Tag Archives: Khabat Heshami

Last call for Science and Innovation in a Time of Transformation—the Canadian Science Policy Conference (November 13 – 15, 2023)

Unless something really exciting happens, this will be my last post about the upcoming 2023 (and 15th annual) Canadian Science Policy Conference. I will be highlighting a few of the sessions but, first, there’s this from an October 26, 2023 Canadian Science Policy Centre announcement (received via email),

Only Two Weeks Left to Register for CSPC [Canadian Science Policy Conference] 2023!

Only two weeks left to register for CSPC 2023! The deadline to register is Friday, November 10th! With the overarching theme of ‘Science and Innovation in a Time of Transformation’ CSPC 2023 expects more than 1000 participants, 300+ speakers in 50+ panel sessions, and will include a spectacular Gala Dinner featuring its award ceremony which has become a signature annual event to celebrate Canadian science and innovation policy achievements. 

CSPC 2023 will feature more than 300 amazing speakers. To view the list of speakers, click here, and here are some of the international speakers: 

Multiple ticket discounts are also available. CSPC offers a 5% discount on groups of 5-9 registrations and a 10% discount for 10 registrations or more. Please note GROUP REGISTRATION DISCOUNTS are available until Friday, November 10th. Please contact conference@sciencepolicy.ca for more information.

Register now by clicking the button below!
Register Now

View the CSPC 2023 Program and Speakers List!

The biggest and most comprehensive annual Science and Innovation Policy Conference, CSPC 2023, is fast approaching! Explore more than 60 concurrent and plenary panel sessions. Navigate the CSPC 2023 Program: the Interactive Agenda is available here, and the Agenda at a Glance can be viewed here.

There are four sessions that seem particularly interesting to me. First, from the session webpage,

804 – Discussion between Dr. Mona Nemer and Dr. Sethuraman Panchanathan, moderated by Dr. Alejandro Adem

Monday, November 13, 20231:00 PM – 2:00 PM

This year’s CSPC opening panel will bring together two of North America’s most recognized science leaders for a discussion about their experience in the Canadian and U.S research landscape. Panelists will discuss the importance of societally-relevant science, broadening participation in science, the increasing need for open science, and science & technology in green economic development, as well as their vision for the role of science in international relations.

Organized by: Canada Research Coordinating Committee

Speakers

Dr. Alejandro Adem
President of the Natural Sciences and Engineering Research Council of Canada (NSERC)

Dr. Mona Nemer
Canada’s Chief Science Advisor, Government of Canada

Dr. Sethuraman Panchanathan
Computer Scientist and Engineer
15th Director of the U.S. National Science Foundation (NSF)

Second, from the session webpage,

901 – The new challenges of information in parliaments

Monday, November 13, 20232:30 PM – 4:00 PM

In a democratic environment, members of parliament work with information gathered from parliamentary staff, media, lobbies and experts. With the aim of maintaining a strong democracy, parliaments around the world have developed mechanisms to facilitate access to high-quality information for elected representatives, with variations according to continent, language and culture. This panel proposes an overview of these mechanisms including a discussion on emerging issues impacting them, such as the integration of artificial intelligence and the risks of digital interference in democratic processes.

Organized by: Fonds de recherche du Quebec

Speakers

Interestingly, the Canadian Science Policy Centre recently published a research report titled “Survey of Parliamentarians; Impact of the COVID-19 Pandemic on the Use of Science in Policy Making,” you can my comments about it in my October 13, 2023 posting.

Third, from the session webpage,

277 – Science for Social Justice: Advancing the agenda set by the 2022 Cape Town World Science Forum

Tuesday, November 14, 202310:30 AM – 12:00 PM

South Africa had hosted the 10th World Science Forum (WSF), a platform for global science policy dialogue, in Cape Town in December 2022. The WSF is co-organised by a partnership involving global science organisations including UNESCO, the AAAS and the International Science Council, and Hungarian Academy of Science. The theme of the 2022 WSF was “Science for Social Justice.” During a week of intense debate more than 3000 participants from across the world debated the role of science in advancing social justice. This session will review the outcomes of the Forum, including the WSF Declaration on Science for Social Justice.

Organized by: South African Department of Science and Innovation

Speakers

The fourth and final session to be mentioned here, from the session webpage,

910 – Canada’s Quantum potential : critical partnerships and public policy to advance Canada’s leadership in Quantum science and technology.

