Tag Archives: Justin Trudeau

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,
ON)

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,
Netherlands)

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment
continue.

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

Science funding, 2018 Canadian federal budget, and a conversation between Prime Minister Justin Trudeau and US science popularizer, Bill Nye (the Science Guy)

It may be too soon to describe it as a fallback position but Canadian Prime Minister, Justin Trudeau, seems to return to science when he wants to generate or bask in positive news coverage.  Coming off a not entirely successful state visit to India (February 17 – 23, 2018), he received some of the worst notices of his international diplomatic efforts to date. (This February 23, 2018 article, ‘India to Justin Trudeau: Stop trying so hard‘, by Vidhi Doshi for The Washington Post was one of the kinder pieces while this February 25, 2018 article, ‘Why Justin Trudeau’s India tour turned out to be a diplomatic disaster‘, by Candice Malcolm and published on economictimes.indiatimes.com was one of the more scathing.

Budget 2018: We’re in the money

The announcement of the federal budget (February 27, 2018) might be viewed as offering welcome relief from torrents of criticism.  From a March 7, 2018 Canadian Science Policy Centre announcement (CSPC; received via email) about the publication of a series of opinion pieces (editorials) concerning the 2018 federal budget,

CSPC’s Official Statement on the Federal Budget 2018
Déclaration officielle du CPSC concernant le budget fédéral 2018

Canadian Science Policy Centre commends the Government of Canada for the strong investment in Science projected in the Budget 2018 for the next five years. The Centre congratulates all Canadians, in particular members of the Fundamental Science Review Panel and the entire community who strongly supported the panel recommendations and the investment in Science.

Le Centre sur les politiques scientifiques canadiennes félicite le Gouvernement du Canada pour son investissement substantiel en sciences prévu dans le budget 2018 pour les cinq prochaines années. Le Centre félicite tous les Canadiens, plus particulièrement les membres du Comité de l’examen du soutien aux sciences ainsi que la communauté dans son ensemble, qui a vivement appuyé les recommandations du Comité et l’investissement en sciences.

You can find the editorials here (17 in total including an interview with Science Minister Kirsty Duncan … surprisingly[!!!!], she’s very proud of the government’s budget for science) along with editorials on other issues. Russ Roberts’ piece (Federal Budget 2018 – Missed Another Opportunity to Maximize ROI on Canadians’ Investments in Innovation) stands out as it is rather ‘grumpy’ but only in comparison to pretty much everyone else who is pleased to one degree or another.

The editorials put me in mind of an old song celebrating money in a Busby Berkeley production. Prepare yourself, over the top was where he liked to live,

Budget 2018: a little more nuance

Brooke Struck over on sciencemetrics.org offers some incisive analysis in two separate blog postings. First, he tackles the money in a February 28, 2018 posting (Note: Links have been removed),

The Naylor report [links to my 3-part series on the report also known as, INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research {Review of fundamental research final report} follow at the end of this posting] contained many recommendations, but the one that got the most press—and surely is the focus of attention right now, given the release of the budget yesterday—is the recommendation that funding for the three granting councils be increased. The amounts were quite high, too, calling for an increase from $3.5 billion to $4.8 billion to remediate slides over the decade of the previous government’s term.

The timing of the report’s release was wise, as a release before that year’s budget might have created the expectation that the money would flow immediately, which simply doesn’t fit with the timelines of federal budget development processes. From April 2017 to now, the research community in Canada has rallied around the report and its recommendations, sustaining a campaign to keep research (and its funding) in the national discussion.

One note that the panel emphasized was that the Social Sciences and Humanities Research Council (SSHRC) had been hit particularly hard. The rule of thumb is apparently that SSHRC is supposed to get 20% of the total granting council budget, while 40% goes to the natural sciences & engineering [Natural Sciences and Engineering Council] (NSERC) and 40% goes to health research [Canadian Institutes of Health Research] (CIHR). SSHRC’s portion had consistently clocked in at around 15%.

Furthermore, the report emphasized that the underlying reasoning behind the 40-40-20 split might not hold water anymore, as the social sciences and humanities really don’t have any other major sources of funding beyond government support, whereas other types of research can draw on support from other players as well. The 40-40-20 split from government is not a 40-40-20 split in practice once additional sources are considered in the equation.

Delivery: as promised?

And that brings us to yesterday’s budget. While the report had called for an injection of $1.3 billion, the finance minister apparently couldn’t scrape together more than a measly $925 million—which, of course, is a huge amount of money. Some will lament the gap and rend their shirts in twain about promises broken, while others will cheer the victory of science retaking its rightful place through another #PromiseKept. That increase translated into a 25% bump in fundamental research spending, so I guess how you feel about it depends on your views about how much a 25% increase really means. For those keeping score at home, that apparently closes the gap to about 90% of real spending power levels before the slides under Harper.

But was it a 25% increase for everyone? No, the $925 million was not split evenly between the councils. Identical portions of $354.7 million will go to NSERC and CIHR (roughly 38% each from the new money) while $215.5 million will go to SSHRC (just over 23% of the new money). Comparing their funding levels this morning to those of yesterday morning, NSERC and CIHR saw increases of about 20%–25%, while SSHRC saw an increase of over 40%.

But did the government really heed the advice of their panel about getting back to the 40-40-20 allocation across the councils (while acknowledging that even that split is perhaps not sufficient anymore)? With its increase, SSHRC will be up from 15% of the tri-council total to about 16.5% of the total. That sounds like progress.

On the flip side, though, the government has just announced a massive injection to research spending, with an ongoing annual increase after that (following the same split as the one-time boost). No further increases are likely to happen again in the near future, and it would take three more increases just like this one for SSHRC to reach its 20%. The social sciences and humanities have made some headway, but they aren’t likely to get any closer than this to their 20%. The big investment has been made, and this will be the status quo for a while—consider that the Naylor panel was the first of its kind in 40 years.

I don’t think this excerpt does justice to Struck’s posting and recommend you read it in its entirety if you have the time and there’s this March 8, 2018 posting where he examines ‘evidence’ in relation to the budget (Note: Links have been removed),

The new budget provides a lot of money for science. It also emphasizes the importance of evidence-based decision-making to government, employing the term “evidence-based” about 20 times in the document. A lot of the new science money is earmarked to increase science for policy as well, separate from the fundamental science funding we discussed last week.

For example, Statistics Canada will get millions of extra dollars, in one-time injections as well as increases to ongoing, regular operating budgets. Why? “Better data will… support [the Government’s] commitment to evidence-based policy-making.” (p. 187). There are also hundreds of millions of dollars for science conducted within the federal government: labs and facilities (p.83) as well as highlighted projects (e.g., ocean and freshwater surveillance, p. 98). Again, all this is on top of the $925 million for fundamental research outside of government, administered by the funding councils. All told, that’s a big boost for research.

What about the uptake of that research in decision-making? There’s a whole section in Chapter 2 entitled “Placing Evidence at the Centre of Program Evaluation and Design.” The result? Statistics Canada gets $1 million annually to “improve performance evaluations for innovation-related programs,” and the Treasury Board gets $2 million annually to build an internal team for innovation performance evaluation, drawing on (among other things) the StatsCan innovation data.

Beyond that, the previous budget outlined $2 million annually for the federal Chief Science Advisor and her secretariat. That outlay doesn’t mention improving evidence-based decision-making, though it’s a key part of the CSA’s mandate. Together, what we see here is that there’s a huge disparity between the new money being spent on research and data, and the new money being spent to develop “a strong culture of evidence-based decision-making” (Budget 2018, p. 276).

Reading between the line items

The funding disparity suggests that the government feels that evidence-based policymaking is hampered primarily by supply-side problems. If we just pushed more science in the front end, we’d get a better flow of evidence through the policymaking pipeline. There’s almost no money to patch up whatever holes there may be in that pipeline between the research money inputs and the better policy outputs.

This quality of analysis is what one would hope for from the Canadian Science Policy Centre (CSPC). Perhaps once their initial euphoria and back-patting has passed, the CSPC commentators will offer more nuanced takes on the budget.

