Tag Archives: Jeffrey Fagan

Researchers, manufacturers, and administrators need to consider shared quality control challenges to advance the nanoparticle manufacturing industry ‘

Manufacturing remains a bit of an issue where nanotechnology is concerned due to the difficulties of producing nanoparticles of a consistent size and type,

Electron micrograph showing gallium arsenide nanoparticles of varying shapes and sizes. Such heterogeneity [variation]  can increase costs and limit profits when making nanoparticles into products. A new NIST study recommends that researchers, manufacturers and administrators work together to solve this, and other common problems, in nanoparticle manufacturing. Credit: A. Demotiere, E. Shevchenko/Argonne National Laboratory

The US National Institute of Standards and Technology (NIST) has produced a paper focusing on how nanoparticle manufacturing might become more effective, from an August 22, 2018 news item on ScienceDaily,

Nanoparticle manufacturing, the production of material units less than 100 nanometers in size (100,000 times smaller than a marble), is proving the adage that “good things come in small packages.” Today’s engineered nanoparticles are integral components of everything from the quantum dot nanocrystals coloring the brilliant displays of state-of-the-art televisions to the miniscule bits of silver helping bandages protect against infection. However, commercial ventures seeking to profit from these tiny building blocks face quality control issues that, if unaddressed, can reduce efficiency, increase production costs and limit commercial impact of the products that incorporate them.

To help overcome these obstacles, the National Institute of Standards and Technology (NIST) and the nonprofit World Technology Evaluation Center (WTEC) advocate that nanoparticle researchers, manufacturers and administrators “connect the dots” by considering their shared challenges broadly and tackling them collectively rather than individually. This includes transferring knowledge across disciplines, coordinating actions between organizations and sharing resources to facilitate solutions.

The recommendations are presented in a new paper in the journal ACS Applied Nano Materials.

An August 22, 2018 NIST news release, which originated the news item, describes how the authors of the ACS [American Chemical Society) Applied Nano Materials paper developed their recommendations,

“We looked at the big picture of nanoparticle manufacturing to identify problems that are common for different materials, processes and applications,” said NIST physical scientist Samuel Stavis, lead author of the paper. “Solving these problems could advance the entire enterprise.”

The new paper provides a framework to better understand these issues. It is the culmination of a study initiated by a workshop organized by NIST that focused on the fundamental challenge of reducing or mitigating heterogeneity, the inadvertent variations in nanoparticle size, shape and other characteristics that occur during their manufacture.

“Heterogeneity can have significant consequences in nanoparticle manufacturing,” said NIST chemical engineer and co-author Jeffrey Fagan.

In their paper, the authors noted that the most profitable innovations in nanoparticle manufacturing minimize heterogeneity during the early stages of the operation, reducing the need for subsequent processing. This decreases waste, simplifies characterization and improves the integration of nanoparticles into products, all of which save money.

The authors illustrated the point by comparing the production of gold nanoparticles and carbon nanotubes. For gold, they stated, the initial synthesis costs can be high, but the similarity of the nanoparticles produced requires less purification and characterization. Therefore, they can be made into a variety of products, such as sensors, at relatively low costs.

In contrast, the more heterogeneous carbon nanotubes are less expensive to synthesize but require more processing to yield those with desired properties. The added costs during manufacturing currently make nanotubes only practical for high-value applications such as digital logic devices.

“Although these nanoparticles and their end products are very different, the stakeholders in their manufacture can learn much from each other’s best practices,” said NIST materials scientist and co-author J. Alexander Liddle. “By sharing knowledge, they might be able to improve both seemingly disparate operations.”

Finding ways like this to connect the dots, the authors said, is critically important for new ventures seeking to transfer nanoparticle technologies from laboratory to market.

“Nanoparticle manufacturing can become so costly that funding expires before the end product can be commercialized,” said WTEC nanotechnology consultant and co-author Michael Stopa. “In our paper, we outlined several opportunities for improving the odds that new ventures will survive their journeys through this technology transfer ‘valley of death.’”

Finally, the authors considered how manufacturing challenges and innovations are affecting the ever-growing number of applications for nanoparticles, including those in the areas of electronics, energy, health care and materials.

Here’s a link to and a citation for the paper,

Nanoparticle Manufacturing – Heterogeneity through Processes to Products by Samuel M. Stavis, Jeffrey A. Fagan, Michael Stopa, and J. Alexander Liddle. ACS Appl. Nano Mater., Article ASAP DOI: 10.1021/acsanm.8b01239 Publication Date (Web): August 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

I looked at this paper briefly and found it to give a good overview. The focus is on manufacturing and making money. I imagine any discussion about the life cycle of the materials and possible environmental and health risks would have been considered ‘scope creep’.

