Tag Archives: Jillian Buriak

Solar cells from the University of Alberta?

Trevor Robb’s Aug. 7, 2015 article for the Edmonton Sun (Alberta, Canada) features a research team dedicated to producing better solar cells and a facility (nanoFAB) at the University of Alberta,

But in an energy rich province like Alberta — known for its oil and gas sector — [JIllian] Buriak [chemistry professor at the University of Alberta, Canada Research chair of nanomaterials] is on a mission to shed some light on another form of energy Alberta is known for, solar energy.

So her team is dedicated to producing flexible, recyclable plastic solar cells that can be printed just like a newspaper.

In fact, they’ve already begun doing so.

In order to produce the sheet-like solar cells, Buriak and her team use nothing more than simple commercial laminators and a spray gun, not unlike something you would use to paint a car.

“We run them through this laminator that squeezes them down and turns them from something that’s not conducting to something that’s really conducting,” said Buriak.

“You could incorporate it into clothing, you could incorporate it into books, into window blinds, or unroll it on a tent when you’re camping,” said Buriak. “You could use it anywhere. Anything from simple funny things to cafe umbrellas that could allow you to charge electronic devices, to large scale things in developing countries; large scale solar cells that you could simply carry on your backpack, unroll at a medical clinic, and suddenly you have instant power.”

There are more details about Buriak’s work and information about nanoFAB in Robb’s article. As for technical information, the best I can find is in an Aug. 29, 2013 University of Alberta news release (also on EurekAlert),

University of Alberta researchers have found that abundant materials in the Earth’s crust can be used to make inexpensive and easily manufactured nanoparticle-based solar cells.

The discovery, several years in the making, is an important step forward in making solar power more accessible to parts of the world that are off the traditional electricity grid or face high power costs, such as the Canadian North, said researcher Jillian Buriak, a chemistry professor and senior research officer of the National Institute for Nanotechnology based on the U of A campus.
Buriak and her team have designed nanoparticles that absorb light and conduct electricity from two very common elements: phosphorus and zinc. Both materials are more plentiful than scarce materials such as cadmium and are free from manufacturing restrictions imposed on lead-based nanoparticles.

Buriak collaborated with U of A post-doctoral fellows Erik Luber of the U of A Faculty of Engineering and Hosnay Mobarok of the Faculty of Science to create the nanoparticles. The team was able to develop a synthetic method to make zinc phosphide nanoparticles, and demonstrated that the particles can be dissolved to form an ink and processed to make thin films that are responsive to light.

Buriak and her team are now experimenting with the nanoparticles, spray-coating them onto large solar cells to test their efficiency. The team has applied for a provisional patent and has secured funding to enable the next step to scale up manufacture.

I wonder if this news article by Robb is an attempt by Buriak to attract interest from potential investors?

Globe and Mail discovers nanomedicine

Business writer, Nick Rockel, has an October 4, 2011 article titled, Nano-technology [sic] coming to the doctor’s office, in The Globe and Mail newspaper. Dr. Jillian Buriak and her colleague, Dr.Lori West (my latest posting about their work was April 28, 2011) were heavily featured in it. From the Oct. 4, 2011 article in The Globe and Mail,

One of Dr. Buriak’s key collaborators on the transplantation project is Lori West, a U of A [University of Alberta] professor of pediatrics, surgery and immunology. Dr. West, a renowned cardiac transplant expert, is known for her discovery that children younger than two will not reject a heart from a donor with a different blood type.

That’s because the immune system is still developing during infancy. Even more remarkably, if a baby with Type A blood gets a Type B heart, it will develop a lifelong tolerance for B and AB blood.

The U of A team “functionalized” so-called stealth nano-particles with the antigens, or markers, that blood cells use to recognize each other. In animal tests, it introduced these particles into the bloodstream in an attempt to teach the body to tolerate every blood type.

Dr. Buriak, who hopes to move to more advanced models by 2015, says the nano-particles could eventually join the standard set of shots that children receive. “Later, if you ever had to have an organ transplant or a transfusion, you wouldn’t have to wait for the right one – you could just take any of them.”

Buriak’s and West’s strategy for avoiding organ rejection contrasts with the strategy used by a joint (Swedish/UK/US) team, which I featured in an August 2, 2011 posting about their work transplanting a synthetic windpipe coated with stem cells harvested from the patient receiving the new organ.

Rockel’s article goes on to provide descriptions of other nanomedicine initiatives (a mix of Canadian- and US-based projects). He employs the usual ‘war against disease’ rhetorical style common to articles about any kind of medicine even when he’s including a ‘kinder, gentler’ quote such as,

People keep asking when her field will deliver a killer app like the cure for cancer, Dr. Buriak says. “But what nanotechnology has done more than anything else is bring people together who normally would never talk to each other,” she explains. [emphases mine]

As one would expect from a business writer, the article concludes with a list of three commercially available nanomedicne products. I wish Rockel had stated whether or not he’s done additional research into these products since this list is culled from the Project on Emerging Nanotechnologies (PEN) database. As I’ve noted before (my July 26, 2011 posting) there is no oversight provided by PEN nor does the organization require any description of how the product is nanotechnology-enable, as they openly admit.