Budget 2018: The good includes a new intellectual property strategy

First, there’s a lot to like in the 2018 budget as the CSPC folks noticed. Advancing gender equality, supporting innovation and business, supporting fundamental research through the tri-council agencies, and more are all to the good.

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

That said, it’s good to see the government adopting a fresh approach to the matter.

Budget 2018: Who’s watching over us?

Russ Roberts (CSPC editorial) makes an excellent point in his piece about getting some sort of return on investment (ROI) made by the Canadian government on behalf of its taxpayers. One note, the issue is not new and unique to this Liberal government. As far as I’m aware, there never has been any mechanism for determining whether taxpayers’ money has been well spent and other than knowing that insulin was a huge boon to the world and could be described as a great ROI. So, I’m not suggesting that everything has to be measured in dollars and cents but just that we occasionally give it some thought.

Another aspect I’d like to see considered is oversight. In my March 5, 2018 posting I posed a question, What is happening with Alberta’s (Canada) Ingenuity Lab? In sum, Dr. Carlo Montemagno came to Alberta to head up the lab which is funded to the tune of $100M over 10 years. He was making over $500,000/year when he left some five years into the project to become Chancellor at Southern Illinois University (SIU). I had some questions about Montemagno’s tenure in Alberta. For example, was hiring his daughter and son-in-law (as he did again at SIU where he has received severe criticism) to work at the Ingenuity Lab a good idea? It may have been but it seems as if the question was never asked. Other questions also present themselves such as, what is happening to an industrial pilot project on carbon transformation that Montemagno touted?

Increasingly, I’m wondering what sort of oversight these heavily funded science projects are receiving, especially in light of the government’s massive foul up over the Phoenix pay system for federal government employees. (I’m aware that I’m conflating science and technology.) We’re entering the third year of a botched (a very polite term) and increasingly expensive payroll technology implementation. Take for example this recommendation from the Canada Treasury Board’s Lessons Learned from the Transformation of Pay Administration Initiative webpage which has me shaking my head,

Fully test the IT Solution before launch
Lesson 14: Launch any required new IT solution only after it has been fully tested with end-to-end real-life simulations using a broad spectrum of real users and when all doubts regarding success have been addressed and verified independently.

The federal government has over 300,000 employees whose payroll was migrated to this system and they didn’t test it (!) or so I infer from this recommendation. (According to a CBC [Canadian Broadcasting Corporation] news online August 24, 2017 news item, a little over 1/2 of Canada’s federal public servants have been affected,

Nearly one in every two federal public servants paid through the problem-plagued Phoenix system has opened a file seeking redress for a pay issue, CBC News has learned.

As of Aug. 8 [2017], there were 156,035 employees who had been waiting at least 30 days to have their pay complaint dealt with, according to data released to Radio-Canada by a government source.

That number represents nearly one-half of the 313,734 public servants paid through Phoenix. It’s also the first instance in which the scope of the Phoenix payroll issues has been laid clear in terms of people affected, rather than in terms of “transactions” or “cases.”

The documents show the government has been tracking the numbers of individuals affected by Phoenix since at least June 26 [2017].

“It’s shocking that we’ve just learned that they were hiding those numbers, because they didn’t want to show how big that catastrophe is for our public servants,” said Alexandre Boulerice, the NDP’s [New Democratic Party] finance critic.

Interestingly,  the government is hoping to introduce more technology into their governance. Michael Karlin’s (@supergovernance) Twitter feed and his latest essay provide some insight into the government’s preparations for the introduction of artificial intelligence (AI), Note: Links have been removed,

Towards Rules for Automation in Government

Caveat: This is a personal view of work underway that I’m leading. What I describe is subject to incredible change as this policy work winds its way through government and consultations. Our approach may change for reasons that I’m simply not privy to, and that’s fine. This is meant to solicit ideas, but also show the complexity about what it takes to make policy. I hope that people find it useful, particularly students of public admin. It also represents my view of the world only, and neither my organization’s or the Government of Canada writ large.

AI is a rapidly evolving space, and trying to create rules in a time of disruption is risky. Too severe and innovation can be hindered; this is unacceptable during a time when the Government of Canada is embracing digital culture. On the other hand, if the rules don’t have meaning and teeth, and Canadians will not be sufficiently protected from the negative outcomes of this technology, like this or this. Trying to strike the right balance between facilitating innovation while being protective of right is a challenge, and one that benefits from ongoing discussions with different sectors across the country. It also means that I might work hard to build a consensus around a set of rules that we try out and have to scrap and redesign after a year in deployment because they don’t work.

Let’s not forget the 2017 Canadian federal budget introduced funding ($125M) for a Pan-Canadian Artificial Intelligence Strategy to be administered by the Canadian Institute for Advanced Research (CIFAR). So, federal funding for science is often intimately linked to technology., hence the conflation.

Sunny ways: a discussion between Justin Trudeau and Bill Nye

Billed as a discussion about the Canadian federal 2018 budget and science, Justin Trudeau sat down with Bill Nye, a US science popularizer and television personality on March 6, 2018 for about an hour. Kate Young, parliamentary secretary to the minister of science (Kirsty Duncan) was moderator.

As to be expected Bill Nye did not know much about the budget and the funding it provided for science, technology, research, and innovation but he was favourably impressed overall. In short, if you were looking for an incisive policy discussion, this was not the venue for it.

The conversation was quite genial throughout. Paul Wells in his March 6, 2018 article for Maclean’s offers a good summary of the main points and answers a few questions I had (for example, why a US television science personality?),

News of this bit of show-business [televised discussion] drew a fair bit of advance comment, most of it on Twitter on Monday night, some of it critical or worried. Some who don’t like Nye’s climate-change activism said he’s not a scientist. This is, by many definitions, true: He’s a mechanical engineer. I’m here to tell you that it’s hard to get a degree in mechanical engineering without learning some science, but for those inclined to draw distinctions, fill your boots. Others wished a Canadian scientist had been Trudeau’s chosen interlocutor, instead of some TV Yankee.

Part of the answer to that came from the U of O students, who were pleased to see the Prime Minister but plainly way more pleased to see Bill Nye the Science Guy. There simply isn’t a Canadian scientist (or science-friendly mechanical engineer) who would have provoked as much excitement. [emphasis mine; sadly true]

My own concern was that Nye, who has been critical of the Trump administration, might attempt to draw distinctions between the blackened anti-science hell-pit of his own country and the bright shiny city on a hill called Canada. Such distinctions would have been misinformed, for reasons I’ll explain in a bit, but in fact Nye mostly managed to avoid making them.

Mostly he and Trudeau just shot the breeze, in ways that were low on detail but not unpleasant.

One comment that Trudeau made raised a lot of interest on Paul Wells’ fTwitfer feed (#inklessPW), ‘all babies are scientists’. Wells’ notes where this idea likely originated (Note: A link has been removed),

The babies-are-scientists bit, I heard from a former New Brunswick education minister named Kelly Lamrock, could come from a book that was in vogue at about the time Trudeau was working as a schoolteacher, The Scientist in the Crib. To anyone who’s watched a toddler who was fascinated about dinosaurs grow into a teenager who couldn’t care less, Trudeau’s reverie makes sense as folk wisdom if not as a precise description of the scientific method.

There are also people who claim all babies are artists or musicians or mathematicians or … . Take your pick.

Wells goes on to highlight two female researchers (Trudeau being famously feminist and whose government just presented a budget boosting women) invited onstage to participate in the conversation (Note: Links have been removed),

… two young women researchers were invited onstage. Plainly their role was to be admired as pathbreaking young women researchers, pulverizing glass ceilings, embodying budget initiatives. To my relief, neither seemed interested in acting the part, or at least not in behaving as if sent straight from Central Casting.

Caitlin Miron from Queen’s University has already received some coverage for discovering a… thing… that could “switch off” cancer cells. This is how Miron was introduced. She could switch off cancer cells. It’s how Nye addressed her. You could switch off cancer cells! Miron answered, reasonably enough, that that’s how it might turn out someday, but that on the other hand it might not, and in the meantime she’s learning interesting new things about cancer cells. She was plainly flattered by the attention, but not interested in boiling her work down to slogans just yet.