Tuesday, November 14, 202310:30 AM – 12:00 PM

Canada’s early commitment to invest in Quantum research and technology has made our nation one of the global leaders in that field, and the $360 million earmarked over a seven-year period to foster the National Quantum Strategy (NQS) is a testament to Canada’s leadership ambition in the future. This panel discussion will address the ever-evolving field of quantum science and technology and offer a unique opportunity to explore its policy dimensions including the current state of the field, its advancements and potential applications, and the overall impact of quantum innovations across various sectors. It will explore the transformative impact of quantum science and technologies, and the quantum revolution 2.0 on society, from diverse expert perspectives, using examples such as the impact of quantum computing on drug discovery or financial modelling, as well as discussing the ethical considerations and potential for misuse in surveillance or disinformation campaigns. This panel will examine a variety of policy and social implications of Quantum technologies, including the impact of foundational research and training, approaches to support Quantum industries at their development stages, risks, obstacles to commercialization, and opportunities for better inclusion.

Organized by: University of Ottawa

Speakers

Dr. Khabat Heshami
Research Officer at the National Research Council Canada [NRC]

Jeff Kinder
Project Director
Council of Canadian Academies

Professor Ebrahim Karimi
Co-Director the Nexus for Quantum Technologies Research Institute
University of Ottawa

Professor Ghassan Jabbour
Canada Research Chair in Engineered Advanced Materials and Devices
University of Ottawa – Faculty of Engineering

Rafal Janik
Chief Operating Officer
Xanadu

Tina Dekker
Research Fellow of the University of Ottawa Research Chair in Technology and Society

A few comments

I have highlighted speakers from two of the sessions as I’m going to make a few comments. Dr. Mona Nemer who’s part of the opening panel discussion and Canada’s Chief Science Advisor and Dr. Mehrdad Hariri, the founder and current Chief Executive Officer (CEO) for Canadian Science Policy Centre, which organizes the conference, are both from a region that is experiencing war.

I imagine this is a particularly difficult time for many people in Canada whose family and friends are from the various communities in that region. Along with many others, I hope one day there is peace for everyone. For anyone who might want a little insight into the issues, there’s an October 15, 2023 CBC (Canadian Broadcasting Corporation) radio programme segement on ‘The Sunday Magazine with Piya Chattopadhyay’,

How to maintain solidarity in Canadian Jewish and Palestinian communities

The events in Israel and Gaza in the last week have sparked high levels of grief, pain and outrage, deepening long-simmering divides in the region and closer to home. For years, Raja Khouri and Jeffrey Wilkinson have embarked on a joint project to bring North American Palestinian and Jewish communities together. They join Piya Chattopadhyay to discuss how the events of the last week are challenging that ongoing mission in Canada… and how to strive for solidarity in a time of grief and trauma.

You can find the almost 22 mins. programme here. Khouri’s and Wilkinson’s book, “The Wall Between: What Jews and Palestinians Don’t Want to Know about Each Other” was published on October 3, 2023 just days before the initial Hamas attacks,

The Wall Between is a book about the wall that exists between Jewish and Palestinian communities in the Diaspora. Distrust, enmity, and hate are common currencies. They manifest at university campuses, schools and school boards, at political events, on social media, and in academic circles. For Jews, Israel must exist; for Palestinians, the historic injustice being committed since 1948 must be reversed. Neither wants to know why the Other cannot budge on these issues. The wall is up.

These responses emanate, primarily, from the two “metanarratives” of Jews and Palestinians: the Holocaust and the Nakba. Virtually every response to the struggle, from a member of either community, can be traced back to issues of identity, trauma, and victimhood as they relate to their respective metanarrative. This book examines the role that propaganda and disinformation play in cementing trauma-induced fears for the purpose of making the task of humanizing and acknowledging the Other not just difficult, but almost inconceivable. The authors utilize recent cognitive research on the psychological and social barriers that keep Jews and Palestinians in their camps, walled off from each other. They present a clear way through, one that is justice-centered, rather than trauma-and propaganda-driven.

The authors have lived these principles and traveled this journey, away from their tribal traumas, through embracing the principles of justice. They insist that commitment to the Other means grappling with seemingly incompatible narratives until shared values are decided and acted upon. This book is a call to justice that challenges the status quo of Zionism while at the same time dealing directly with the complex histories that have created the situation today. The book is both realistic and hopeful—a guide for anyone who is open to new possibilities within the Israel-Palestine discourse in the West.

From the publisher’s author descriptions, “Jeffrey J. Wilkinson, PhD, is an American Jew who lives in Canada.” From his Wikipedia entry, “Raja G. Khouri is a Lebanese born Arab-Canadian..”

Also, thank you to Dr. Nemer and Dr. Hariri for the science policy work they’ve done here in Canada and their efforts to expand our discussions.

