Tag Archives: Jiaxing Huang

Better hair dyes with graphene and a cautionary note

Beauty products aren’t usually the first applications that come to mind when discussing graphene or any other research and development (R&D) as I learned when teaching a course a few years ago. But research and development  in that field are imperative as every company is scrambling for a short-lived competitive advantage for a truly new products or a perceived competitive advantage in a field where a lot of products are pretty much the same.

This March 15, 2018 news item on ScienceDaily describes graphene as a potential hair dye,

Graphene, a naturally black material, could provide a new strategy for dyeing hair in difficult-to-create dark shades. And because it’s a conductive material, hair dyed with graphene might also be less prone to staticky flyaways. Now, researchers have put it to the test. In an article published March 15 [2018] in the journal Chem, they used sheets of graphene to make a dye that adheres to the surface of hair, forming a coating that is resistant to at least 30 washes without the need for chemicals that open up and damage the hair cuticle.

Courtesy: Northwestern University

A March 15, 2018 Cell Press news release on EurekAlert, which originated the news item, fills in more the of the story,

Most permanent hair dyes used today are harmful to hair. “Your hair is covered in these cuticle scales like the scales of a fish, and people have to use ammonia or organic amines to lift the scales and allow dye molecules to get inside a lot quicker,” says senior author Jiaxing Huang, a materials scientist at Northwestern University. But lifting the cuticle makes the strands of the hair more brittle, and the damage is only exacerbated by the hydrogen peroxide that is used to trigger the reaction that synthesizes the dye once the pigment molecules are inside the hair.

These problems could theoretically be solved by a dye that coats rather than penetrates the hair. “However, the obvious problem of coating-based dyes is that they tend to wash out very easily,” says Huang. But when he and his team coated samples of human hair with a solution of graphene sheets, they were able to turn platinum blond hair black and keep it that way for at least 30 washes–the number necessary for a hair dye to be considered “permanent.”

This effectiveness has to do with the structure of graphene: it’s made of up thin, flexible sheets that can adapt to uneven surfaces. “Imagine a piece of paper. A business card is very rigid and doesn’t flex by itself. But if you take a much bigger sheet of newspaper–if you still can find one nowadays–it can bend easily. This makes graphene sheets a good coating material,” he says. And once the coating is formed, the graphene sheets are particularly good at keeping out water during washes, which keeps the water from eroding both the graphene and the polymer binder that the team also added to the dye solution to help with adhesion.

The graphene dye has additional advantages. Each coated hair is like a little wire in that it is able to conduct heat and electricity. This means that it’s easy for graphene-dyed hair to dissipate static electricity, eliminating the problem of flyaways on dry winter days. The graphene flakes are large enough that they won’t absorb through the skin like other dye molecules. And although graphene is typically black, its precursor, graphene oxide, is light brown. But the color of graphene oxide can be gradually darkened with heat or chemical reactions, meaning that this dye could be used for a variety of shades or even for an ombre effect.

What Huang thinks is particularly striking about this application of graphene is that it takes advantage of graphene’s most obvious property. “In many potential graphene applications, the black color of graphene is somewhat undesirable and something of a sore point,” he says. Here, though, it’s applied to a field where creating dark colors has historically been a problem.

The graphene used for hair dye also doesn’t need to be of the same high quality as it does for other applications. “For hair dye, the most important property is graphene being black. You can have graphene that is too lousy for higher-end electronic applications, but it’s perfectly okay for this. So I think this application can leverage the current graphene product as is, and that’s why I think that this could happen a lot sooner than many of the other proposed applications,” he says.

Making it happen is his next goal. He hopes to get funding to continue the research and make these dyes a reality for the people whose lives they would improve. “This is an idea that was inspired by curiosity. It was very fun to do, but it didn’t sound very big and noble when we started working on it,” he says. “But after we deep-dived into studying hair dyes, we realized that, wow, this is actually not at all a small problem. And it’s one that graphene could really help to solve.”

Northwestern University’s Amanda Morris also wrote a March 15, 2018 news release (it’s repetitive but there are some interesting new details; Note: Links have been removed),

It’s an issue that has plagued the beauty industry for more than a century: Dying hair too often can irreparably damage your silky strands.

Now a Northwestern University team has used materials science to solve this age-old problem. The team has leveraged super material graphene to develop a new hair dye that is less harmful [emphasis mine], non-damaging and lasts through many washes without fading. Graphene’s conductive nature also opens up new opportunities for hair, such as turning it into in situ electrodes or integrating it with wearable electronic devices.