Then the PM and the science guy turned to Ayda Elhage, who’s a PhD student in Chemistry at the University of Ottawa. Elhage, who was born in Lebanon, launched into a description of her work, which concentrates on (among other things) the tunable photocatalytic activity of palladium-decorated titanium dioxide [likely titanium dioxide nanoparticles]. I’m sure I don’t have to tell you how important this work is! At least I hope I don’t, because I understood almost none of it! I think it’s about complex new materials whose properties can be triggered by light. Or not. Anyway, the way she resisted any attempt to reduce her work to a gimmick or gadget was heartening to hear.

Wells winds up with this,

…  the truth is that even now, today, in the second of the dark Trump years, the United States is far more of a performer in science research than Canada is. The U.S. National Institutes of Health have about 6 or 7 times the per-capita budget of the Canadian Institutes of Health Research; NASA and the National Science Foundation together spend about twice as much per capita as Canada’s Natural Science and Engineering Research Council.

The new investments in last week’s budget, while welcome, won’t change the orders of magnitude here. The U.S. commitment to science research is cultural and durable. The Trump White House’s call for cuts to granting agencies was met with budget increases to those agencies from Congress. Trudeau’s conversion to the cause comes after almost a year’s steady pressure from the Canadian research community. But I bet those researchers were heartened to hear Trudeau talking like one of them so soon after the budget came down.

Wells also covers their comments on support for fundamental research and a foray into the Kinder Morgan pipeline controversy.

From Wells’ Twitter feed (on the day of),

2 hours ago

Nye asks Trudeau about “this pipeline, Morgan Kinder.” Uh oh.

2 hours ago

Trudeau talks about “tremendous potential” for renewables. “However, we’re not going to get there tomorrow.” The has to be a “transition phase.”

2 hours ago

This answer is longer than the Oscars.

Nye did not correctly identify the pipeline but he did comment on his visit to Fort McMurray. In any event, the Kinder Morgan portion of the discussion seemed scripted (to me), i.e, Trudeau knew the question was coming and was prepared for it. I’m guessing he also knew Nye was going to give him and his government a pass after hearing the reasons for their decision.

One question that I found interesting but not mentioned in Wells’ article was about language and the arts. It was neither Trudeau’s not Nye’s finest moment. They were clearly unable to shift gears, part of their problem being that much of what they discussed in terms of ‘baby scientists’ could also be said about the arts. Yes, all babies make art!

Final thoughts

As noted earlier, here’s a lot to applaud in the new budget, more support for fundamental research, catch up funding for the Social Sciences and Humanities Research Council, and greater support for women in the sciences and technology.

At the same time, I wish this government put more thought into how it’s spending taxpayers’ money.

Extras

For anyone who’s curious, you can find the full 2018 federal budget here and you’ll find the science funding in Chapter 2: Progress.

For the curious, you can watch the entire (!) Trudeau/Nye conversation, 1 hour, 9 minutes and 30 seconds here.

For anyone interested in the Naylor report (or my comments on it), there’s this three-part series:

  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

For anyone who hasn’t been following the Canadian political scene, “sunny ways” is a term that Justin Trudeau uses to describe, in part, his political philosophy. Here’s an explanation of the term from the Liberal Party of Canada’s website,

Canadians have often heard Prime Minister Justin Trudeau speak of Sir Wilfrid Laurier’s [Canadian Prime Minister from 1896-1911] sunny ways – a guiding philosophy that both men share. Like Laurier, the Prime Minister knows that politics can be a positive and powerful force for change. …

Wilfrid Laurier’s appeal for the “sunny way” in political discourse has its roots in the Manitoba Schools Question. When Manitoba became a province in 1870, a dual school system was established to reflect the province’s Protestant and largely English-speaking population, and its Catholic and predominantly French-speaking, residents.

“The sun’s warm rays prove more effective than the wind’s bluster.”

By 1890, the Anglophone population widely outnumbered the Francophones. Seeking to appeal to this growing population, the provincial government of Thomas Greenway attempted to abolish the dual school system. With the support of the federal Conservative government, Manitoba’s Catholic community launched a court challenge of the school law. The Judicial Committee of the Privy Council ruled that while the law was valid, the federal government could restore public funding to denominational schools. In 1895, despite it being deeply divisive, Prime Minister Mackenzie Bowell introduced legislation to force Manitoba to restore Catholic schools – a measure that was then postponed due to severe opposition within his own cabinet, ultimately leading to his resignation.

In contrast to Bowell’s heavy-handed approach, Liberal Leader Wilfrid Laurier proposed that a diplomatic “sunny way” would work better, using as an illustration Aesop’s fable in which the sun and the wind hold a contest to see who can remove a traveler’s coat. The sun’s warm rays prove more effective than the wind’s bluster.

While more than 120 years have passed, Prime Minister Trudeau shares Laurier’s belief that the “sunny way” remains essential to solving the complex problems facing our country.

Trudeau seems to have had remarkable luck with his ‘sunny ways’ which sometimes seem more like a form of teflon coating than an approach to diplomacy as per Sir Wilfred Laurier. At other times, Trudeau appears to have a magic touch where diplomacy is concerned. He is famously able to deal with the volatile US President, Donald Trump.

Machine learning, neural networks, and knitting

In a recent (Tuesday, March 6, 2018) live stream ‘conversation’ (‘Science in Canada; Investing in Canadian Innovation’ now published on YouTube) between Canadian Prime Minister, Justin Trudeau, and US science communicator, Bill Nye, at the University of Ottawa, they discussed, amongst many other topics, what AI (artificial intelligence) can and can’t do. They seemed to agree that AI can’t be creative, i.e., write poetry, create works of art, make jokes, etc. A conclusion which is both (in my opinion) true and not true.

There are times when I think the joke may be on us (humans). Take for example this March 6, 2018 story by Alexis Madrigal for The Atlantic magazine (Note: Links have been removed),

SkyKnit: How an AI Took Over an Adult Knitting Community

Ribald knitters teamed up with a neural-network creator to generate new types of tentacled, cozy shapes.

Janelle Shane is a humorist [Note: She describes herself as a “Research Scientist in optics. Plays with neural networks. …” in her Twitter bio.] who creates and mines her material from neural networks, the form of machine learning that has come to dominate the field of artificial intelligence over the last half-decade.

Perhaps you’ve seen the candy-heart slogans she generated for Valentine’s Day: DEAR ME, MY MY, LOVE BOT, CUTE KISS, MY BEAR, and LOVE BUN.

Or her new paint-color names: Parp Green, Shy Bather, Farty Red, and Bull Cream.

Or her neural-net-generated Halloween costumes: Punk Tree, Disco Monster, Spartan Gandalf, Starfleet Shark, and A Masked Box.

Her latest project, still ongoing, pushes the joke into a new, physical realm. Prodded by a knitter on the knitting forum Ravelry, Shane trained a type of neural network on a series of over 500 sets of knitting instructions. Then, she generated new instructions, which members of the Ravelry community have actually attempted to knit.

“The knitting project has been a particularly fun one so far just because it ended up being a dialogue between this computer program and these knitters that went over my head in a lot of ways,” Shane told me. “The computer would spit out a whole bunch of instructions that I couldn’t read and the knitters would say, this is the funniest thing I’ve ever read.”

It appears that the project evolved,

The human-machine collaboration created configurations of yarn that you probably wouldn’t give to your in-laws for Christmas, but they were interesting. The user citikas was the first to post a try at one of the earliest patterns, “reverss shawl.” It was strange, but it did have some charisma.

Shane nicknamed the whole effort “Project Hilarious Disaster.” The community called it SkyKnit.

I’m not sure what’s meant by “community” as mentioned in the previous excerpt. Are we talking about humans only, AI only, or both humans and AI?

Here’s some of what underlies Skyknit (Note: Links have been removed),

The different networks all attempt to model the data they’ve been fed by tuning a vast, funky flowchart. After you’ve created a statistical model that describes your real data, you can also roll the dice and generate new, never-before-seen data of the same kind.