On a much lighter note, the ‘quantum session’ panel is dominated by academics from the University of Ottawa, a policy wonk from Ottawa, and a representative from a company based in Toronto (approximately 450 km from Ottawa by road). Couldn’t the panel organizers have made some effort to widen geographical representation? This seems particularly odd since the policy wonk (Jeff Kinder) is currently working with the Canadian Council of Academies’ Expert Panel on the Responsible Adoption of Quantum Technologies, which does have wider geographical representation.

This CSPC 2023 panel also seems to be another example of what appears to be a kind of rivalry between D-Wave Systems (based in the Vancouver area) and Xanadu Quantum Technologies (Toronto-based) or perhaps another east-west Canada rivalry. See my May 4, 2021 posting (scroll down to the ‘National Quantum Strategy’ subhead) for an overview of sorts of the seeming rivalry; there’s my July 26, 2022 posting for speculation about Canada’s quantum scene and what appears to be an east/west divide; and for a very brief comment in my April 17, 2023 posting (scroll down to the ‘The quantum crew’ subhead.)

As for the conference itself, there’s been a significant increase in conference registration fees this year (see my July 28, 203 posting) and, for the insatiable, there’s my March 29, 2023 posting featuring the call for submissions and topic streams.

For first time: high-dimensional quantum encryption performed in real world city conditions

Having congratulated China on the world’s first quantum communication network a few weeks ago (August 22, 2017 posting), this quantum encryption story seems timely. From an August 24, 2017 news item on phys.org,

For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.

Quantum encryption uses photons to encode information in the form of quantum bits. In its simplest form, known as 2D encryption, each photon encodes one bit: either a one or a zero. Scientists have shown that a single photon can encode even more information—a concept known as high-dimensional quantum encryption—but until now this has never been demonstrated with free-space optical communication in real-world conditions. With eight bits necessary to encode just one letter, for example, packing more information into each photon would significantly speed up data transmission.

This looks like donuts on a stick to me,

For the first time, researchers have demonstrated sending messages in a secure manner using high dimensional quantum cryptography in realistic city conditions. Image Credit: SQO team, University of Ottawa.

An Aug. 24, 2017 Optical Society news release (also on EurekAlert), which originated the news item, describes the work done by a team in Ottawa, Canada, (Note: The ‘Congratulate China’ piece (August 22, 2017 posting) includes excerpts from an article that gave a brief survey of various national teams [including Canada] working on quantum communication networks; Links have been removed),

“Our work is the first to send messages in a secure manner using high-dimensional quantum encryption in realistic city conditions, including turbulence,” said research team lead, Ebrahim Karimi, University of Ottawa, Canada. “The secure, free-space communication scheme we demonstrated could potentially link Earth with satellites, securely connect places where it is too expensive to install fiber, or be used for encrypted communication with a moving object, such as an airplane.”

For the first time, researchers have demonstrated sending messages in a secure manner using high dimensional quantum cryptography in realistic city conditions. Image Credit: SQO team, University of Ottawa.

As detailed in Optica, The Optical Society’s journal for high impact research, the researchers demonstrated 4D quantum encryption over a free-space optical network spanning two buildings 0.3 kilometers apart at the University of Ottawa. This high-dimensional encryption scheme is referred to as 4D because each photon encodes two bits of information, which provides the four possibilities of 01, 10, 00 or 11.

In addition to sending more information per photon, high-dimensional quantum encryption can also tolerate more signal-obscuring noise before the transmission becomes unsecure. Noise can arise from turbulent air, failed electronics, detectors that don’t work properly and from attempts to intercept the data. “This higher noise threshold means that when 2D quantum encryption fails, you can try to implement 4D because it, in principle, is more secure and more noise resistant,” said Karimi.

Using light for encryption

Today, mathematical algorithms are used to encrypt text messages, banking transactions and health information. Intercepting these encrypted messages requires figuring out the exact algorithm used to encrypt a given piece of data, a feat that is difficult now but that is expected to become easier in the next decade or so as computers become more powerful.

Given the expectation that current algorithms may not work as well in the future, more attention is being given to stronger encryption techniques such as quantum key distribution, which uses properties of light particles known as quantum states to encode and send the key needed to decrypt encoded data.

Although wired and free-space quantum encryption has been deployed on some small, local networks, implementing it globally will require sending encrypted messages between ground-based stations and the satellite-based quantum communication networks that would link cities and countries. Horizontal tests through the air can be used to simulate sending signals to satellites, with about three horizontal kilometers being roughly equal to sending the signal through the Earth’s atmosphere to a satellite.