I’m glad to see more coverage of nanotechnology and that writers from many specialties are learning about it. As for why I described Nick Rockel as a business writer, here’s his description of his work,

Market forces are one thing, but you can’t force somebody to read about the markets. Nick Rockel helps you connect with your audience. A veteran writer and editor, Nick knows how to grab people’s attention by giving them access to the financial and investment world. Whether it’s hedge funds or herding behaviour, he presents complex subjects in clear and simple terms, without any jargon or bafflegab. Most important, Nick finds the story behind the numbers and makes it resonate with readers.

He advertizes himself as providing Financial Wrting, Editing & Research.

Alberta researchers at the National Institute of Nanotechnology create nano coating for stainless steel implants in bid to trick body’s immune system

A research team in Alberta has found a way to coat stainless steel with glass silica and carbohydrates so the metal (already in general use) can be more effective in implanted biomedical devices. From the April 27, 2011 news item on Nanowerk,

Implanted biomedical devices, such as cardiac stents, are implanted in over 2 million people every year, with the majority made from stainless steel. Stainless steel has many benefits – strength, generally stability, and the ability to maintain the required shape long after it has been implanted. But, it can also cause severe problems, including blood clotting if implanted in an artery, or an allergenic response due to release of metal ions such as nickel ions.

This particular initiative, devising a means to trick the body’s immune system into better acceptance of implants, is part of a larger project where the goal is,

… to allow cross-blood type organ transplants, meaning that blood types would not necessarily need to be matched between donor and recipient when an organ becomes available for transplantation.

In the meantime, the team has found a means that they hope will make the stainless steel implants easier for the immune system to accept,

… sophisticated carbohydrate (sugar) molecules needed to be attached to the stainless steel surface to bring about the necessary interaction with the body’s immune system. Its inherent stainless characteristic makes stainless steel a difficult material to augment with new functions, particularly with the controlled and close-to-perfect coverage needed for biomedical implants. The Edmonton-based team found that by first coating the surface of the stainless steel with a very thin layer (60 atoms deep) of glass silica using a technique available at the National Institute for Nanotechnology, called Atomic Layer Deposition (ALD), they could overcome the inherent non-reactivity of the stainless steel. The silica provide a well-defined “chemical handle” through which the carbohydrate molecules, prepared in the Alberta Ingenuity Centre for Carbohydrate Science, could be attached. Once the stainless steel had been controlled, the researchers demonstrated that the carbohydrate molecules covered the stainless steel in a highly controlled way, and in the correct orientation to interact with the immune system.

In trying to find out a little more about this project, I found a presentation* from 2008 (or earlier) made by Todd Lowary, Jillian Buriak, and Lori West, presumably for investment purposes, about another initiative associated with this project titled, Infant Heart Transplants and Nanotechnology. Here’s the hypothesis from slide 3 of the presentation,

Hypothesis: Exposing a newborn to ABO antigens attached to a nanoparticle or stent will induce tolerance during immune development and in turn allow transplants across the blood-group barrier.

Since a baby’s immune system isn’t fully developed at birth, exposing a child in need of a cardiac transplant to a suitably nanoparticle-coated stent would theoretically allow the child to develop tolerance for blood group types other than its own thereby allowing a cross-blood type organ transplant. Towards the end of the presentation (which isn’t dated), they have a timeline which includes filing for various patents and a proposed date of 2013 for human clinical trials.

*The presentation is on the Alberta Centre for Advanced Microsystems and Nanotechnology Products (ACAMP). According to their About page,

ACAMP (Alberta Centre for Advanced MNT Products) is a not for profit organization that provides specialized services to micro nano technology clients.

ACAMP’s services encompass key areas identified as critical for the commercialization of MNT products – Marketing & Business Development, Product Development, Packaging and Assembly, Test and Characterization.

That’s it for today.

ETA July 4, 2011: There’s a May 16, 2011 news item by Cameron Chai on Azonano about this team which offers additional information.

Alberta’s Let’s Talk Nanoscience followup

Here’s a followup to the Feb.25, 2011 Let’s Talk Nanoscience event (mentioned in my Jan. 12, 2011 posting), from the Ryan Heise article on the University of Alberta Engineering Dept.’s webpage,

About 170 high school students from around Edmonton learned about nanotechnology and leading-edge research during the inaugural Let’s Talk NanoScience event at the U of A.

The event was put on by the Let’s Talk Science U of A chapter and the U of A Nanotechnology Group [Let’s Talk Science website], with support from the Faculty of Engineering, Faculty of Science, and the National Institute for Nanotechnology (NINT).

