Tag Archives: Khalid Hattar

Preventing corrosion in oil pipelines at the nanoscale

A June 7, 2019 news item on Azonano announces research into the process of oil pipeline corrosion at the nanoscale (Note: A link has been removed),

Steel pipes tend to rust and sooner or later fail. To anticipate disasters, oil companies and others have developed computer models to foretell when replacement is necessary. However, if the models themselves are incorrect, they can be amended only through experience, an expensive problem if detection happens too late.

Currently, scientists at Sandia National Laboratories, the Department of Energy’s Center for Integrated Nanotechnologies and the Aramco Research Center in Boston, have discovered that a specific form of nanoscale corrosion is responsible for suddenly diminishing the working life of steel pipes, according to a paper recently published in Nature’s Materials Degradation journal.

A June 6, 2019 Sandia National Laboratories news release (also on EurekAlert), which originated the news item, provides more technical detail,

Using transmission electron microscopes, which shoot electrons through targets to take pictures, the researchers were able to pin the root of the problem on a triple junction formed by a grain of cementite — a compound of carbon and iron — and two grains of ferrite, a type of iron. This junction forms frequently during most methods of fashioning steel pipe.

Iron atoms slip-sliding away

The researchers found that disorder in the atomic structure of those triple junctions made it easier for the corrosive solution to remove iron atoms along that interface.
In the experiment, the corrosive process stopped when the triple junction had been consumed by corrosion, but the crevice left behind allowed the corrosive solution to attack the interior of the steel.

“We thought of a possible solution for forming new pipe, based on changing the microstructure of the steel surface during forging, but it still needs to be tested and have a patent filed if it works,” said Sandia’s principle investigator Katherine Jungjohann, a paper author and lead microscopist. “But now we think we know where the major problem is.”

Aramco senior research scientist Steven Hayden added, “This was the world’s first real-time observation of nanoscale corrosion in a real-world material — carbon steel — which is the most prevalent type of steel used in infrastructure worldwide. Through it, we identified the types of interfaces and mechanisms that play a role in the initiation and progression of localized steel corrosion. The work is already being translated into models used to prevent corrosion-related catastrophes like infrastructure collapse and pipeline breaks.”

To mimic the chemical exposure of pipe in the field, where the expensive, delicate microscopes could not be moved, very thin pipe samples were exposed at Sandia to a variety of chemicals known to pass through oil pipelines.

Sandia researcher and paper author Khalid Hattar put a dry sample in a vacuum and used a transmission electron microscope to create maps of the steel grain types and their orientation, much as a pilot in a plane might use a camera to create area maps of farmland and roads, except that Hattar’s maps had approximately 6 nanometers resolution. (A nanometer is one-billionth of a meter.)

“By comparing these maps before and after the liquid corrosion experiments, a direct identification of the first phase that fell out of the samples could be identified, essentially identifying the weakest link in the internal microstructure,” Hattar said.

Sandia researcher and paper author Paul Kotula said, “The sample we analyzed was considered a low-carbon steel, but it has relatively high-carbon inclusions of cementite which are the sites of localized corrosion attacks.

“Our transmission electron microscopes were a key piece of this work, allowing us to image the sample, observe the corrosion process, and do microanalysis before and after the corrosion occurred to identify the part played by the ferrite and cementite grains and the corrosion product.”

When Hayden first started working in corrosion research, he said, “I was daunted at how complex and poorly understood corrosion is. This is largely because realistic experiments would involve observing complex materials like steel in liquid environments and with nanoscale resolution, and the technology to accomplish such a feat had only recently been developed and yet to be applied to corrosion. Now we are optimistic that further work at Sandia and the Center for Integrated Nanotechnologies will allow us to rethink manufacturing processes to minimize the expression of the susceptible nanostructures that render the steel vulnerable to accelerated decay mechanisms.”