How this works—like, the math behind it—is very hard to visualize because values inside the model can have hundreds of dimensions and we are humble three-dimensional creatures moving through time. But as the neural-network enthusiast Robin Sloan puts it, “So what? It turns out imaginary spaces are useful even if you can’t, in fact, imagine them.”

Out of that ferment, a new kind of art has emerged. Its practitioners use neural networks not to attain practical results, but to see what’s lurking in the these vast, opaque systems. What did the machines learn about the world as they attempted to understand the data they’d been fed? Famously, Google released DeepDream, which produced trippy visualizations that also demonstrated how that type of neural network processed the textures and objects in its source imagery.

Madrigal’s article is well worth reading if you have the time. You can also supplement Madrigal’s piece with an August 9, 2017 article about Janelle Shane’s algorithmic experiments by Jacob Brogan for slate.com.

I found some SkyKnit examples on Ravelry including this one from the Dollybird Workshop,

© Chatelaine

SkyKnit fancy addite rifopshent
by SkyKnit
Published in
Dollybird Workshop
SkyKnit
Craft
Knitting
Category
Stitch pattern
Published
February 2018
Suggested yarn
Yarn weight
Fingering (14 wpi) ?
Gauge
24 stitches and 30 rows = 4 inches
in stockinette stitch
Needle size
US 4 – 3.5 mm

written-pattern

This pattern is available as a free Ravelry download

SkyKnit is a type of machine learning algorithm called an artificial neural network. Its creator, Janelle Shane of AIweirdness.com, gave it 88,000 lines of knitting instructions from Stitch-Maps.com and Ravelry, and it taught itself how to make new patterns. Join the discussion!

SkyKnit seems to have created something that has paralell columns, and is reversible. Perhaps a scarf?

Test-knitting & image courtesy of Chatelaine

Patterns may include notes from testknitters; yarn, needles, and gauge are totally at your discretion.

About the designer
SkyKnit’s favorites include lace, tentacles, and totally not the elimination of the human race.
For more information, see: http://aiweirdness.com/

Shane’s website, aiweirdness.com, is where she posts musings such as this (from a March 2, [?] 2018 posting), Note: A link has been removed,

If you’ve been on the internet today, you’ve probably interacted with a neural network. They’re a type of machine learning algorithm that’s used for everything from language translation to finance modeling. One of their specialties is image recognition. Several companies – including Google, Microsoft, IBM, and Facebook – have their own algorithms for labeling photos. But image recognition algorithms can make really bizarre mistakes.

image

Microsoft Azure’s computer vision API [application programming interface] added the above caption and tags. But there are no sheep in the image of above. None. I zoomed all the way in and inspected every speck.

….

I have become quite interested in Shane’s self descriptions such as this one from the aiweirdness.com website,

Portrait/Logo

About

I train neural networks, a type of machine learning algorithm, to write unintentional humor as they struggle to imitate human datasets. Well, I intend the humor. The neural networks are just doing their best to understand what’s going on. Currently located on the occupied land of the Arapahoe Nation.
https://wandering.shop/@janellecshane

As for the joke being on us, I can’t help remembering the Facebook bots that developed their own language (Facebotlish), and were featured in my June 30, 2017 posting, There’s a certain eerieness to it all, which seems an appropriate response in a year celebrating the 200th anniversary of Mary Shelley’s 1818 book, Frankenstein; or, the Modern Prometheus. I’m closing with a video clip from the 1931 movie,

Happy Weekend!

Julie Payette, Canada’s Governor General, takes on science deniers and bogus science at 2017 Canadian Science Policy Conference

On the first day of the 2017 Canadian Science Policy Conference (Nov. 1 -3, 2017 in Ottawa, Ontario), Governor General Julie Payette’s speech encouraged listeners to grapple with science deniers, fake news, and more (from a Nov. 2, 2017 article by Mia Rabson in the Huffington Post, Canada edition),

Payette was the keynote speaker at the ninth annual Canadian Science Policy Convention in Ottawa Wednesday night [Nov. 1, 2017] where she urged her friends and former colleagues to take responsibility to shut down the misinformation about everything from health and medicine to climate change and even horoscopes that has flourished with the explosion of digital media.

“Can you believe that still today in learned society, in houses of government, unfortunately, we’re still debating and still questioning whether humans have a role in the Earth warming up or whether even the Earth is warming up, period,” she asked, her voice incredulous.

She generated giggles and even some guffaws from the audience when she said too many people still believe “taking a sugar pill will cure cancer if you will it good enough and that your future and every single one of the people here’s personalities can be determined by looking at planets coming in front of invented constellations.”

Payette was trained as a computer engineer and later became an astronaut and licensed pilot and in 1999 was the first Canadian to board the International Space Station.

Mia Rabson in another Nov. 2, 2017 article (this time for 680news.com) presents responses to the speech from various interested parties,

According to popular Canadian astrologer Georgia Nicols, Canada’s Governor General should be doing what she can to “keep the peace” with loved ones today and avoid the “planetary vibe” that is urging people to engage in power struggles and disputes.

The advice, contained in Julie Payette’s Nov. 2 [2017] horoscope on Nicols’ website, might have come a day late, though Payette likely wouldn’t have listened to it anyway.

The Governor General made clear in a speech to scientists at an Ottawa convention Wednesday she has a very low opinion of the validity of horoscopes, people who believe in creationism or those who don’t believe in climate change.

Emmett Macfarlane, a political professor at the University of Waterloo said nothing stops a governor general from stating opinions and while there have been unwritten traditions against it, Payette’s most recent predecessors did not always hold their tongues.

Conservative political strategist Alise Mills said Payette went way over the line with her speech, which she characterized as not only political but “mean-spirited.”

“I definitely agree science is key but I think there is a better way to do that without making fun of other people,” Mills said.

There isn’t a lot of data on horoscope and astrology beliefs in Canada but a 2005 Gallup poll suggested around one in four Canadians believed in astrology.

Prime Minister Justin Trudeau didn’t seem to have any issue with what Payette said, saying his government and Canadians understand the value of science.

Mills said Payette wasn’t just promoting science, she was mocking people with religious beliefs, and specifically, evangelical Christians who don’t believe evolutionary science.

Astrologer Nicols said she had “no wish to take on a woman who is as accomplished as Julie Payette,” whom she notes is a “feisty Libra with three planets in Scorpio.”

But she did suggest Payette would be better to stick to what she knows.

“Astrology is not the stuff of horoscopes in newspapers, albeit I do write them,” wrote Nicols in an e-mail. “It is actually a complex study based on mathematics. Not fairy dust falling from the stars.”

There is one thing I find a bit surprising, Payette doesn’t seem to have taken on the vaccination issue. In any event, it looks like the conference had an exciting start.

Announcing Canada’s Chief Science Advisor: Dr. Mona Nemer

Thanks to the Canadian Science Policy Centre’s September 26, 2017 announcement (received via email) a burning question has been answered,

After great anticipation, Prime Minister Trudeau along with Minister Duncan have announced Canada’s Chief Science Advisor, Dr. Mona Nemer, [emphasis mine]  at a ceremony at the House of Commons. The Canadian Science Policy Centre welcomes this exciting news and congratulates Dr. Nemer on her appointment in this role and we wish her the best in carrying out her duties in this esteemed position. CSPC is looking forward to working closely with Dr. Nemer for the Canadian science policy community. Mehrdad Hariri, CEO & President of the CSPC, stated, “Today’s historic announcement is excellent news for science in Canada, for informed policy-making and for all Canadians. We look forward to working closely with the new Chief Science Advisor.”

In fulfilling our commitment to keep the community up to date and informed regarding science, technology, and innovation policy issues, CSPC has been compiling all news, publications, and editorials in recognition of the importance of the Federal Chief Science Officer as it has been developing, as you may see by clicking here.

We invite your opinions regarding the new Chief Science Advisor, to be published on our CSPC Featured Editorial page. We will publish your reactions on our website, sciencepolicy.ca on our Chief Science Advisor page.