Dying hair might seem simple and ordinary, but it’s actually a sophisticated chemical process. Called the cuticle, the outermost layer of a hair is made of cells that overlap in a scale-like pattern. Commercial dyes work by using harsh chemicals, such as ammonia and bleach, to first pry open the cuticle scales to allow colorant molecules inside and then trigger a reaction inside the hair to produce more color. Not only does this process cause hair to become more fragile, some of the small molecules are also quite toxic.

Huang and his team bypassed harmful chemicals altogether by leveraging the natural geometry of graphene sheets. While current hair dyes use a cocktail of small molecules that work by chemically altering the hair, graphene sheets are soft and flexible, so they wrap around each hair for an even coat. Huang’s ink formula also incorporates edible, non-toxic polymer binders to ensure that the graphene sticks — and lasts through at least 30 washes, which is the commercial requirement for permanent hair dye. An added bonus: graphene is anti-static, so it keeps winter-weather flyaways to a minimum.

“It’s similar to the difference between a wet paper towel and a tennis ball,” Huang explained, comparing the geometry of graphene to that of other black pigment particles, such as carbon black or iron oxide, which can only be used in temporary hair dyes. “The paper towel is going to wrap and stick much better. The ball-like particles are much more easily removed with shampoo.”

This geometry also contributes to why graphene is a safer alternative. Whereas small molecules can easily be inhaled or pass through the skin barrier, graphene is too big to enter the body. “Compared to those small molecules used in current hair dyes, graphene flakes are humongous,” said Huang, who is a member of Northwestern’s International Institute of Nanotechnology.

Ever since graphene — the two-dimensional network of carbon atoms — burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its ultra-strong and lightweight structure, graphene has potential for many applications in high-performance electronics, high-strength materials and energy devices. But development of those applications often require graphene materials to be as structurally perfect as possible in order to achieve extraordinary electrical, mechanical or thermal properties.

The most important graphene property for Huang’s hair dye, however, is simply its color: black. So Huang’s team used graphene oxide, an imperfect version of graphene that is a cheaper, more available oxidized derivative.

“Our hair dye solves a real-world problem without relying on very high-quality graphene, which is not easy to make,” Huang said. “Obviously more work needs to be done, but I feel optimistic about this application.”

Still, future versions of the dye could someday potentially leverage graphene’s notable properties, including its highly conductive nature.

“People could apply this dye to make hair conductive on the surface,” Huang said. “It could then be integrated with wearable electronics or become a conductive probe. We are only limited by our imagination.”

So far, Huang has developed graphene-based hair dyes in multiple shades of brown and black. Next, he plans to experiment with more colors.

Interestingly, the tiny note of caution”less harmful” doesn’t appear in the Cell Press news release. Never fear, Dr. Andrew Maynard (Director Risk Innovation Lab at Arizona State University) has written a March 20, 2018 essay on The Conversation suggesting a little further investigation (Note: Links have been removed),

Northwestern University’s press release proudly announced, “Graphene finds new application as nontoxic, anti-static hair dye.” The announcement spawned headlines like “Enough with the toxic hair dyes. We could use graphene instead,” and “’Miracle material’ graphene used to create the ultimate hair dye.”

From these headlines, you might be forgiven for getting the idea that the safety of graphene-based hair dyes is a done deal. Yet having studied the potential health and environmental impacts of engineered nanomaterials for more years than I care to remember, I find such overly optimistic pronouncements worrying – especially when they’re not backed up by clear evidence.

Tiny materials, potentially bigger problems

Engineered nanomaterials like graphene and graphene oxide (the particular form used in the dye experiments) aren’t necessarily harmful. But nanomaterials can behave in unusual ways that depend on particle size, shape, chemistry and application. Because of this, researchers have long been cautious about giving them a clean bill of health without first testing them extensively. And while a large body of research to date doesn’t indicate graphene is particularly dangerous, neither does it suggest it’s completely safe.

A quick search of scientific papers over the past few years shows that, since 2004, over 2,000 studies have been published that mention graphene toxicity; nearly 500 were published in 2017 alone.

This growing body of research suggests that if graphene gets into your body or the environment in sufficient quantities, it could cause harm. A 2016 review, for instance, indicated that graphene oxide particles could result in lung damage at high doses (equivalent to around 0.7 grams of inhaled material). Another review published in 2017 suggested that these materials could affect the biology of some plants and algae, as well as invertebrates and vertebrates toward the lower end of the ecological pyramid. The authors of the 2017 study concluded that research “unequivocally confirms that graphene in any of its numerous forms and derivatives must be approached as a potentially hazardous material.”