Before trying a three-kilometer test, the researchers wanted to see if it was even possible to perform 4D quantum encryption outside. This was thought to be so challenging that some other scientists in the field said that the experiment would not work. One of the primary problems faced during any free-space experiment is dealing with air turbulence, which distorts the optical signal.

Real-world testing

For the tests, the researchers brought their laboratory optical setups to two different rooftops and covered them with wooden boxes to provide some protection from the elements. After much trial and error, they successfully sent messages secured with 4D quantum encryption over their intracity link. The messages exhibited an error rate of 11 percent, below the 19 percent threshold needed to maintain a secure connection. They also compared 4D encryption with 2D, finding that, after error correction, they could transmit 1.6 times more information per photon with 4D quantum encryption, even with turbulence.

“After bringing equipment that would normally be used in a clean, isolated lab environment to a rooftop that is exposed to the elements and has no vibration isolation, it was very rewarding to see results showing that we could transmit secure data,” said Alicia Sit, an undergraduate student in Karimi’s lab.

As a next step, the researchers are planning to implement their scheme into a network that includes three links that are about 5.6 kilometers apart and that uses a technology known as adaptive optics to compensate for the turbulence. Eventually, they want to link this network to one that exists now in the city. “Our long-term goal is to implement a quantum communication network with multiple links but using more than four dimensions while trying to get around the turbulence,” said Sit.

Here’s a link to and a citation for the paper,

High-dimensional intracity quantum cryptography with structured photons by Alicia Sit, Frédéric Bouchard, Robert Fickler, Jérémie Gagnon-Bischoff, Hugo Larocque, Khabat Heshami, Dominique Elser, Christian Peuntinger, Kevin Günthner, Bettina Heim, Christoph Marquardt, Gerd Leuchs, Robert W. Boyd, and Ebrahim Karimi. Optica Vol. 4, Issue 9, pp. 1006-1010 (2017) •https://doi.org/10.1364/OPTICA.4.001006

This is an open access paper.

Changing the colour of single photons in a diamond quantum memory

An artist’s impression of quantum frequency conversion in a diamond quantum memory. (Credit: Dr. Khabat Heshami, National Research Council Canada)

An artist’s impression of quantum frequency conversion in a diamond quantum memory. (Credit: Dr. Khabat Heshami, National Research Council Canada)

An April 5, 2016 University of Waterloo news release (also on EurekAlert) describes the research,

Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the colour and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond.

Shifting the colour of a photon, or changing its frequency, is necessary to optimally link components in a quantum network. For example, in optical quantum communication, the best transmission through an optical fibre is near infrared, but many of the sensors that measure them work much better for visible light, which is a higher frequency. Being able to shift the colour of the photon between the fibre and the sensor enables higher performance operation, including bigger data rates.

The research, published in Nature Communications, demonstrated small frequency shifts that are useful for a communication protocol known as wavelength division multiplexing. This is used today when a sender needs to transmit large amounts of information through a transmission so the signal is broken into smaller packets of slightly different frequencies and sent through together. The information is then organized at the other end based on those frequencies.

In the experiments conducted at NRC, the researchers demonstrated the conversion of both the frequency and bandwidth of single photons using a room-temperature diamond quantum memory.

“Originally there was this thought that you just stop the photon, store it for a little while and get it back out. The fact that we can manipulate it at the same time is exciting,” said Kent Fisher a PhD student at the Institute for Quantum Computing and with the Department of Physics and Astronomy at Waterloo. “These findings could open the door for other uses of quantum memory as well.”

The diamond quantum memory works by converting the photon into a particular vibration of the carbon atoms in the diamond, called a phonon. This conversion works for many different colours of light allowing for the manipulation of a broad spectrum of light. The energy structure of diamond allows for this to occur at room temperature with very low noise. Researchers used strong laser pulses to store and retrieve the photon. By controlling the colours of these laser pulses, researchers controlled the colour of the retrieved photon.

“The fragility of quantum systems means that you are always working against the clock,” remarked Duncan England, researcher at NRC. “The interesting step that we’ve shown here is that by using extremely short pulses of light, we are able to beat the clock and maintain quantum performance.”

The integrated platform for photon storage and spectral conversion could be used for frequency multiplexing in quantum communication, as well as build up a very large entangled state – something called a cluster state. Researchers are interested in exploiting cluster states as the resource for quantum computing driven entirely by measurements.

Here’s a link to and a citation for the paper,

Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory by Kent A. G. Fisher, Duncan G. England, Jean-Philippe W. MacLean, Philip J. Bustard, Kevin J. Resch, & Benjamin J. Sussman. Nature Communications 7, Article number: 11200  doi:10.1038/ncomms11200 Published 05 April 2016

This paper is open access.