Tag Archives: Kattesh Katti

Green nanotechnology centre (meaningful science for helping humanity) launched in South Africa

On July 14, 2014, South Africa’s University of the Western Cape (UWC) launched its Centre for Green Nanotechnology. A July 23, 2014 news item on Nanowerk makes readers feel as if they were present,

The establishment of University of the Western Cape (UWC)’s Centre for Green Nanotechnology was made a reality through a positive partnership between the University of Missouri (UM) and UWC that has spanned approximately 30 years.

[Speakers at the launch of the Centre included Prof Brian O’Connell, Rector of UWC; Prof Richard Bowen Loftin, Chancellor of UM; Prof Ken Dean, Provost of UM; and Prof Ramesh Bharuthram, Deputy Vice-Chancellor of UWC.]

Green nanotechnology is a relatively new science which aims to create environmentally friendly technologies in an effort to tackle real problems. Nanotechnology has improved the design and performance of products in various areas such as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy and so forth. According to Prof Bharuthram, “Green nanotechnology provides an opportunity to combine the strengths of nanobioscience, nanochemistry and nanophysics towards innovative solutions for societal benefit.”

Another keynote speaker at the launch included Professor Kattesh Katti, who has been hailed as the “father of green nanotechnology” and cited as one of the 25 most influential scientists in molecular imaging in the world. Prof Katti will divide his time between the University of Missouri (where he heads up their Green Nanotechnology Centre) and UWC, where he will spend approximately 3-6 months of the year.

Prof Katti noted that nanotechnology involves various role players – including scientists, biologists and chemists – working together. During his lecture, he focused on the use of green nanotechnologies to treat cancer. While the treatment of cancer utilising green nanotechnologies is still at experimental stages, he illustrated how the use of nanotechnologies could be the treatment of the future. He explained that current drugs used to treat cancers don’t always have the desired effect as the drugs don’t always penetrate tumours effectively due to their large size and approximately 60% of drugs go away from the intended target (tumour). Nanotechnology particles, due to their small size and their functioning, have the ability to penetrate tumours much more effectively.

A July 14, 2014 UWC news release, which originated the news item, provides background about events leading to the inception of this new centre and provides insight into its purpose,

The establishment of the Centre for Green Nanotechnology started in 2008/09 when UWC embarked on developing a five-year institutional strategic plan for 2010-2014. The Institutional Operational Plan (IOP) identified eight institutional goals, which included: Goal 2 – Teaching & Learning; and Goal 3 – Research & Innovation. Prof Bharuthram explained, “The IOP articulated the need for UWC to identify emerging and established research niche areas that will not only contribute to high output in the form of research publications and graduating masters and doctoral students, but equally importantly give the University a set of distinctions that will set UWC apart from the other higher education institutions – a calculated move towards becoming a research intensive university. It is indeed fascinating that at the time UWC was engaged in this exercise, the University of Missouri was undertaking a similar comprehensive initiative which resulted in the identification and development of the five MIZZOU Advantage thematic areas. These two parallel undertakings helped to elevate the partnership between UWC and UM to hitherto unknown heights.”

UWC’s Centre for Green Nanotechnology aims to promote:

·    The development of fundamental sciences as they relate to chemistry, physics and biomedical and alternative energy aspects of green nanotechnology.

·   Research and application on indigenous phyto-chemicals and phyto-mediated technologies for the production of green nanotechnologies with applications in medicine, energy and allied disciplines.

· New green nanotechnological synthetic processes and their feasibilities at laboratory levels, pilot scale and industrial scale for mass manufacturing.

·    Green nanoparticles and green nanotechnologies in the design and development of new medical diagnostic/therapeutic agents, biological sensors, chemical sensors, smart electronic materials, nanoscale robots, environmentally benign breathing devices.

Furthermore the Centre aims to provide formal training to students at the undergraduate, graduate and post-doctoral levels in all aspects of green nanotechnology from blue sky to applied, including impact on socioeconomic development, policy development and revision.

UWC is exceptionally excited about this new venture and is proud that it continues to show great developmental strides in all academic spheres. At the launch of the Centre, Prof O’Connell said, “When there is robust engagement there is change. Knowledge and change goes together. The more ways of knowing is a more efficient way to tackle problems.”

There was a general consensus that education is the key factor in shaping our future. Prof Loftin, Chancellor of UM said, “We think of resources in terms of tangible things, but the most precious resource is human capital.

The strides that UM and UWC have made in staying current with regard to offering course studies that are new illustrates that these institutions are investing heavily in human capital and are committed to providing solutions for future challenges.

​As Prof O’Connell noted, “UWC is a metaphor for Africa. Despite being excluded and coming from a disadvantaged past, we are here to show that we can use our brain to push the boundaries.”

I wish them all the best.