These studies need to be approached with care, as the precise risks of graphene exposure will depend on how the material is used, how exposure occurs and how much of it is encountered. Yet there’s sufficient evidence to suggest that this substance should be used with caution – especially where there’s a high chance of exposure or that it could be released into the environment.

Unfortunately, graphene-based hair dyes tick both of these boxes. Used in this way, the substance is potentially inhalable (especially with spray-on products) and ingestible through careless use. It’s also almost guaranteed that excess graphene-containing dye will wash down the drain and into the environment.

Undermining other efforts?

I was alerted to just how counterproductive such headlines can be by my colleague Tim Harper, founder of G2O Water Technologies – a company that uses graphene oxide-coated membranes to treat wastewater. Like many companies in this area, G2O has been working to use graphene responsibly by minimizing the amount of graphene that ends up released to the environment.

Yet as Tim pointed out to me, if people are led to believe “that bunging a few grams of graphene down the drain every time you dye your hair is OK, this invalidates all the work we are doing making sure the few nanograms of graphene on our membranes stay put.” Many companies that use nanomaterials are trying to do the right thing, but it’s hard to justify the time and expense of being responsible when someone else’s more cavalier actions undercut your efforts.

Overpromising results and overlooking risk

This is where researchers and their institutions need to move beyond an “economy of promises” that spurs on hyperbole and discourages caution, and think more critically about how their statements may ultimately undermine responsible and beneficial development of a technology. They may even want to consider using guidelines, such as the Principles for Responsible Innovation developed by the organization Society Inside, for instance, to guide what they do and say.

If you have time, I encourage you to read Andrew’s piece in its entirety.

Here’s a link to and a citation for the paper,

Multifunctional Graphene Hair Dye by Chong Luo, Lingye Zhou, Kevin Chiou, and Jiaxing Huang. Chem DOI: https://doi.org/10.1016/j.chempr.2018.02.02 Publication stage: In Press Corrected Proof

This paper appears to be open access.

*Two paragraphs (repetitions) were deleted from the excerpt of Dr. Andrew Maynard’s essay on August 14, 2018

Improve car performance with graphene balls

Lubrication is vital for car engines and it can be expensive when you get it wrong or when it’s not as effective as it could be. A Jan. 25, 2016 news item on Nanowerk highlights some research focused on improving the quality of engine lubrication,

When an automobile’s engine is improperly lubricated, it can be a major hit to the pocketbook and the environment.

For the average car, 15 percent of the fuel consumption is spent overcoming friction in the engine and transmission. When friction is high, gears have to work harder to move. This means the car burns more fuel and emits more carbon dioxide into the atmosphere.

“Every year, millions of tons of fuel are wasted because of friction,” said Northwestern Engineering’s Jiaxing Huang, associate professor of materials science and engineering. “It’s a serious problem.”

While oil helps reduce this friction, people have long searched for additives that enhance oil’s performance. Huang and his collaborators discovered that crumpled graphene balls are an extremely promising lubricant additive. In a series of tests, oil modified with crumpled graphene balls outperformed some commercial lubricants by 15 percent, both in terms of reducing friction and the degree of wear on steel surfaces.

A Jan. 25, 2015 McCormick School of Engineering at Northwestern University news release, which originated the news item, provides more information about the team’s work,

About five years ago, Huang discovered crumpled graphene balls — a novel type of ultrafine particles that resemble crumpled paper balls. The particles are made by drying tiny water droplets with graphene-based sheets inside. “Capillary force generated by the evaporation of water crumples the sheets into miniaturized paper balls,” Huang said. “Just like how we crumple a piece of paper with our hands.”

Shortly after making this discovery, Huang explained it to Chung [Yip-Wah Chung, professor of materials science and engineering] during a lunch in Hong Kong by crumpling a napkin and juggling it. “When the ball landed on the table, it rolled,” Chung recalled. “It reminded me of ball bearings that roll between surfaces to reduce friction.”

That “a-ha!” moment led to a collaboration among the two professors and Wang, who was in the middle of editing a new Encyclopedia of Tribology with Chung.

