilibrium systems in general” explains Prof. Steve Bramwell.

The researchers have provided this artist’s illustration of their work,

Figure: Artist’s impression of a hot gas of magnetic monopoles in very cold surroundings. Eventually the surroundings suck the heat out of the monopole gas leaving it frozen at low temperature. [downloaded from http://www.london-nano.com/research-and-facilities/highlight/frozen-magnetic-monopoles-create-new-laboratory-physics]

Figure: Artist’s impression of a hot gas of magnetic monopoles in very cold surroundings. Eventually the surroundings suck the heat out of the monopole gas leaving it frozen at low temperature. [downloaded from http://www.london-nano.com/research-and-facilities/highlight/frozen-magnetic-monopoles-create-new-laboratory-physics]

Here’s a link to and a citation for the paper,

Far-from-equilibrium monopole dynamics in spin ice by C. Paulsen, M. J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira, S. R. Giblin, & S. T. Bramwell. Nature Physics (2014) doi:10.1038/nphys2847 Published online 19 January 2014

This paper is behind a paywall with several payment options.

Using music to align your nanofibers

It’s always nice to feature a ‘nano and music’ research story, my Nov. 6, 2013 posting being, until now, the most recent. A Jan. 8, 2014 news item on Nanowerk describes Japanese researchers’ efforts with nanofibers (Note: A link has been removed),

Humans create and perform music for a variety of purposes, such as aesthetic pleasure, healing, religion, and ceremony. Accordingly, a scientific question arises: Can molecules or molecular assemblies interact physically with the sound vibrations of music? In the journal ChemPlusChem (“Acoustic Alignment of a Supramolecular Nanofiber in Harmony with the Sound of Music”), Japanese researchers have now revealed their physical interaction. When classical music was playing, a designed supramolecular nanofiber in a solution dynamically aligned in harmony with the sound of music.

Sound is vibration of matter, having a frequency, in which certain physical interactions occur between the acoustically vibrating media and solute molecules or molecular assemblies. Music is an art form consisting of the sound and silence expressed through time, and characterized by rhythm, harmony, and melody. The question of whether music can cause any kind of molecular or macromolecular event is controversial, and the physical interaction between the molecules and the sound of music has never been reported.

The Jan. 8, 2014 Chemistry Views article, which originated the news item, provides more detail,

Scientists working at Kobe University and Kobe City College of Technology, Japan, have now developed a supramolecular nanofiber, composed of an anthracene derivative, which can dynamically align by sensing acoustic streaming flows generated by the sound of music. Time course linear dichroism (LD) spectroscopy could visualize spectroscopically the dynamic acoustic alignments of the nanofiber in the solution. The nanofiber aligns upon exposure to the audible sound wave, with frequencies up to 1000 Hz, with quick responses to the sound and silence, and amplitude and frequency changes of the sound wave. The sheared flows generated around glass-surface boundary layer and the crossing area of the downward and upward flows allow shear-induced alignments of the nanofiber.
Music is composed of the multi complex sounds and silence, which characteristically change in the course of its playtime. The team, led by A. Tsuda, uses “Symphony No. 5 in C minor, First movement: Allegro con brio” written by Beethoven, and “Symphony No. 40 in G minor, K. 550, First movement”, written by Mozart in the experiments. When the classical music was playing, the sample solution gave the characteristic LD profile of the music, where the nanofiber dynamically aligned in harmony with the sound of music.

Here’s an imagie illustrating the scientists’ work with music,

[downloaded from http://www.chemistryviews.org/details/ezine/5712621/Musical_Molecules.html]

[downloaded from http://www.chemistryviews.org/details/ezine/5712621/Musical_Molecules.html]

Here’s a link to and a citation for the paper,

Acoustic Alignment of a Supramolecular Nanofiber in Harmony with the Sound of Music by Ryosuke Miura, Yasunari Ando, Yasuhisa Hotta, Yoshiki Nagatani, Akihiko Tsuda, ChemPlusChem 2014.  DOI: 10.1002/cplu.201300400

This is an open access paper as of Jan. 8, 2014. If the above link does not work, try this .