Tag Archives: Kim Carr

Amid controversies, Australian government spends big bucks on Australian Institute for Nanoscience

Kim Carr, Australia’s Minister for Innovation, Industry, Science and Research, delivered  an extraordinary speech, by Canadian standard (ours tend to remarkable blandness), at the sod-turning event for the new Australian Institute for Nanoscience (AIN) due to open in May 2015. Before getting to the speech, here’s a bit more about the event from a July 24, 2013 news item on Global Times,

Australian government will deliver a fund for the new Australian Institute for Nanoscience ( AIN) which will open in May 2015 to boost its research of nanotechnology, Minister for Innovation, Industry, Science and Research Kim Carr confirmed in a statement after breaking the ground for the new facility at the University of Sydney on Wednesday.

The AIN project is a major new building combining research laboratories with teaching facilities to drive cross-disciplinary collaboration to develop nanomaterials and devices.

The July 24, 2013 Australian government media release about the AIN sod-turning provides more details about the government’s investment in the institute and its backing of nanoscience/nanotechnology research,

Senator Kim Carr said the Australian Government’s $40 million contribution, through the Education Investment Fund, to assist in the facility’s construction backs in Labor’s commitment to giving our researchers the tools they need to pursue world-leading work.

“Nanotechnology is a transformative force for manufacturing and is predicted to be worth $US3 trillion globally by 2020. Australia needs to stake a claim to our slice of that pie now, by building well-researched prototypes for the market. AIN will help make that happen and keep Australian research internationally competitive.”

Senator Carr said AIN will increase our national research capability by bringing together world-class nanoscience researchers across three main areas:

  • New medical diagnostics and therapies combining quantum technology with imaging and drug delivery and solutions such as a fully implantable bionic eye;
  • Faster, more secure and more efficient communications based on photonics and quantum science technologies; and
  • Revolutionary optical instrumentation to explore the frontiers of our universe, along with faster data processing technologies for the SKA.

I’m not sure where Carr got the “… worth $US3 trillion globally by 2020” number for nanotechnology’s impact on the global economy. More interesting to me, are these comments from Carr’s speech (you can find the entire speech here),

It is a great pleasure to share in the progress of the Australian Institute for Nanoscience here at Sydney University.

Three years have passed since I announced the funding for this facility:

$40 million from the Federal Government;

backed by $71 million from the university;

and a further $20 million from other sources, including the New South Wales government, the Australian National Fabrication Facility; the ARC’s CUDOS; the Australian Astronomical Observatory and Bandwidth Foundry International.

It was one of the many projects made possible by the Education Investment Fund – which, over three rounds, secured a total of $3.5 billion in new research infrastructure for a federal contribution of $1.5 billion.

This is an impressive return on investment.

At that time, this was the sort of research guaranteed to bring out the anti-science crowd.

There were beat-ups in the press, demonstrations in universities, and scare campaigns run on worksites. [emphasis mine]

It was as if the Enlightenment had never happened. It was as if nanoscience was some kind of global conspiracy to kill us all with sunscreen. [emphasis mine]

But I saw this project differently. And I put my views on the record at the time this investment was announced.

As I said back then:

“I don’t begin by saying “this is too strange” or “this is too hard”. I don’t begin by saying “no”.

I begin by asking, “what’s in it for Australia?” – “what’s in it for the people we serve?” – and “how can we make this work?”

The speech continues with a very optimistic view of all the economic benefits to be derived from an investment in nanoscience/nanotechnology.

Given the extreme lack of interest in Canada and its very odd (or perhaps it’s a harbinger of the future?) almost unknown National Institute of Nanotechnology (NINT), which exists on a NINT University of Alberta website and on a NINT National Research Council website, the “beat-ups in the press, etc.” provide a fascinating and contrasting socio-cultural perspective. The difference is perhaps due to a very active, both in Australia and internationally, Friends of the Earth group.

Friends of the Earth Australia campaigned long (years) and hard against nanosunscreens in a leadup to some rather disturbing survey findings in 2012 (my Feb. 9, 2012 posting) where some 13% of Australians, first reported as 17%,  didn’t use any sunscreens whatsoever, due to their fear of ‘nanosunscreens’.

