Tag Archives: Joe Incandela

Quantum supremacy

This supremacy, refers to an engineering milestone and a October 23, 2019 news item on ScienceDaily announces the milestone has been reached,

Researchers in UC [University of California] Santa Barbara/Google scientist John Martinis’ group have made good on their claim to quantum supremacy. Using 53 entangled quantum bits (“qubits”), their Sycamore computer has taken on — and solved — a problem considered intractable for classical computers.

An October 23, 2019 UC Santa Barbara news release (also on EurekAlert) by Sonia Fernandez, which originated the news item, delves further into the work,

“A computation that would take 10,000 years on a classical supercomputer took 200 seconds on our quantum computer,” said Brooks Foxen, a graduate student researcher in the Martinis Group. “It is likely that the classical simulation time, currently estimated at 10,000 years, will be reduced by improved classical hardware and algorithms, but, since we are currently 1.5 trillion times faster, we feel comfortable laying claim to this achievement.”

The feat is outlined in a paper in the journal Nature.

The milestone comes after roughly two decades of quantum computing research conducted by Martinis and his group, from the development of a single superconducting qubit to systems including architectures of 72 and, with Sycamore, 54 qubits (one didn’t perform) that take advantage of the both awe-inspiring and bizarre properties of quantum mechanics.

“The algorithm was chosen to emphasize the strengths of the quantum computer by leveraging the natural dynamics of the device,” said Ben Chiaro, another graduate student researcher in the Martinis Group. That is, the researchers wanted to test the computer’s ability to hold and rapidly manipulate a vast amount of complex, unstructured data.

“We basically wanted to produce an entangled state involving all of our qubits as quickly as we can,” Foxen said, “and so we settled on a sequence of operations that produced a complicated superposition state that, when measured, returns bitstring with a probability determined by the specific sequence of operations used to prepare that particular superposition. The exercise, which was to verify that the circuit’s output correspond to the equence used to prepare the state, sampled the quantum circuit a million times in just a few minutes, exploring all possibilities — before the system could lose its quantum coherence.

‘A complex superposition state’

“We performed a fixed set of operations that entangles 53 qubits into a complex superposition state,” Chiaro explained. “This superposition state encodes the probability distribution. For the quantum computer, preparing this superposition state is accomplished by applying a sequence of tens of control pulses to each qubit in a matter of microseconds. We can prepare and then sample from this distribution by measuring the qubits a million times in 200 seconds.”

“For classical computers, it is much more difficult to compute the outcome of these operations because it requires computing the probability of being in any one of the 2^53 possible states, where the 53 comes from the number of qubits — the exponential scaling is why people are interested in quantum computing to begin with,” Foxen said. “This is done by matrix multiplication, which is expensive for classical computers as the matrices become large.”

According to the new paper, the researchers used a method called cross-entropy benchmarking to compare the quantum circuit’s output (a “bitstring”) to its “corresponding ideal probability computed via simulation on a classical computer” to ascertain that the quantum computer was working correctly.

“We made a lot of design choices in the development of our processor that are really advantageous,” said Chiaro. Among these advantages, he said, are the ability to experimentally tune the parameters of the individual qubits as well as their interactions.

While the experiment was chosen as a proof-of-concept for the computer, the research has resulted in a very real and valuable tool: a certified random number generator. Useful in a variety of fields, random numbers can ensure that encrypted keys can’t be guessed, or that a sample from a larger population is truly representative, leading to optimal solutions for complex problems and more robust machine learning applications. The speed with which the quantum circuit can produce its randomized bit string is so great that there is no time to analyze and “cheat” the system.

“Quantum mechanical states do things that go beyond our day-to-day experience and so have the potential to provide capabilities and application that would otherwise be unattainable,” commented Joe Incandela, UC Santa Barbara’s vice chancellor for research. “The team has demonstrated the ability to reliably create and repeatedly sample complicated quantum states involving 53 entangled elements to carry out an exercise that would take millennia to do with a classical supercomputer. This is a major accomplishment. We are at the threshold of a new era of knowledge acquisition.”

Looking ahead

With an achievement like “quantum supremacy,” it’s tempting to think that the UC Santa Barbara/Google researchers will plant their flag and rest easy. But for Foxen, Chiaro, Martinis and the rest of the UCSB/Google AI Quantum group, this is just the beginning.

“It’s kind of a continuous improvement mindset,” Foxen said. “There are always projects in the works.” In the near term, further improvements to these “noisy” qubits may enable the simulation of interesting phenomena in quantum mechanics, such as thermalization, or the vast amount of possibility in the realms of materials and chemistry.

In the long term, however, the scientists are always looking to improve coherence times, or, at the other end, to detect and fix errors, which would take many additional qubits per qubit being checked. These efforts have been running parallel to the design and build of the quantum computer itself, and ensure the researchers have a lot of work before hitting their next milestone.

“It’s been an honor and a pleasure to be associated with this team,” Chiaro said. “It’s a great collection of strong technical contributors with great leadership and the whole team really synergizes well.”

Here’s a link to and a citation for the paper,

Quantum supremacy using a programmable superconducting processor by Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis. Nature volume 574, pages505–510 (2019) DOI: https://doi.org/10.1038/s41586-019-1666-5 Issue Date 24 October 2019

This paper appears to be open access.

Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson

Physicists are jubilant over the announcement from CERN (European Particle Physics Laboratory) that (from the CERN website),

The ATLAS and CMS experiments at CERN today presented their latest results in the search for the long-sought Higgs boson. Both experiments see strong indications for the presence of a new particle, which could be the Higgs boson, in the mass region around 126 gigaelectronvolts (GeV). [emphases mine]

The depth of feeling is extraordinary given the announcement  is cautious. When you consider that this pursuit of the Higgs boson is international in scope (approximately 150 scientists from Canada and I assume much larger contingents from elsewhere) and the effort has spanned several years, it’s fascinating and instructive to observe the jubilance.