This year, the group decided to focus on individual institution’s strong points. For the U of A, that means being a leading centre for nanotechnology research.

Electrical and computer engineering PhD student Steven Jim [emphasis mine] from the Nanotechnology Group says raising awareness is especially important when funding is coming from the public.

“As scientists and researchers, we’re basically funded by the government—by taxpayers. So helping the public know what we’re doing is important,” Jim said.  [emphasis mine] “It’s something that’s often forgotten when you’re spending your life in a lab.”

The day was kicked off with two lectures. The first from Nils Petersen, director general of NINT [National Institute of Nanotechnology], explored why nanotechnology will be increasingly important. Petersen made three main points: it’s going to be everywhere, it’s going to be transformative within the next 50 years, and it’s going to be here forever. [emphasis mine] He encouraged the students to be conscious of how nanotechnology might affect them.

The second lecture by Jillian Buriak, a senior research officer with NINT, gave an overview of just what nanotechnology is. She engaged the students by hammering home just how small-scale nanotechnology is, as well as describing some of the ground breaking processes that are changing how people look at science and engineering.

After that, the students broke into groups for lab tours and smaller sessions with graduate students where they produced gold nano-particles.

Mr. Jim, I quite agree with you. As for Nils Petersen, I found that bit about nanotechnology “… being here forever” an odd statement and would have liked to have heard it in context. As for the other points, I understand that nanotechnology-enabled products are going to be everywhere (those products are already quite pervasive).  I also understand its “transformative” aspects in the same way I understand electricity’s transformative aspects. But nanotechnology will be here forever? I am intrigued.

Canadian breakthrough with hybrid solar panels

A team of scientists from the University of Alberta and the National Institute of Nanotechnology (located in Edmonton, Alberta) announced they’ve improved the performance of plastic solar cells (hybrid organic solar cells) by 30%.  The team worked together for two years on the project and they expect that mass production of improved plastic solar cells is five to seven years away. Earlier this week the principal investigator, Jillian Buriak was named Canada Research Chair in Nanomaterials (my Feb. 23, 2009 posting) so this must be quite a week for her. From the press release, here’s her description of a solar cell structure and the project’s improvement,

“Consider a clubhouse sandwich, with many different layers. One layer absorbs the light, another helps to generate the electricity, and others help to draw the electricity out of the device. Normally, the layers don’t stick well, and so the electricity ends up stuck and never gets out, leading to inefficient devices. We are working on the mayonnaise, the mustard, the butter and other ‘special sauces’ that bring the sandwich together, and make each of the layers work together. That makes a better sandwich, and makes a better solar cell, in our case.”

The news release is here on Eureka Alert (I’m not sure how long this remains available) and there’s a bit more information on NanoWerk, Nanotechnology researchers improve performance of plastic solar cells. I don’t understand the ‘hybrid organic solar cell’ decription and I haven’t found an explanation in materials I’ve seen. If you’re interested in the research paper (Thienylsilane-Modified Indium Tin Oxide as an Anodic Interface in Polymer/Fullerene Solar Cells), it’s here at the American Chemical Society (ACS) but it is behind a paywall.

On a completely other note, there was an article on the BBC News site about researchers who report ‘Oldest English words’ identified.

Nano song, swimwear, and the Canadian government announces some funding for research chairs

There’s a nano song making the rounds. The video concept sounds delightful but I’m having problems with videos lately. It’s something do with Adobe Flash Player 10. It gave me a horrible time (my system almost goes to sleep) last week and the week before and I’m at the point where I’m afraid to look at videos. So if you want to take a look at the nano song video, it’s here or here.

There was an announcement about a new type of swimsuit, Nanotechnology Swimsuits Gear Up to Become the Biggest Revolution in Swimwear since the Bikini. It turns that the fabric dries instantly. Somehow that doesn’t seem to be on par with the ‘bikini’ revolution. Interestingly, there is no detail about the process or how it works. From the article,

“Sun Dry Swim fabrics are treated using our proprietary methods with a nanotechnology process that is inert, UV stable, and completely harmless to skin. Our non-toxic nanotechnology treatment is water based and environmentally friendly,” according to Amy Hardin of Sun Dry Technologies.

I wonder how they determined it was non-toxic, environmentally friendly, etc. There’s no mention of testing.

The Canadian government today (Feb. 23, 2009) announced the investment of money ($120.4 M) to fund 134 new or renewed Canada Research Chairs. (Government of Canada provides support to Canada Research Chairs at 37 universities) Jillian Buriak at the University of Alberta holds a new Canada Research Chair in Nanomaterials. I read recently that this programme has attracted a lot of research talent to Canada and is being looked at by other countries as a model. After the cuts in research funding in the latest federal budget, it’s nice to be able to mention something a little more positive.