McGill green chemistry breakthrough in Québec Science’s top ten list; cinnamon green chemistry

McGill University researchers, Chao-Jun Li, Audrey Moores and their colleagues, earned their spot in Québec Science’s top 10 list of 2010 with a nanotech catalyst that makes it possible to reduce the use of toxic heavy metals from chemical processes. From the news release,

Catalysts are substances used to facilitate and drive chemical reactions. Although chemists have long been aware of the ecological and economic effects of traditional chemical catalysts and do attempt to reuse their materials, it is generally difficult to separate the catalyzing chemicals from the finished product. The team’s discovery does away with this chemical process altogether.

Li, a professor in the Department of Chemistry and Canada Research Chair in Organic/Green Chemistry, neatly describes the new catalyst as a way to “use a magnet and pull them out!” The technology is known as nanomagnetics and involves nanoparticles of a simple iron magnet. Nanoparticles are sized between 1 and 100 nanometres (a strand of hair is about 80,000 nanometres wide). The catalyst itself is chemically benign and can be efficiently recycled. In terms of practical applications, their method can already be used to generate the reactions that are required for example in pharmaceutical research, and could in the future be used to achieve reactions necessary for research in other industries and fields. The discovery was published in Highlights in Chemical Science in January 18, 2010, in an article authored by Li, Moores, Tieqiang Zeng, Wen-Wen Chen, Ciprian M. Cirtiu, and Gonghua Song.

Li is known as one of the world’s pioneers in Green Chemistry, an entirely new approach to the science that tries to avoid the use of toxic, petrochemical-based solvents in favour of basic substances. More than 97 per cent of all products we use involves one or more chemical reactions. The future of not only the trillion-dollar chemical industry, but also the overall economy and the health of ecosystems and populations around the world rests on our ability to find sustainable solutions to chemical use. With 25 key researchers, 117 graduate students and more than 15 postdoctoral fellows working at ways to reduce the toxicity of chemical processes, McGill is a recognized global leader in the field. The University’s pioneering work in Green Chemistry dates back to the 1960s, when phrases such as “chemicals from renewable resources” and “non-polluting chemicals” were used.

The magazine, Québec Science, is asking its readers to vote by Feb. 25, 2011 for the top discovery of 2010. You can go here to vote (you will need to be able to read French).

Feb. 17, 2010, I featured this McGill team’s 2010 green chemistry (starting in the 3rd paragraph).

Since we’re on the topic of green chemistry, I now have the opportunity to mention a Nov. 29, 2010 news item on Nanowerk about how cinnamon could be used to replace dangerous chemicals used to create nanoparticles (from the news item),

Gold nanoparticles, tiny pieces of gold so small that they can’t be seen by the naked eye, are used in electronics, healthcare products and as pharmaceuticals to fight cancer. Despite their positive uses, the process to make the nanoparticles requires dangerous and extremely toxic chemicals. While the nanotechnology industry is expected to produce large quantities of nanoparticles in the near future, researchers have been worried about the environmental impact of the global nanotechnological revolution.

Now, a study by a University of Missouri research team, led by MU scientist Kattesh Katti, curators’ professor of radiology and physics in the School of Medicine and the College of Arts and Science, senior research scientist at the University of Missouri Research Reactor and director of the Cancer Nanotechnology Platform, has found a method that could replace nearly all of the toxic chemicals required to make gold nanoparticles. The missing ingredient can be found in nearly every kitchen’s spice cabinet – cinnamon.

… The new process uses no electricity and utilizes no toxic agents. …

During the study, the researchers found that active chemicals in cinnamon are released when the nanoparticles are created. When these chemicals, known as phytochemicals, are combined with the gold nanoparticles, they can be used for cancer treatment. The phytochemicals can enter into cancer cells and assist in the destruction or imaging of cancer cells, Katti  said.

“Our gold nanoparticles are not only ecologically and biologically benign, they also are biologically active against cancer cells,” Katti said.

As the list of applications for nanotechnology grows in areas such as electronics, healthcare products and pharmaceuticals, the ecological implications of nanotechnology also grow. When considering the entire process from development to shipping to storage, creating gold nanoparticles with the current process can be incredibly harmful to the environment, Chanda [Nripen Chanda, a research associate scientist] said.

Counterbalancing some of this ‘feel good’ green chemistry news focused on reducing environmental impacts posed by chemical processes is a report debunking some the nanotechnology community’s ‘green’ claims, released Nov. 17, 2010, by the Friends of the Earth (FoE), Nanotechnology, climate and energy: Over-heated promises and hot air? You can view the report here. There’s also a new report, released Dec. 17, 2010,  from the ETC Group, The Big Downturn? Nanogeopolitics. As you can tell from the title, the report is more of an overview (it’s an update of a 2005 report) but it does provide information about green nanotechnology. I hope to have some time in the next month or so to discuss these reports rather than just refer to them.