Here’s a sampling from the July 4, 2012 live blog Lizzy Davies of the UK’s Guardian newspaper (with tweets from Guardian science correspondent Ian Sample and others) wrote during the announcement,

7:17 am … The elusive “God particle” has become the most sought-after particle in modern science. Its discovery would be proof of an invisible energy field that fills the vacuum of space, and excitement in the scientific community is at fever pitch.

8.02am: And we’re off. First up is Joe Incandela, the leader of the team using the CMS detector to search for new particles. He’ll be followed by Fabiola Gianotti from the other team using the Atlas detector.

He says the results are “very strong, very solid”.

8.13am: As Incandela speaks, the brilliant Ian Sample is live-tweeting from Cern.

Ian Sample @iansample

I’ve been told that anyone who thinks they haven’t found a new particle after this has lost touch with reality. #cern #lhc #higgs #ichep2012

Ian Sample @iansample

Incandela “Many people went many days without sleep.” #ichep2012 #lhc #cern #higgs

And we’re keeping our observations extremely serious in keeping with the potentially historic nature of the day.

Ian Sample @iansample

Does Joe Incandela (cms spokesman) not look a little like George Clooney? #ichep2012 #lhc #higgs #lhc

8.39am: Big applause.

Anil Ananthaswamy @edgeofphysics

Combined significance of all results 5 standard deviations. Room breaks into applause, whistles #Higgs #LHC

9.44am: Rolf Heuer, Director General of CERN, offers this verdict:

As a layman I would say: I think we have it. You agree?

The audience claps. I think that’s a yes.

9.46am: Heuer flashes up on screen a slide that says Cern have discovered “a particle consistent with the Higgs boson- but which one?”

So, while this is undoubtedly a milestone with “global implications”, he says, it is also the beginning of a lot more research and investigation. But, he adds, “I think we can be very, very optimistic”.

9.49am: Peter Higgs, who first proposed the idea of this boson in 1964 and is now 83, may have shed a tear or two there- a sight which seems to have got everyone else going too.

Manlio De Domenico @manlius84

Peter #Higgs is crying… it’s a great day for physics. I am proud of being a physician :°)

I definitely wanted to get that “George Clooney” comment in here so you can have a sense of just how giddy people can get (if you didn’t already know) in the midst of an important announcement.

Jeff Forshaw, particle physics professor at the University of Manchester, provides some perspective about the importance of this announcement in his July 4, 2012 posting for the Guardian,

Fundamental science like this is thrilling, not least because of the way that years of hard work, experimentation and mathematical analysis have led us to a worldview of astonishing simplicity and beauty.

We have learned that the universe is made up of particles and that those particles dance around in a crazy quantum way. But the rules of the game are simple – they can be codified (almost) on the back of an envelope and they express the fact that, at its most elemental level, the universe is governed by symmetry. Symmetry and simplicity go hand in hand – half a snowflake is enough information to anticipate what the other half looks like – and so it is with those dancing particles. The discovery that nature is beautifully symmetric means we have very little choice in how the elementary particles do their dance – the rules simply “come for free”. Why the universe should be built in such an elegant fashion is not understood yet, but it leaves us with a sense of awe and wonder that we should be privileged to live in such a place.

Now, physicists will begin again as they try to better our understanding of the universe. But for today they will celebrate and I have some quotes from the Canadian contingent about this latest announcement (from the July 4, 2012 TRIUMF news release),

Likening the quest for the Higgs to Christopher Columbus’s voyage of
discovery to the New World, Nigel S. Lockyer, director of TRIUMF [based at the University of British Columbia in Vancouver, Canada], said,”With ATLAS and the LHC, we set sail in the direction toward what we thought was the land of the Higgs. Last December, we saw a smudge on the horizon and knew we could be getting close to land. With these latest results, we’ve
seen the shoreline! We know we’ll make it to dry land, but the ship is not
in to shore just yet.”

The results presented today are labeled preliminary. They are based on data
collected in 2011 and 2012, with the 2012 data still under analysis.
Publication of the analyses shown today is expected around the end of July.
A more complete picture of today’s observations will emerge later this year
after the LHC provides the experiments with more data.

“The observation of a new particle at about 125 GeV, or 130 times the mass
of the proton, by both the ATLAS and CMS groups is already a tremendous
achievement,” said Rob McPherson, spokesperson of the ATLAS Canada
collaboration, a professor of physics at the University of Victoria and
Institute of Particle Physics scientist. “While our preliminary measurements
show this new particle is consistent with the Higgs boson, we need more data
to be sure that it is definitely the Higgs.”

The next step will be to determine the precise nature of the particle and
its significance for our understanding of the universe. Are its properties
as expected for the long-sought Higgs boson, the final\ missing ingredient
in the Standard Model of particle physics? Or is it something more exotic?
The Standard Model describes the fundamental particles from which we, and
every visible thing in the universe, are made, and the forces acting between
them. All the matter that we can see, however, appears to be no more than
about 4% of the total. A more exotic version of the Higgs particle could be
a bridge to understanding the 96% of the universe that remains obscure.

Don’t forget there’s an open house from 9 am to 11 am today at TRIUMF where you can find out more about the Higgs boson and the latest announcement.

ETA July 4, 2012 1:30 pm PST: You can still attend a live Q&A being held by the journal Nature tomorrow (July 5, 2012) at 2 pm BST or 6 am PST: Live Q&A: Higgs found, so what’s next?