Tag Archives: Jennifer Chu

Tree-on-a-chip

It’s usually organ-on-a-chip or lab-on-a-chip or human-on-a-chip; this is my first tree-on-a-chip.

Engineers have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and other plants. Courtesy: MIT

From a March 20, 2017 news item on phys.org,

Trees and other plants, from towering redwoods to diminutive daisies, are nature’s hydraulic pumps. They are constantly pulling water up from their roots to the topmost leaves, and pumping sugars produced by their leaves back down to the roots. This constant stream of nutrients is shuttled through a system of tissues called xylem and phloem, which are packed together in woody, parallel conduits.

Now engineers at MIT [Massachusetts Institute of Technology] and their collaborators have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and plants. Like its natural counterparts, the chip operates passively, requiring no moving parts or external pumps. It is able to pump water and sugars through the chip at a steady flow rate for several days. The results are published this week in Nature Plants.

A March 20, 2017 MIT news release by Jennifer Chu, which originated the news item, describes the work in more detail,

Anette “Peko” Hosoi, professor and associate department head for operations in MIT’s Department of Mechanical Engineering, says the chip’s passive pumping may be leveraged as a simple hydraulic actuator for small robots. Engineers have found it difficult and expensive to make tiny, movable parts and pumps to power complex movements in small robots. The team’s new pumping mechanism may enable robots whose motions are propelled by inexpensive, sugar-powered pumps.

“The goal of this work is cheap complexity, like one sees in nature,” Hosoi says. “It’s easy to add another leaf or xylem channel in a tree. In small robotics, everything is hard, from manufacturing, to integration, to actuation. If we could make the building blocks that enable cheap complexity, that would be super exciting. I think these [microfluidic pumps] are a step in that direction.”

Hosoi’s co-authors on the paper are lead author Jean Comtet, a former graduate student in MIT’s Department of Mechanical Engineering; Kaare Jensen of the Technical University of Denmark; and Robert Turgeon and Abraham Stroock, both of Cornell University.

A hydraulic lift

The group’s tree-inspired work grew out of a project on hydraulic robots powered by pumping fluids. Hosoi was interested in designing hydraulic robots at the small scale, that could perform actions similar to much bigger robots like Boston Dynamic’s Big Dog, a four-legged, Saint Bernard-sized robot that runs and jumps over rough terrain, powered by hydraulic actuators.

“For small systems, it’s often expensive to manufacture tiny moving pieces,” Hosoi says. “So we thought, ‘What if we could make a small-scale hydraulic system that could generate large pressures, with no moving parts?’ And then we asked, ‘Does anything do this in nature?’ It turns out that trees do.”

The general understanding among biologists has been that water, propelled by surface tension, travels up a tree’s channels of xylem, then diffuses through a semipermeable membrane and down into channels of phloem that contain sugar and other nutrients.

The more sugar there is in the phloem, the more water flows from xylem to phloem to balance out the sugar-to-water gradient, in a passive process known as osmosis. The resulting water flow flushes nutrients down to the roots. Trees and plants are thought to maintain this pumping process as more water is drawn up from their roots.

“This simple model of xylem and phloem has been well-known for decades,” Hosoi says. “From a qualitative point of view, this makes sense. But when you actually run the numbers, you realize this simple model does not allow for steady flow.”

In fact, engineers have previously attempted to design tree-inspired microfluidic pumps, fabricating parts that mimic xylem and phloem. But they found that these designs quickly stopped pumping within minutes.

It was Hosoi’s student Comtet who identified a third essential part to a tree’s pumping system: its leaves, which produce sugars through photosynthesis. Comtet’s model includes this additional source of sugars that diffuse from the leaves into a plant’s phloem, increasing the sugar-to-water gradient, which in turn maintains a constant osmotic pressure, circulating water and nutrients continuously throughout a tree.

Running on sugar

With Comtet’s hypothesis in mind, Hosoi and her team designed their tree-on-a-chip, a microfluidic pump that mimics a tree’s xylem, phloem, and most importantly, its sugar-producing leaves.

To make the chip, the researchers sandwiched together two plastic slides, through which they drilled small channels to represent xylem and phloem. They filled the xylem channel with water, and the phloem channel with water and sugar, then separated the two slides with a semipermeable material to mimic the membrane between xylem and phloem. They placed another membrane over the slide containing the phloem channel, and set a sugar cube on top to represent the additional source of sugar diffusing from a tree’s leaves into the phloem. They hooked the chip up to a tube, which fed water from a tank into the chip.