Please send your opinion pieces to editorial@sciencepolicy.ca.

Here are a few (very few) details from the Prime Minister’s (Justin Trudeau) Sept. 26, 2017 press release making the official announcement,

The Government of Canada is committed to strengthen science in government decision-making and to support scientists’ vital work.

In keeping with these commitments, the Prime Minister, Justin Trudeau, today announced Dr. Mona Nemer as Canada’s new Chief Science Advisor, following an open, transparent, and merit-based selection process.  

We know Canadians value science. As the new Chief Science Advisor, Dr. Nemer will help promote science and its real benefits for Canadians—new knowledge, novel technologies, and advanced skills for future jobs. These breakthroughs and new opportunities form an essential part of the Government’s strategy to secure a better future for Canadian families and to grow Canada’s middle class.

Dr. Nemer is a distinguished medical researcher whose focus has been on the heart, particularly on the mechanisms of heart failure and congenital heart diseases. In addition to publishing over 200 scholarly articles, her research has led to new diagnostic tests for heart failure and the genetics of cardiac birth defects. Dr. Nemer has spent more than ten years as the Vice-President, Research at the University of Ottawa, has served on many national and international scientific advisory boards, and is a Fellow of the Royal Society of Canada, a Member of the Order of Canada, and a Chevalier de l’Ordre du Québec.

As Canada’s new top scientist, Dr. Nemer will provide impartial scientific advice to the Prime Minister and the Minister of Science. She will also make recommendations to help ensure that government science is fully available and accessible to the public, and that federal scientists remain free to speak about their work. Once a year, she will submit a report about the state of federal government science in Canada to the Prime Minister and the Minister of Science, which will also be made public.

Quotes

“We have taken great strides to fulfill our promise to restore science as a pillar of government decision-making. Today, we took another big step forward by announcing Dr. Mona Nemer as our Chief Science Advisor. Dr. Nemer brings a wealth of expertise to the role. Her advice will be invaluable and inform decisions made at the highest levels. I look forward to working with her to promote a culture of scientific excellence in Canada.”
— The Rt. Hon. Justin Trudeau, Prime Minister of Canada

“A respect for science and for Canada’s remarkable scientists is a core value for our government. I look forward to working with Dr. Nemer, Canada’s new Chief Science Advisor, who will provide us with the evidence we need to make decisions about what matters most to Canadians: their health and safety, their families and communities, their jobs, environment and future prosperity.”
— The Honourable Kirsty Duncan, Minister of Science

“I am honoured and excited to be Canada’s Chief Science Advisor. I am very pleased to be representing Canadian science and research – work that plays a crucial role in protecting and improving the lives of people everywhere. I look forward to advising the Prime Minister and the Minister of Science and working with the science community, policy makers, and the public to make science part of government policy making.”
— Dr. Mona Nemer, Chief Science Advisor, Canada

Quick Facts

  • Dr. Nemer is also a Knight of the Order of Merit of the French Republic, and has been awarded honorary doctorates from universities in France and Finland.
  • The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.

Nemers’ Wikipedia entry does not provide much additional information although you can find out a bit more on her University of Ottawa page. Brian Owens in a Sept. 26, 2017 article for the American Association for the Advancement of Science’s (AAAS) Science Magazine provides a bit more detail, about this newly created office and its budget

Nemer’s office will have a $2 million budget, and she will report to both Trudeau and science minister Kirsty Duncan. Her mandate includes providing scientific advice to government ministers, helping keep government-funded science accessible to the public, and protecting government scientists from being muzzled.

Ivan Semeniuk’s Sept. 26, 2017 article for the Globe and Mail newspaper about Nemer’s appointment is the most informative (that I’ve been able to find),

Mona Nemer, a specialist in the genetics of heart disease and a long time vice-president of research at the University of Ottawa, has been named Canada’s new chief science advisor.

The appointment, announced Tuesday [Sept. 26, 2017] by Prime Minister Justin Trudeau, comes two years after the federal Liberals pledged to reinstate the position during the last election campaign and nearly a decade after the previous version of the role was cut by then prime minister Stephen Harper.

Dr. Nemer steps into the job of advising the federal government on science-related policy at a crucial time. Following a landmark review of Canada’s research landscape [Naylor report] released last spring, university-based scientists are lobbying hard for Ottawa to significantly boost science funding, one of the report’s key recommendations. At the same time, scientists and science-advocacy groups are increasingly scrutinizing federal actions on a range of sensitive environment and health-related issues to ensure the Trudeau government is making good on promises to embrace evidence-based decision making.

A key test of the position’s relevance for many observers will be the extent to which Dr. Nemer is able to speak her mind on matters where science may run afoul of political expediency.

Born in 1957, Dr. Nemer grew up in Lebanon and pursued an early passion for chemistry at a time and place where women were typically discouraged from entering scientific fields. With Lebanon’s civil war making it increasingly difficult for her to pursue her studies, her family was able to arrange for her to move to the United States, where she completed an undergraduate degree at Wichita State University in Kansas.

A key turning point came in the summer of 1977 when Dr. Nemer took a trip with friends to Montreal. She quickly fell for the city and, in short order, managed to secure acceptance to McGill University, where she received a PhD in 1982. …

It took a lot of searching to find out that Nemer was born in Lebanon and went to the United States first. A lot of immigrants and their families view Canada as a second choice and Nemer and her family would appear to have followed that pattern. It’s widely believed (amongst Canadians too) that the US is where you go for social mobility. I’m not sure if this is still the case but at one point in the 1980s Israel ranked as having the greatest social mobility in the world. Canada came in second while the US wasn’t even third or fourth ranked.

It’s the second major appointment by Justin Trudeau in the last few months to feature a woman who speaks French. The first was Julie Payette, former astronaut and Québecker, as the upcoming Governor General (there’s more detail and a whiff of sad scandal in this Aug. 21, 2017 Canadian Broadcasting Corporation online news item). Now there’s Dr. Mona Nemer who’s lived both in Québec and Ontario. Trudeau and his feminism, eh? Also, his desire to keep Québeckers happy (more or less).

I’m not surprised by the fact that Nemer has been based in Ottawa for several years. I guess they want someone who’s comfortable with the government apparatus although I for one think a little fresh air might be welcome. After all, the Minister of Science, Kirsty Duncan, is from Toronto which between Nemer and Duncan gives us the age-old Canadian government trifecta (geographically speaking), Ottawa-Montréal-Toronto.

Two final comments, I am surprised that Duncan did not make the announcement. After all, it was in her 2015 mandate letter.But perhaps Paul Wells in his acerbic June 29, 2017 article for Macleans hints at the reason as he discusses the Naylor report (review of fundamental science mentioned in Semeniuk’s article and for which Nemer is expected to provide advice),

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

Second,  our other science minister, Navdeep Bains, Minister of Innovation, Science  and Economic Development does not appear to have been present at the announcement. Quite surprising given where her office will located (from the government’s Sept. 26, 2017 press release in Quick Facts section ) “The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.”

Finally, Wells’ article is well worth reading in its entirety and for those who are information gluttons, I have a three part series on the Naylor report, published June 8, 2017,

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

Democracy through mathematics

Prime Minister Justin Trudeau promised electoral reform before he and his party won the 2015 Canadian federal election. In February 2017, Trudeau’s government abandoned any and all attempts at electoral reform (see Feb. 1, 2017 article by Laura Stone about the ‘broken’ promise for the Globe and Mail). Months later, the issue lingers on.

Anyone who places the cross for a candidate in a democratic election assumes the same influence as all other voters. Therefore, as far as the population is concerned, the constituencies should be as equal as possible. (Photo: Fotolia / Stockfotos-MG)

While this research doesn’t address the issue of how to change the system so that votes might be more meaningful especially in districts where the outcome of any election is all but guaranteed, it does suggest there are better ways of changing the electoral map (redistricting), from a June 12, 2017 Technical University of Munich (TUM) press release (also on EurekAlert but dated June 23, 2017),

For democratic elections to be fair, voting districts must have similar sizes. When populations shift, districts need to be redistributed – a complex and, in many countries, controversial task when political parties attempt to influence redistricting. Mathematicians at the Technical University of Munich (TUM) have now developed a method that allows the efficient calculation of optimally sized voting districts.