I have two postings that provide additional information about manufacturing concerns, my February 10, 2014 posting:  ‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US and my September 5, 2016 posting: An examination of nanomanufacturing and nanofabrication.

Carbon nanotubes: faster, cheaper, easier, and more consistent

One of the big problems with nanomaterials has to do with production issues such as: consistent size and shape. It seems that scientists at the US National Institute of Standards and Technology (NIST) have developed a technique for producing carbon nanotubes (CNTs) which addresses these issues. From a July 19, 2016 news item on Nanotechnology Now,

Just as many of us might be resigned to clogged salt shakers or rush-hour traffic, those working to exploit the special properties of carbon nanotubes have typically shrugged their shoulders when these tiniest of cylinders fill with water during processing. But for nanotube practitioners who have reached their Popeye threshold and “can’t stands no more,” the National Institute of Standards and Technology (NIST) has devised a cheap, quick and effective strategy that reliably enhances the quality and consistency of the materials–important for using them effectively in applications such as new computing technologies.

To prevent filling of the cores of single-wall carbon nanotubes with water or other detrimental substances, the NIST researchers advise intentionally prefilling them with a desired chemical of known properties. Taking this step before separating and dispersing the materials, usually done in water, yields a consistently uniform collection of nanotubes. In quantity and quality, the results are superior to water-filled nanotubes, especially for optical applications such as sensors and photodetectors.

A July 15, 2016 NIST news release, which originated the news item, expands on the theme,

The approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes—rolled up sheets of carbon atoms arranged like chicken wire or honey combs—with improved or new properties.

“This approach is so easy, inexpensive and broadly useful that I can’t think of a reason not to use it,” said NIST chemical engineer Jeffrey Fagan.

In their proof-of-concept experiments, the NIST team inserted more than 20 different compounds into an assortment of single-wall carbon nanotubes with an interior diameter that ranged from more than 2 down to about 0.5 nanometers. Led by visiting researcher Jochen Campo, the scientists tested their strategy by using hydrocarbons called alkanes as fillers.

The alkanes, which include such familiar compounds as propane and butane, served to render the nanotube interiors unreactive. In other words, the alkane-filled nanotubes behaved almost as if they were empty—precisely the goal of Campo, Fagan and colleagues.

Compared with nanotubes filled with water and possibly ions, acids and other unwanted chemicals encountered during processing, empty nanotubes possess far superior properties. For example, when stimulated by light, empty carbon nanotubes fluoresce far brighter and with sharper signals.

Yet, “spontaneous ingestion” of water or other solvents by the nanotubes during processing is an “endemic but often neglected phenomenon with strong implications for the development of nanotube applications,” the NIST team wrote in a recent article in Nanoscale Horizons.

Perhaps because of the additional cost and effort required to filter out and gather nanotubes, researchers tend to tolerate mixed batches of unfilled (empty) and mostly filled single-wall carbon nanotubes. Separating unfilled nanotubes from these mixtures requires expensive ultracentrifuge equipment and, even then, the yield is only about 10 percent, Campo estimates.

“If your goal is to use nanotubes for electronic circuits, for example, or for fluorescent anti-cancer image contrast agents, then you require much greater quantities of materials of consistent composition and quality,” Campo explained, who was exploring these applications while doing postdoctoral research at the University of Antwerp. “This particular need inspired development of the new prefilling method by asking the question, can we put some passive chemical into the nanotube instead to keep the water out.”

From the very first simple experiments, the answer was yes. And the benefits can be significant. In fluorescence experiments, alkane-filled nanotubes emitted signals two to three times stronger than those emitted by water-filled nanotubes. Performance approached that of empty nanotubes—the gold standard for these comparisons.

As important, the NIST-developed prefilling strategy is controllable, versatile and easily incorporated into existing methods for processing single-wall carbon nanotubes, according to the researchers.

Here’s a link to and citation for the paper,

Enhancing single-wall carbon nanotube properties through controlled endohedral filling by J. Campo, Y. Piao, S. Lam, C. M. Stafford, J. K. Streit, J. R. Simpson, A. R. Hight Walker, and J. A. Fagan. Nanoscale Horiz., 2016,1, 317-324 DOI: 10.1039/C6NH00062B First published online 10 May 2016

This paper is open access but you do need to register on the site (it is a free registration).