With this simple setup, the chip was able to passively pump water from the tank through the chip and out into a beaker, at a constant flow rate for several days, as opposed to previous designs that only pumped for several minutes.

“As soon as we put this sugar source in, we had it running for days at a steady state,” Hosoi says. “That’s exactly what we need. We want a device we can actually put in a robot.”

Hosoi envisions that the tree-on-a-chip pump may be built into a small robot to produce hydraulically powered motions, without requiring active pumps or parts.

“If you design your robot in a smart way, you could absolutely stick a sugar cube on it and let it go,” Hosoi says.

This research was supported, in part, by the Defense Advance Research Projects Agency [DARPA].

This research’s funding connection to DARPA reminded me that MIT has an Institute of Soldier Nanotechnologies.

Getting back to the tree-on-a-chip, here’s a link to and a citation for the paper,

Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip by Jean Comtet, Kaare H. Jensen, Robert Turgeon, Abraham D. Stroock & A. E. Hosoi. Nature Plants 3, Article number: 17032 (2017)  doi:10.1038/nplants.2017.32 Published online: 20 March 2017

This paper is behind a paywall.

Entangling thousands of atoms

Quantum entanglement as an idea seems extraordinary to me like something from of the fevered imagination made possible only with certain kinds of hallucinogens. I suppose you could call theoretical physicists who’ve conceptualized entanglement a different breed as they don’t seem to need chemical assistance for their flights of fancy, which turn out to be reality. Researchers at MIT (Massachusetts Institute of Technology) and the University of Belgrade (Serbia) have entangled thousands of atoms with a single photon according to a March 26, 2015 news item on Nanotechnology Now,

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, represent the largest number of particles that have ever been mutually entangled experimentally.

The researchers say the technique provides a realistic method to generate large ensembles of entangled atoms, which are key components for realizing more-precise atomic clocks.

“You can make the argument that a single photon cannot possibly change the state of 3,000 atoms, but this one photon does — it builds up correlations that you didn’t have before,” says Vladan Vuletic, the Lester Wolfe Professor in MIT’s Department of Physics, and the paper’s senior author. “We have basically opened up a new class of entangled states we can make, but there are many more new classes to be explored.”

A March 26, 2015 MIT news release by Jennifer Chu (also on EurekAlert but dated March 25, 2015), which originated the news item, describes entanglement with particular attention to how it relates to atomic timekeeping,

Entanglement is a curious phenomenon: As the theory goes, two or more particles may be correlated in such a way that any change to one will simultaneously change the other, no matter how far apart they may be. For instance, if one atom in an entangled pair were somehow made to spin clockwise, the other atom would instantly be known to spin counterclockwise, even though the two may be physically separated by thousands of miles.

The phenomenon of entanglement, which physicist Albert Einstein once famously dismissed as “spooky action at a distance,” is described not by the laws of classical physics, but by quantum mechanics, which explains the interactions of particles at the nanoscale. At such minuscule scales, particles such as atoms are known to behave differently from matter at the macroscale.

Scientists have been searching for ways to entangle not just pairs, but large numbers of atoms; such ensembles could be the basis for powerful quantum computers and more-precise atomic clocks. The latter is a motivation for Vuletic’s group.

Today’s best atomic clocks are based on the natural oscillations within a cloud of trapped atoms. As the atoms oscillate, they act as a pendulum, keeping steady time. A laser beam within the clock, directed through the cloud of atoms, can detect the atoms’ vibrations, which ultimately determine the length of a single second.

“Today’s clocks are really amazing,” Vuletic says. “They would be less than a minute off if they ran since the Big Bang — that’s the stability of the best clocks that exist today. We’re hoping to get even further.”

The accuracy of atomic clocks improves as more and more atoms oscillate in a cloud. Conventional atomic clocks’ precision is proportional to the square root of the number of atoms: For example, a clock with nine times more atoms would only be three times as accurate. If these same atoms were entangled, a clock’s precision could be directly proportional to the number of atoms — in this case, nine times as accurate. The larger the number of entangled particles, then, the better an atomic clock’s timekeeping.

It seems weak lasers make big entanglements possible (from the news release),

Scientists have so far been able to entangle large groups of atoms, although most attempts have only generated entanglement between pairs in a group. Only one team has successfully entangled 100 atoms — the largest mutual entanglement to date, and only a small fraction of the whole atomic ensemble.