When constituents cast their vote for a candidate, they assume it carries the same weight as that of the others. Voting districts should thus be sized equally according to population. When populations change, boundaries need to be redrawn.

For example, 34 political districts were redrawn for the upcoming parliamentary election in Germany – a complex task. In other countries, this process often results in major controversy. Political parties often engage in gerrymandering, to create districts with a disproportionately large number of own constituents. In the United States, for example, state governments frequently exert questionable influence when redrawing the boundaries of congressional districts.

“An effective and neutral method for political district zoning, which sounds like an administrative problem, is actually of great significance from the perspective of democratic theory,” emphasizes Stefan Wurster, Professor of Policy Analysis at the Bavarian School of Public Policy at TUM. “The acceptance of democratic elections is in danger whenever parties or individuals gain an advantage out of the gate. The problem becomes particularly relevant when the allocation of parliamentary seats is determined by the number of direct mandates won. This is the case in majority election systems like in USA, Great Britain and France.”
Test case: German parliamentary election

Prof. Peter Gritzmann, head of the Chair of Applied Geometry and Discrete Mathematics at TUM, in collaboration with his staff member Fabian Klemm and his colleague Andreas Brieden, professor of statistics at the University of the German Federal Armed Forces, has developed a methodology that allows the optimal distribution of electoral district boundaries to be calculated in an efficient and, of course, politically neutral manner.

The mathematicians tested their methodology using electoral districts of the German parliament. According to the German Federal Electoral Act, the number of constituents in a district should not deviate more than 15 percent from the average. In cases where the deviation exceeds 25 percent, electoral district borders must be redrawn. In this case, the relevant election commission must adhere to various provisions: For example, districts must be contiguous and not cross state, county or municipal boundaries. The electoral districts are subdivided into precincts with one polling station each.
Better than required by law

“There are more ways to consolidate communities to electoral districts than there are atoms in the known universe,” says Peter Gritzmann. “But, using our model, we can still find efficient solutions in which all districts have roughly equal numbers of constituents – and that in a ‘minimally invasive’ manner that requires no voter to switch precincts.”

Deviations of 0.3 to 8.7 percent from the average size of electoral districts cannot be avoided based solely on the different number of voters in individual states. But the new methodology achieves this optimum. “Our process comes close to the theoretical limit in every state, and we end up far below the 15 percent deviation allowed by law,” says Gritzmann.
Deployment possible in many countries

The researchers used a mathematical model developed in the working group to calculate the electoral districts: “Geometric clustering” groups the communities to clusters, the optimized electoral districts. The target definition for calculations can be arbitrarily modified, making the methodology applicable to many countries with different election laws.

The methodology is also applicable to other types of problems: for example, in voluntary lease and utilization exchanges in agriculture, to determine adequate tariff groups for insurers or to model hybrid materials. “However, drawing electoral district boundaries is a very special application, because here mathematics can help strengthen democracies,” sums up Gritzmann.

Although the electoral wards for the German election were newly tailored in 2012, already in 2013, the year of the election, population changes led to deviations above the desired maximum value in some of them (left). The mathematical method results in significantly lower deviations, thus providing better fault tolerance. (Image: F. Klemm / TUM)

 

Here’s a link to and a citation for the paper,

Constrained clustering via diagrams: A unified theory and its application to electoral district design by Andreas Brieden, Peter Gritzmann, Fabian Klemma. European Journal of Operational Research Volume 263, Issue 1, 16 November 2017, Pages 18–34 https://doi.org/10.1016/j.ejor.2017.04.018

This paper is behind a paywall.

While the redesign of electoral districts has been a contentious issue federally and provincially in Canada (and I imagine in municipalities where this is representation by districts), the focus for electoral reform had been on eliminating the ‘first-past-the-post’ system and replacing it with something new. Apparently, there is also some interest in the US. A June 27, 2017 article by David Daley for salon.com describes one such initiative,

Some people blame gerrymandering, while others cite geography or rage against dark money. All are corrupting factors. All act as accelerants on the underlying issue: Our winner-take-all [first-ast-the-post]system of districting that gives all the seats to the side with 50 percent plus one vote and no representation to the other 49.9 percent. We could end gerrymandering tomorrow and it wouldn’t help the unrepresented Republicans in Connecticut, or Democrats in Kansas, feel like they had a voice in Congress.

A Virginia congressman wants to change this. Rep. Don Beyer, a Democrat, introduced something called the Fair Representation Act this week. Beyer aims to wipe out today’s map of safe red and blue seats and replace them with larger, multimember districts (drawn by nonpartisan commissions) of three, four or five representatives. Smaller states would elect all members at large. All members would then be elected with ranked-choice voting. That would ensure that as many voters as possible elect a candidate of their choice: In a multimember district with five seats, for example, a candidate could potentially win with one-sixth of the vote.

This is how you fix democracy. The larger districts would help slay the gerrymander. A ranked-choice system would eliminate our zero-sum, winner-take-all politics. Leadership of the House would belong to the side with the most votes — unlike in 2012, for example, when Democratic House candidates received 1.4 million more votes than Republicans, but the GOP maintained a 33-seat majority. No wasted votes and no spoilers, bridge builders in Congress, and (at least in theory) less negative campaigning as politicians vied to be someone’s second choice if not their first. There’s a lot to like here.

There are other similar schemes but the idea is always to reestablish the primacy (meaningfulness) of a vote and to achieve better representation of the country’s voters and interests. As for the failed Canadian effort, such as it was, the issue’s failure to fade away hints that Canadian politicians at whatever jurisdictional level they inhabit might want to tackle the situation a little more seriously than they have previously.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

This sucker (INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research, also known as, Canada’s Fundamental Science Review 2017 or the Naylor report) is a 280 pp. (PDF) and was released on Monday, April 10, 2017. I didn’t intend that this commentary should stretch out into three parts (sigh). Them’s the breaks. This first part provides an introduction to the panel and the report as well as some ‘first thoughts’. Part 2 offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

I first wrote about this review in a June 15, 2017 posting where amongst other comments I made this one,

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. …

Here’s a quick summary about the newly released report from the April 10, 2017 federal government news release on Canada’s Public Policy Forum,

Today [April 10, 2017], the Government of Canada published the final report of the expert panel on Canada’s Fundamental Science Review. Commissioned by the Honourable Kirsty Duncan, Minister of Science, the report by the blue-ribbon panel offers a comprehensive review of the mechanisms for federal funding that supports research undertaken at academic institutions and research institutes across Canada, as well as the levels of that funding. It provides a multi-year blueprint for improving the oversight and governance of what the panelists call the “research ecosystem.” The report also recommends making major new investments to restore support for front-line research and strengthen the foundations of Canadian science and research at this pivotal point in global history.

The review is the first of its type in more than 40 years. While it focused most closely on the four major federal agencies that support science and scholarly inquiry across all disciplines, the report also takes a wide-angle view of governance mechanisms ranging from smaller agencies to big science facilities. Another issue closely examined by the panel was the effect of the current configuration of funding on the prospects of early career researchers—a group that includes a higher proportion of women and is more diverse than previous generations of scientists and scholars.

The panel’s deliberations were informed by a broad consultative process. The panel received 1,275 written submissions [emphasis mine] from individuals, associations and organizations. It also held a dozen round tables in five cities, engaging some 230 researchers [emphasis mine] at different career stages.