Nanoparticles, particularly carbon nanoparticles, previously have been studied to help increase the lubrication of oil. The particles, however, do not disperse well in oil and instead tend to clump together, which makes them less effective for lubrication. The particles may jam between the gear’s surfaces causing severe aggregation that increases friction and wear. To overcome this problem, past researchers have modified the particles with extra chemicals, called surfactants, to make them disperse. But this still doesn’t entirely solve the problem.

“Under friction, the surfactant molecules can rub off and decompose,” Chung said. “When that happens, the particles clump up again.”

Because of their unique shape, crumpled graphene balls self-disperse without needing surfactants that are attracted to oil. With their pointy surfaces, they are unable to make close contact with the other graphene balls. Even when they are squeezed together, they easily separate again when disturbed.

Huang and his team also found that performance of crumpled graphene balls is not sensitive to their concentrations in the oil. “A few are already sufficient, and if you increase the concentration by 10 times, performance is about the same,” Huang said. “For all other carbon additives, such performance is very sensitive to concentration. You have to find the sweet spot.”

“The problem with finding a sweet spot is that, during operation, the local concentration of particles near the surfaces under lubrication could fluctuate,” Wang [Q. Jane Wang, professor of mechanical engineering] added. “This leads to unstable performance for most other additive particles.”

Next, the team plans to explore the additional benefit of using crumpled graphene balls in oil: they can also be used as carriers. Because the ball-like particles have high surface area and open spaces, they are good carriers for materials with other functions, such as corrosion inhibition.

Here’s a link to and a citation for the paper,

Self-dispersed crumpled graphene balls in oil for friction and wear reduction by Xuan Dou, Andrew R. Koltonow, Xingliang He, Hee Dong Jang, Qian Wang, Yip-Wah Chung, and Jiaxing Huang. PNAS 2016 doi:10 .1038/srep03863 Published ahead of print January 25, 2016

This paper is behind a paywall.

One final comment, it’s a bit unusual to see the term ‘carbon nanoparticle’. Generally speaking, carbon nanoparticles seem to have their own names, graphene, carbon nanotubes, and buckminsterfullerenes come to mind.

Silver nanowires have a surprising ability to self-heal

It seems there could be a new member of the flexible electronics materials community, silver nanowires, according to a Jan. 23, 2015 news item on ScienceDaily,

Wth its high electrical conductivity and optical transparency, indium tin oxide is one of the most widely used materials for touchscreens, plasma displays, and flexible electronics. But its rapidly escalating price has forced the electronics industry to search for other alternatives.

One potential and more cost-effective alternative is a film made with silver nanowires–wires so extremely thin that they are one-dimensional–embedded in flexible polymers. Like indium tin oxide, this material is transparent and conductive. But development has stalled because scientists lack a fundamental understanding of its mechanical properties.

A Jan. 23, 2015 Northwestern University news release (also on EurekAlert), which originated the news item, explains what makes silver nanowires a candidate as an alternative to indium tin oxide for use in flexible electronics,

… Horacio Espinosa, the James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at Northwestern University’s McCormick School of Engineering, has led research that expands the understanding of silver nanowires’ behavior in electronics.

Espinosa and his team investigated the material’s cyclic loading, which is an important part of fatigue analysis because it shows how the material reacts to fluctuating loads of stress.

“Cyclic loading is an important material behavior that must be investigated for realizing the potential applications of using silver nanowires in electronics,” Espinosa said. “Knowledge of such behavior allows designers to understand how these conductive films fail and how to improve their durability.”

By varying the tension on silver nanowires thinner than 120 nanometers and monitoring their deformation with electron microscopy, the research team characterized the cyclic mechanical behavior. They found that permanent deformation was partially recoverable in the studied nanowires, meaning that some of the material’s defects actually self-healed and disappeared upon cyclic loading. These results indicate that silver nanowires could potentially withstand strong cyclic loads for long periods of time, which is a key attribute needed for flexible electronics.

“These silver nanowires show mechanical properties that are quite unexpected,” Espinosa said. “We had to develop new experimental techniques to be able to measure this novel material property.”

The findings were recently featured on the cover of the journal Nano Letters. Other Northwestern coauthors on the paper are Rodrigo Bernal, a recently graduated PhD student in Espinosa’s lab, and Jiaxing Huang, associate professor of materials science and engineering in McCormick.

“The next step is to understand how this recovery influences the behavior of these materials when they are flexed millions of times,” said Bernal, first author of the paper.