Now Vuletic and his colleagues have successfully created a mutual entanglement among 3,000 atoms, virtually all the atoms in the ensemble, using very weak laser light — down to pulses containing a single photon. The weaker the light, the better, Vuletic says, as it is less likely to disrupt the cloud. “The system remains in a relatively clean quantum state,” he says.

The researchers first cooled a cloud of atoms, then trapped them in a laser trap, and sent a weak laser pulse through the cloud. They then set up a detector to look for a particular photon within the beam. Vuletic reasoned that if a photon has passed through the atom cloud without event, its polarization, or direction of oscillation, would remain the same. If, however, a photon has interacted with the atoms, its polarization rotates just slightly — a sign that it was affected by quantum “noise” in the ensemble of spinning atoms, with the noise being the difference in the number of atoms spinning clockwise and counterclockwise.

“Every now and then, we observe an outgoing photon whose electric field oscillates in a direction perpendicular to that of the incoming photons,” Vuletic says. “When we detect such a photon, we know that must have been caused by the atomic ensemble, and surprisingly enough, that detection generates a very strongly entangled state of the atoms.”

Vuletic and his colleagues are currently using the single-photon detection technique to build a state-of-the-art atomic clock that they hope will overcome what’s known as the “standard quantum limit” — a limit to how accurate measurements can be in quantum systems. Vuletic says the group’s current setup may be a step toward developing even more complex entangled states.

“This particular state can improve atomic clocks by a factor of two,” Vuletic says. “We’re striving toward making even more complicated states that can go further.”

This research was supported in part by the National Science Foundation, the Defense Advanced Research Projects Agency, and the Air Force Office of Scientific Research.

Here’s a link to and a citation for the paper,

Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon by Robert McConnell, Hao Zhang, Jiazhong Hu, Senka Ćuk & Vladan Vuletić. Nature 519 439–442 (26 March 2015) doi:10.1038/nature14293 Published online 25 March 2015

This article is behind a paywall but there is a free preview via ReadCube Access.

This image illustrates the entanglement of a large number of atoms. The atoms, shown in purple, are shown mutually entangled with one another. Image: Christine Daniloff/MIT and Jose-Luis Olivares/MIT

This image illustrates the entanglement of a large number of atoms. The atoms, shown in purple, are shown mutually entangled with one another.
Image: Christine Daniloff/MIT and Jose-Luis Olivares/MIT

Batteries made of wood and the mechanical properties of plants

According to Ariel Schwartz in an Aug. 14, 2012 (?) article for Fast Company’s Co.Exist website, batteries made from wood waste may be in our future (Note: I have removed a link),

Researchers from Poznan University of Technology in Poland and Linköping University in Sweden have figured out how to combine lignin with polypyrrole (a conductive polymer) to create a battery cathode that could one day be used in energy storage. The lignin acts as an insulator, while the polypyrrole holds an electric charge.

The discovery is a potential boon for the renewable energy world. As the researchers explain in the journal Science, “Widespread application of electrical power storage may require more abundant materials than those available in inorganics (which often require rare metals), and at a lower cost. Materials for charge storage are desired from easily accessible and renewable sources. Combining cellulose materials and conjugated polymers for charge storage has … attracted attention.”

For anyone (like me) who’s heard the word lignin but doesn’t know the precise meaning, here’s a definition from a Wikipedia essay (Note: I have removed links and footnotes),

Lignin or lignen is a complex chemical compound most commonly derived from wood, and an integral part of the secondary cell walls of plants and some algae. The term was introduced in 1819 by de Candolle and is derived from the Latin word lignum, meaning wood. It is one of the most abundant organic polymers on Earth, exceeded only by cellulose, employing 30% of non-fossil organic carbon, and constituting from a quarter to a third of the dry mass of wood.

This next item also mentions lignin but in reference to mechanical properties that engineers are observing in plant cells.  From the Aug. 14, 2012 news item on Nanowerk,

From an engineer’s perspective, plants such as palm trees, bamboo, maples and even potatoes are examples of precise engineering on a microscopic scale. Like wooden beams reinforcing a house, cell walls make up the structural supports of all plants. Depending on how the cell walls are arranged, and what they are made of, a plant can be as flimsy as a reed, or as sturdy as an oak.