Among the findings:

  • Basic research worldwide has led to most of the technological, medical and social advances that make our quality of life today so much better than a century ago. Canadian scientists and scholars have contributed meaningfully to these advances through the decades; however, by various measures, Canada’s research competitiveness has eroded in recent years.
  • This trend emerged during a period when there was a drop of more than 30 percent in real per capita funding for independent or investigator-led research by front-line scientists and scholars in universities, colleges, institutes and research hospitals. This drop occurred as a result of caps on federal funding to the granting councils and a dramatic change in the balance of funding toward priority-driven and partnership-oriented research.
  • Canada is an international outlier in that funding from federal government sources accounts for less than 25 percent of total spending on research and development in the higher education sector. While governments sometimes highlight that, relative to GDP, Canada leads the G7 in total spending by this sector, institutions themselves now underwrite 50 percent of these costs—with adverse effects on both research and education.
  • Coordination and collaboration among the four key federal research agencies [Canada Foundation for Innovation {CFI}; Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; Canadian Institutes of Health Research {CIHR}] is suboptimal, with poor alignment of supports for different aspects of research such as infrastructure, operating costs and personnel awards. Governance and administrative practices vary inexplicably, and support for areas such as international partnerships or multidisciplinary research is uneven.
  • Early career researchers are struggling in some disciplines, and Canada lacks a career-spanning strategy for supporting both research operations and staff.
  • Flagship personnel programs such as the Canada Research Chairs have had the same value since 2000. Levels of funding and numbers of awards for students and post-doctoral fellows have not kept pace with inflation, peer nations or the size of applicant pools.

The report also outlines a comprehensive agenda to strengthen the foundations of Canadian extramural research. Recommended improvements in oversight include:

  • legislation to create an independent National Advisory Council on Research and Innovation (NACRI) that would work closely with Canada’s new Chief Science Advisor (CSA) to raise the bar in terms of ongoing evaluations of all research programming;
  • wide-ranging improvements to oversight and governance of the four agencies, including the appointment of a coordinating board chaired by the CSA; and
  • lifecycle governance of national-scale research facilities as well as improved methods for overseeing and containing the growth in ad-hoc funding of smaller non-profit research entities.

With regard to funding, the panel recommends a major multi-year reinvestment in front-line research, targeting several areas of identified need. Each recommendation is benchmarked and is focused on making long-term improvements in Canada’s research capacity. The panel’s recommendations, to be phased in over four years, would raise annual spending across the four major federal agencies and other key entities from approximately $3.5 billion today to $4.8 billion in 2022. The goal is to ensure that Canada benefits from an outsized concentration of world-leading scientists and scholars who can make exciting discoveries and generate novel insights while educating and inspiring the next generation of researchers, innovators and leaders.

Given global competition, the current conditions in the ecosystem, the role of research in underpinning innovation and educating innovators, and the need for research to inform evidence-based policy-making, the panel concludes that this is among the highest-yield investments in Canada’s future that any government could make.

The full report is posted on www.sciencereview.ca.

Quotes

“In response to the request from Prime Minister Trudeau and Minister Duncan, the Science Review panel has put together a comprehensive roadmap for Canadian pre-eminence in science and innovation far into the future. The report provides creative pathways for optimizing Canada’s investments in fundamental research in the physical, life and social sciences as well as the humanities in a cost effective way. Implementation of the panel’s recommendations will make Canada the destination of choice for the world’s best talent. It will also guarantee that young Canadian researchers can fulfill their dreams in their own country, bringing both Nobel Prizes and a thriving economy to Canada. American scientists will look north with envy.”

– Robert J. Birgeneau, Silverman Professor of Physics and Public Policy, University of California, Berkeley

“We have paid close attention not only to hard data on performance and funding but also to the many issues raised by the science community in our consultations. I sincerely hope the report will serve as a useful guide to policy-makers for years to come.”

– Martha Crago, Vice-President, Research and Professor of Human Communication Disorders, Dalhousie University

“Science is the bedrock of modern civilization. Our report’s recommendations to increase and optimize government investments in fundamental scientific research will help ensure that Canada’s world-class researchers can continue to make their critically important contributions to science, industry and society in Canada while educating and inspiring future generations. At the same time, such investments will enable Canada to attract top researchers from around the world. Canada must strategically build critical density in our researcher communities to elevate its global competitiveness. This is the path to new technologies, new businesses, new jobs and new value creation for Canada.”

– Mike Lazaridis, Founder and Managing Partner, Quantum Valley Investments

“This was a very comprehensive review. We heard from a wide range of researchers—from the newest to those with ambitious, established and far-reaching research careers. At all these levels, researchers spoke of their gratitude for federal funding, but they also described enormous barriers to their success. These ranged from personal career issues like gaps in parental leave to a failure to take gender, age, geographic location and ethnicity into account. They also included mechanical and economic issues like gaps between provincial and federal granting timelines and priorities, as well as a lack of money for operating and maintaining critical equipment.”

– Claudia Malacrida, Associate Vice-President, Research and Professor of Sociology, University of Lethbridge

“We would like to thank the community for its extensive participation in this review. We reflect that community perspective in recommending improvements to funding and governance for fundamental science programs to restore the balance with recent industry-oriented programs and improve both science and innovation in Canada.”

– Arthur B. McDonald, Professor Emeritus, Queen’s University

“This report sets out a multi-year agenda that, if implemented, could transform Canadian research capacity and have enormous long-term impacts across the nation. It proffers a legacy-building opportunity for a new government that has boldly nailed its colours to the mast of science and evidence-informed policy-making. I urge the Prime Minister to act decisively on our recommendations.”

– C. David Naylor, Professor of Medicine, University of Toronto (Chair)

“This report outlines all the necessary ingredients to advance basic research, thereby positioning Canada as a leading ‘knowledge’ nation. Rarely does a country have such a unique opportunity to transform the research landscape and lay the foundation for a future of innovation, prosperity and well-being.”

– Martha C. Piper, President Emeritus, University of British Columbia

“Our report shows a clear path forward. Now it is up to the government to make sure that Canada truly becomes a world leader in how it both organizes and financially supports fundamental research.”

– Rémi Quirion, Le scientifique en chef du Québec

“The government’s decision to initiate this review reflected a welcome commitment to fundamental research. I am hopeful that the release of our report will energize the government and research community to take the next steps needed to strengthen Canada’s capacity for discovery and research excellence. A research ecosystem that supports a diversity of scholars at every career stage conducting research in every discipline will best serve Canada and the next generation of students and citizens as we move forward to meet social, technological, economic and ecological challenges.”

– Anne Wilson, Professor of Psychology, Wilfrid Laurier University

Quick facts

  • The Fundamental Science Review Advisory Panel is an independent and non-partisan body whose mandate was to provide advice and recommendations to the Minister of Science on how to improve federal science programs and initiatives.
  • The panel was asked to consider whether there are gaps in the federal system of support for fundamental research and recommend how to address them.
  • The scope of the review included the federal granting councils along with some federally funded organizations such as the Canada Foundation for Innovation.

First thoughts

Getting to the report itself, I have quickly skimmed through it  but before getting to that and for full disclosure purposes, please note, I made a submission to the panel. That said, I’m a little disappointed. I would have liked to have seen a little more imagination in the recommendations which set forth future directions. Albeit the questions themselves would not seem to encourage any creativity,

Our mandate was summarized in two broad questions:

1. Are there any overall program gaps in Canada’s fundamental research funding ecosystem that need to be addressed?

2. Are there elements or programming features in other countries that could provide a useful example for the Government of Canada in addressing these gaps? (p. 1 print; p. 35 PDF)

A new agency to replace the STIC (Science, Technology and Innovation Council)

There are no big surprises. Of course they’ve recommended another organization, NACRI [National Advisory Council on Research and Innovation], most likely to replace the Conservative government’s advisory group, the Science, Technology and Innovation Council (STIC) which seems to have died as of Nov. 2015, one month after the Liberals won. There was no Chief Science Advisor under the Conservatives. As I recall, the STIC replaced a previous Liberal government’s advisory group and Chief Science Advisor (Arthur Carty, now the executive director of the Waterloo [as in University of Waterloo] Institute of Nanotechnology).

Describing the NACRI as peopled by volunteers doesn’t exactly describe the situation. This is the sort of ‘volunteer opportunity’ a dedicated careerist salivates over because it’s a career builder where you rub shoulders with movers and shakers in other academic institutions, in government, and in business. BTW, flights to meetings will be paid for along with per diems (accommodations and meals). These volunteers will also have a staff. Admittedly, it will be unpaid extra time for the ‘volunteer’ but the payoff promises to be considerable.