Here’s a link to and citation for the paper,

Intrinsic Bauschinger Effect and Recoverable Plasticity in Pentatwinned Silver Nanowires Tested in Tension by Rodrigo A. Bernal, Amin Aghaei, Sangjun Lee, Seunghwa Ryu, Kwonnam Sohn, Jiaxing Huang, Wei Cai, and Horacio Espinosa. Nano Lett., 2015, 15 (1), pp 139–146 DOI: 10.1021/nl503237t Publication Date (Web): October 3, 2014
Copyright © 2014 American Chemical Society

This particular version of the paper is behind a paywall. However, access to the paper is possible although I make no claims as to which version it is or whether it will continue to be freely accessible.

Nano crafts class: get out your ‘paper’ and scissors

It’s not all atomic force microscopy and nanotweezers as scientists keep reminding us that the techniques we learned in kindergarten can be all the high technology we need even when working at the nanoscale. From the Nov. 14, 2012 news item on ScienceDaily,

Two Northwestern University researchers have discovered a remarkably easy way to make nanofluidic devices: using paper and scissors. And they can cut a device into any shape and size they want, adding to the method’s versatility.

The Nov. 14, 2012 Northwestern University news release by Megan Fellman explains both nanofluidic devices and the new technique,

Nanofluidic devices are attractive because their thin channels can transport ions — and with them a higher than normal electric current — making the devices promising for use in batteries and new systems for water purification, harvesting energy and DNA sorting.

The “paper-and-scissors” method one day could be used to manufacture large-scale nanofluidic devices without relying on expensive lithography techniques.

The Northwestern duo found that simply stacking up sheets of the inexpensive material graphene oxide creates flexible “paper” with tens of thousands of very useful channels. A tiny gap forms naturally between neighboring sheets, and each gap is a channel through which ions can flow.

Using a pair of regular scissors, the researchers simply cut the paper into a desired shape, which, in the case of their experiments, was a rectangle.

“In a way, we were surprised that these nanochannels actually worked, because creating the device was so easy,” said Jiaxing Huang, who conducted the research with postdoctoral fellow Kalyan Raidongia. “No one had thought about the space between sheet-like materials before. Using the space as a flow channel was a wild idea. We ran our experiment at least 10 times to be sure we were right.”

The process is a little more complex than kindergarten crafts (from Fellman’s news release),

To create a working device, the researchers took a pair of scissors and cut a piece of their graphene oxide paper into a centimeter-long rectangle. They then encased the paper in a polymer, drilled holes to expose the ends of the rectangular piece and filled up the holes with an electrolyte solution (a liquid containing ions) to complete the device.

Next they put electrodes at both ends and tested the electrical conductivity of the device. Huang and Raidongia observed higher than normal current, and the device worked whether flat or bent.

The nanochannels have significantly different — and desirable — properties from their bulk channel counterparts, Huang said. The nanochannels have a concentrating effect, resulting in an electric current much higher than those in bulk solutions.

Graphene oxide is basically graphene sheets decorated with oxygen-containing groups. It is made from inexpensive graphite powders by chemical reactions known for more than a century.

Scaling up the size of the device is simple. Tens of thousands of sheets or layers create tens of thousands of nanochannels, each channel approximately one nanometer high. There is no limit to the number of layers — and thus channels — one can have in a piece of paper.

To manufacture very massive arrays of channels, one only needs to put more graphene oxide sheets in the paper or to stack up many pieces of paper. A larger device, of course, can handle larger quantities of electrolyte.

Kindergarten techniques worked well for Andre Geim and Konstantin Novoselov who received Nobel prizes for their work on graphene (from my Oct. 7,2010 posting),

The technique that Geim and Novoselov used to create the first graphene sheets both amuses and fascinates me (from the article by Kit Eaton on the Fast Company website),

The two scientists came up with the technique that first resulted in samples of graphene–peeling individual atoms-deep sheets of the material from a bigger block of pure graphite. The science here seems almost foolishly simple, but it took a lot of lateral thinking to dream up, and then some serious science to investigate: Geim and Novoselo literally “ripped” single sheets off the graphite by using regular adhesive tape.

Then, there’s the ‘Shrinky Dinks’ nanopatterning technique (from my Aug. 16,2010 posting),

Scientists at a Northwestern University laboratory have taken to using a children’s arts and crafts product, Shrinky Dinks, for a new way to create large area nanoscale patterns on the cheap.

It’s good to be reminded that science at its heart is not about expensive equipment and complicated techniques but a means of exploring the world around us with the means at hand.