An MIT researcher has compiled data on the microstructures of a number of different plants, from apples and potatoes to willow and spruce trees, and has found that plants exhibit an enormous range of mechanical properties, depending on the arrangement of a cell wall’s four main building blocks: cellulose, hemicellulose, lignin and pectin.

The news item was originated at the Massachusetts Institute of Technology (MIT) by Jennifer Chu’s Aug. 14, 2012 news release,

Lorna Gibson, the [researcher] at MIT, says understanding plants’ microscopic organization may help engineers design new, bio-inspired materials.

“If you look at engineering materials, we have lots of different types, thousands of materials that have more or less the same range of properties as plants,” Gibson says. “But here the plants are, doing it arranging just four basic constituents. So maybe there’s something you can learn about the design of engineered materials.”

A paper detailing Gibson’s findings has been published this month [freely accessible] in the Journal of the Royal Society Interface.

To Gibson, a cell wall’s components bear a close resemblance to certain manmade materials. For example, cellulose, hemicellulose and lignin can be as stiff and strong as manufactured polymers. A plant’s cellular arrangement can also have engineering parallels: cells in woods, for instance, are aligned, similar to engineering honeycombs, while polyhedral cell configurations, such as those found in apples, resemble some industrial foams.

To explore plants’ natural mechanics, Gibson focused on three main plant materials: woods, such as cedar and oak; parenchyma cells, which are found in fruits and root vegetables; and arborescent palm stems, such as coconut trees. She compiled data from her own and other groups’ experiments and analyzed two main mechanical properties in each plant: stiffness and strength.

Among all plants, Gibson observed wide variety in both properties. Fruits and vegetables such as apples and potatoes were the least stiff, while the densest palms were 100,000 times stiffer. Likewise, apples and potatoes fell on the lower end of the strength scale, while palms were 1,000 times stronger.

“There are plants with properties over that whole range,” Gibson says. “So it’s not like potatoes are down here, and wood is over there, and there’s nothing in between. There are plants with properties spanning that whole huge range. And it’s interesting how the plants do that.”

Since I’m always interested in trees, from Chu’s news release,

In trees such as maples and oaks, cells grow and multiply in the cambium layer, just below the bark, increasing the diameter of the trees. The cell walls in wood are composed of a primary layer with cellulose fibers randomly spread throughout it. Three secondary layers lie underneath, each with varying compositions of lignin and cellulose that wind helically through each layer.

Taken together, the cell walls occupy a large portion of a cell, providing structural support. The cells in woods are organized in a honeycomb pattern — a geometric arrangement that gives wood its stiffness and strength.

Parenchyma cells, found in fruits and root vegetables, are much less stiff and strong than wood. The cell walls of apples, potatoes and carrots are much thinner than in wood cells, and made up of only one layer. Cellulose fibers run randomly throughout this layer, reinforcing a matrix of hemicellulose and pectin. Parenchyma cells have no lignin; combined with their thin walls and the random arrangement of their cellulose fibers, Gibson says, this may explain their cell walls’ low stiffness. The cells in each plant are densely packed together, similar to industrial foams used in mattresses and packaging.

Unlike woody trees that grow in diameter over time, the stems of arborescent palms such as coconut trees maintain similar diameters throughout their lifetimes. Instead, as the stem grows taller, palms support this extra weight by increasing the thickness of their cell walls. A cell wall’s thickness depends on where it is along a given palm stem: Cell walls are thicker at the base and periphery of stems, where bending stresses are greatest.

There’s even a nanotechnology slant to this story, from Chu’s news release,

Gibson sees plant mechanics as a valuable resource for engineers designing new materials. For instance, she says, researchers have developed a wide array of materials, from soft elastomers to stiff, strong alloys. Carbon nanotubes have been used to reinforce composite materials, and engineers have made honeycomb-patterned materials with cells as small as a few millimeters wide. But researchers have been unable to fabricate cellular composite materials with the level of control that plants have perfected.

“Plants are multifunctional,” Gibson says. “They have to satisfy a number of requirements: mechanical ones, but also growth, surface area for sunlight and transport of fluids. The microstructures plants have developed satisfy all these requirements. With the development of nanotechnology, I think there is potential to develop multifunctional engineering materials inspired by plant microstructures.”

Given the problems with the forestry sector, these developments (wooden batteries and engineering materials inspired by plant cell walls) should excite some interest.