Canada’s eroding science position

There is considerable concern evinced over Canada’s eroding position although we still have bragging rights in some areas (regenerative medicine, artificial intelligence for two areas). As for erosion, the OECD (Organization for Economic Cooperation and Development) dates the erosion back to 2001 (from my June 2, 2014 posting),

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

It should be noted, the Liberals have introduced another budget with flat funding for science (if you want to see a scathing review see Nassif Ghoussoub’s (professor of mathematics at the University of British Columbia April 10, 2017 posting) on his Piece of Mind blog). Although the funding isn’t quite so flat as it might seem at first glance (see my March 24, 2017 posting about the 2017 budget). The government explained that the science funding agencies didn’t receive increased funding as the government was waiting on this report which was released only weeks later (couldn’t they have a sneak preview?). In any event, it seems it will be at least a year before the funding issues described in the report can be addressed through another budget unless there’s some ‘surprise’ funding ahead.

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 2

Part 3

Canada and its Vancouver tech scene gets a boost

Prime Minister Justin Trudeau has been running around attending tech events both in the Vancouver area (Canada) and in Seattle these last few days (May 17 and May 18, 2017). First he attended the Microsoft CEO Summit as noted in a May 11, 2017 news release from the Prime Minister’s Office (Note: I have a few comments about this performance and the Canadian tech scene at the end of this post),

The Prime Minister, Justin Trudeau, today [May 11, 2017] announced that he will participate in the Microsoft CEO Summit in Seattle, Washington, on May 17 and 18 [2017], to promote the Cascadia Innovation Corridor, encourage investment in the Canadian technology sector, and draw global talent to Canada.

This year’s summit, under the theme “The CEO Agenda: Navigating Change,” will bring together more than 150 chief executive officers. While at the Summit, Prime Minister Trudeau will showcase Budget 2017’s Innovation and Skills Plan and demonstrate how Canada is making it easier for Canadian entrepreneurs and innovators to turn their ideas into thriving businesses.

Prime Minister Trudeau will also meet with Washington Governor Jay Inslee.

Quote

“Canada’s greatest strength is its skilled, hard-working, creative, and diverse workforce. Canada is recognized as a world leader in research and development in many areas like artificial intelligence, quantum computing, and 3D programming. Our government will continue to help Canadian businesses grow and create good, well-paying middle class jobs in today’s high-tech economy.”
— Rt. Honourable Justin Trudeau, Prime Minister of Canada

Quick Facts

  • Canada-U.S. bilateral trade in goods and services reached approximately $882 billion in 2016.
  • Nearly 400,000 people and over $2 billion-worth of goods and services cross the Canada-U.S. border every day.
  • Canada-Washington bilateral trade was $19.8 billion in 2016. Some 223,300 jobs in the State of Washington depend on trade and investment with Canada. Canada is among Washington’s top export destinations.

Associated Link

Here’s a little more about the Microsoft meeting from a May 17, 2017 article by Alan Boyle for GeekWire.com (Note: Links have been removed),

So far, this year’s Microsoft CEO Summit has been all about Canadian Prime Minister Justin Trudeau’s talk today, but there’s been precious little information available about who else is attending – and Trudeau may be one of the big reasons why.

Microsoft co-founder Bill Gates created the annual summit back in 1997, to give global business leaders an opportunity to share their experiences and learn about new technologies that will have an impact on business in the future. The event’s attendee list is kept largely confidential, as is the substance of the discussions.

This year, Microsoft says the summit’s two themes are “trust in technology” (as in cybersecurity, international hacking, privacy and the flow of data) and “the race to space” (as in privately funded space efforts such as Amazon billionaire Jeff Bezos’ Blue Origin rocket venture).

Usually, Microsoft lists a few folks who are attending the summit on the company’s Redmond campus, just to give a sense of the event’s cachet. For example, last year’s headliners included Berkshire Hathaway CEO Warren Buffett and Exxon Mobil CEO Rex Tillerson (who is now the Trump administration’s secretary of state)

This year, however, the spotlight has fallen almost exclusively on the hunky 45-year-old Trudeau, the first sitting head of government or state to address the summit. Microsoft isn’t saying anything about the other 140-plus VIPs attending the discussions. “Out of respect for the privacy of our guests, we are not providing any additional information,” a Microsoft spokesperson told GeekWire via email.

Even Trudeau’s remarks at the summit are hush-hush, although officials say he’s talking up Canada’s tech sector.  …

Laura Kane’s May 18, 2017 article for therecord.com provides a little more information about Trudeau’s May 18, 2017 activities in Washington state,

Prime Minister Justin Trudeau continued his efforts to promote Canada’s technology sector to officials in Washington state on Thursday [May 18, 2017], meeting with Gov. Jay Inslee a day after attending the secretive Microsoft CEO Summit.

Trudeau and Inslee discussed, among other issues, the development of the Cascadia Innovation Corridor, an initiative that aims to strengthen technology industry ties between British Columbia and Washington.

The pair also spoke about trade and investment opportunities and innovation in the energy sector, said Trudeau’s office. In brief remarks before the meeting, the prime minister said Washington and Canada share a lot in common.

But protesters clad in yellow hazardous material suits that read “Keystone XL Toxic Cleanup Crew” gathered outside the hotel to criticize Trudeau’s environmental record, arguing his support of pipelines is at odds with any global warming promises he has made.

Later that afternoon, Trudeau visited Electronic Arts (a US games company with offices in the Vancouver area) for more tech talk as Stephanie Ip notes in her May 18, 2017 article for The Vancouver Sun,

Prime Minister Justin Trudeau was in Metro Vancouver Thursday [may 18, 2017] to learn from local tech and business leaders how the federal government can boost B.C.’s tech sector.

The roundtable discussion was organized by the Vancouver Economic Commission and hosted in Burnaby at Electronic Arts’ Capture Lab, where the video game company behind the popular FIFA, Madden and NHL franchises records human movement to add more realism to its digital characters. Representatives from Amazon, Launch Academy, Sony Pictures, Darkhorse 101 Pictures and Front Fundr were also there.

While the roundtable was not open to media, Trudeau met beforehand with media.

“We’re going to talk about how the government can be a better partner or better get out of your way in some cases to allow you to continue to grow, to succeed, to create great opportunities to allow innovation to advance success in Canada and to create good jobs for Canadians and draw in people from around the world and continue to lead the way in the world,” he said.

“Everything from clean tech, to bio-medical advances, to innovation in digital economy — there’s a lot of very, very exciting things going on”

Comments on the US tech sector and the supposed Canadian tech sector

I wonder at all the secrecy. As for the companies mentioned as being at the roundtable, you’ll notice a preponderance of US companies with Launch Academy and Front Fundr (which is not a tech company but a crowdfunding equity company) supplying Canadian content. As for Darkhorse 101 Pictures,  I strongly suspect (after an online search) it is part of Darkhorse Comics (as US company) which has an entertainment division.

Perhaps it didn’t seem worthwhile to mention the Canadian companies? In that case, that’s a sad reflection on how poorly we and our media support our tech sector.

In fact, it seems Trudeau’s version of the Canadian technology sector is for us to continue in our role as a branch plant remaining forever in service of the US economy or at least the US tech sector which may be experiencing some concerns with the US Trump administration and what appears to be an increasingly isolationist perspective with regard to trade and immigration. It’s a perspective that the tech sector, especially the entertainment component, can ill afford.

As for the Cascadia Innovation Corridor mentioned in the Prime Minister’s news release and in Kane’s article, I have more about that in a Feb. 28, 2017 posting about the Cascadia Data Analytics Cooperative.

I noticed he mentioned clean tech as an area of excitement. Well, we just lost a significant player not to the US this time but to the EU (European Union) or more specifically, Germany. (There’ll be more about that in an upcoming post.)

I’m glad to see that Trudeau remains interested in Canadian science and technology but perhaps he could concentrate on new ways of promoting sectoral health rather than relying on the same old thing.

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for thestar.com,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for thestar.com,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.