Invisible path of localized corrosion

Localized corrosion is different from uniform corrosion. The latter occurs in bulk form and is highly predictable. The former is invisible, creating a pathway observable only at its endpoint and increasing bulk corrosion rates by making it easier for corrosion to spread.

“A better understanding of the mechanisms by which corrosion initiates and progresses at these types of interfaces in steel will be key to mitigating corrosion-related losses,” according to the paper.

Here’s a link to and a citation for the paper,

Localized corrosion of low-carbon steel at the nanoscale by Steven C. Hayden, Claire Chisholm, Rachael O. Grudt, Jeffery A. Aguiar, William M. Mook, Paul G. Kotula, Tatiana S. Pilyugina, Daniel C. Bufford, Khalid Hattar, Timothy J. Kucharski, Ihsan M. Taie, Michele L. Ostraat & Katherine L. Jungjohann. npj Materials Degradation volume 3, Article number: 17 (2019) DOI: https://doi.org/10.1038/s41529-019-0078-1 Published 12 April 2019

This paper is open access.

Nanostructured materials and radiation

If you’re planning on using nanostructured materials in a nuclear facility, you might want to check out this work (from a June 8, 2018 Purdue University (Indiana, US) news release by Brian L. Huchel,

A professor in the Purdue College of Engineering examined the potential use of various materials in nuclear reactors in an extensive review article in the journal Progress in Materials Science.

The article, titled “Radiation Damage in Nanostructured Materials,” was led by Xinghang Zhang, a professor of materials engineering. It will be published in the July issue of the journal.

Zhang said there is a significant demand for advanced materials that can survive high temperature and high doses of radiation. These materials contain significant amount of internal changes, called defect sinks, which are too small to be seen with the naked eye, but may form the next generation of materials used in nuclear reactors.

“Nanostructured materials with abundant internal defect sinks are promising as these materials have shown significantly improved radiation tolerance,” he said. “However, there are many challenges and fundamental science questions that remain to be solved before these materials can have applications in advanced nuclear reactors.”

The 100-page article, which took two years to write, focuses on metallic materials and metal-ceramic compounds and reviews types of internal material defects on the reduction of radiation damage in nanostructured materials.

Under the extreme radiation conditions, a large number of defects and their clusters are generated inside materials, and such significant microstructure damage often leads to degradation of the mechanical and physical properties of the materials

The article discusses the usage of a combination of defect sink networks to collaboratively improve the radiation tolerance of nanomaterials, while pointing out the need to improve the thermal and radiation stabilities of the defect sinks.

“The field of radiation damage in nanostructured materials is an exciting and rapidly evolving arena, enriched with challenges and opportunities,” Zhang said. “The integration of extensive research effort, resources and expertise in various fields may eventually lead to the design of advanced nanomaterials with unprecedented radiation tolerance.”

Jin Li, co-author of the review article and a postdoctoral fellow in the School of Materials Engineering, said researchers with different expertise worked collaboratively on the article, which contains more than 100 pages, 100 figures and 700 references.

The team involved in the research article included researchers from Purdue, Texas A&M University, Drexel University, the University of Nebraska-Lincoln and China University of Petroleum-Beijing, as well as Sandia National Laboratory, Los Alamos National Laboratory and Idaho National Laboratory.

Here’s an image illustrating the work,

Various imperfections in nanostructures, call defect sinks, can enhance the material’s tolerance to radiation. (Photo/Xinghang Zhang)

Here’s a link to and a citation for the paper,

Radiation damage in nanostructured materials by Xinghang Zhang, Khalid Hattar, Youxing Chen, Lin Shao, Jin Li, Cheng Sun, Kaiyuan Yu, Nan Li, Mitra L.Taheri, Haiyan Wang, Jian Wang, Michael Nastasi. Progress in Materials Science Volume 96, July 2018, Pages 217-321 https://doi.org/10.1016/j.pmatsci.2018.03.002

This paper is behind a paywall.

ht/ to June 8, 2018 Nanowerk news item.