Kim Carr has been mentioned here before in an Aug. 26, 2011 posting which highlighted a study showing  Australians held positive (?) attitudes towards nanotechnology and those attitudes had gotten more positive over time. My guess, not having looked at the study, is that the study focussed on areas where people usually express positive attitudes (e. g. better health care with less invasive medical procedures) and not on environmental issues (e.g. nanosilver in your clothing washing off and ending up in the water supply).

I do love how elected officials, the world over, pick and choose their ‘facts’.

Australians, nanotechnology, and public perception

The Australian government has released a study showing not only that Australians feel positively towards nanotechnology but those feelings have increased over time. From the August 26, 2011 news item on Nanowerk,

Australians are increasingly positive about nanotechnology, in particular its potential to improve our lives, according to a study (“Australian Community Attitudes Held about Nanotechnology – Trends 2005-2011”) by independent company Market Attitude Research Services.

Releasing the findings of a study of public attitudes towards nanotechnologies, Innovation Minister Senator Kim Carr said the Gillard Labor Government was working with researchers and industry to ensure the benefits of nanotechnology were realised, while ensuring any risks were identified and managed.

“This study is the fifth conducted since 2005 and in that time we have found the understanding of nanotechnology is increasing,” Senator Carr said.

“Seventy-six per cent of those surveyed said they were aware of nanotechnology, compared to 51 per cent in 2005.

I’m particularly interested in the exceptionally high level of nanotechnology awareness there is in Australia. The latest (2008) figures I have for the US indicate that public awareness hovers at 30% as it has since 2005 (Sept. 28, 2009 news item on Nanowerk). From most of the material I’ve read, public awareness about nanotechnology is considered quite low in North America (Canada and the US [I’ve not seen any information about Mexico]) and Europe.

I have looked at the Australian report (the version I found is a short report on a series of slides) and there is no speculation about how such a high level of awareness was achieved. There are no references to any other studies about nanotechnology awareness in other countries or regions (in fact, no references at all).

The version of the report I’ve read is a fairly quick read (19 slides) which notes methodological changes year to year. I would have liked to have seen all of the questions in the order in which they were asked in the survey of 1100 Australians so that I might better understand the results.

Australians were strongly in favour of nanotechnology for medical purposes in common with the British who also expressed favourable views for medical uses of nanotechnology in their own earlier study. Australians were also quite positive about nanotechnology for use in  environmental clean up efforts.

From the August 26, 2011 news item on Nanowerk,

Improved medical treatments and preventions attracted the highest levels of support (90 per cent) followed by improved technologies for the environment (87 per cent).

Interestingly there was a study from North Carolina State University which suggests that the public tends to view nanotechnology (when they have any awareness of it) in a more positive than negative light. From my April 14, 2011 posting,

A new study (“Comparing nanoparticle risk perceptions to other known EHS risks” [published online in the Journal of Nanoparticle Research, DOI: 10.1007/s11051-011-0325, behind a paywall]) finds that the general public thinks getting a suntan poses a greater public health risk than nanotechnology or other nanoparticle applications. The study, from North Carolina State University, compared survey respondents’ perceived risk of nanoparticles with 23 other public-health risks.

I haven’t seen anything yet that offers an in depth analysis of why the public would adopt this positive attitude toward nanotechnology.

Australian government makes an unexpected nano announcement; San Diego, the Olympics of Science, and the AAAS; Manitoba high school student discusses copyright

Late last week I wrote about a new report, Nanotechnology in Australia: Trends, Applications and Collaborative Opportunities, that was supposed to be launched today. The news article which originated the story was by Cheryl Jones of The Australian, who noted,

THE number of Australian companies in a nanotechnology market likely to be worth trillions of dollars within a decade has plummeted, according to an Australian Academy of Science report.

Federal government reports previously put at about 80 the number of companies engaged in the technology underlying a burgeoning global market.

But now there are only 55 to 60, say nanotechnology experts cited in the academy report, to be released next week.

Little work has moved from the benchtop to the market, the report says, and one obstacle to commercialisation is “often dysfunctional” university intellectual property services.

I checked and this item from the Government of Australia was announced instead (from the Azo Materials site),

The Rudd Government is introducing a comprehensive national framework to guide the safe development of new technologies such as nanotechnology and biotechnology as part of a $38.2 million National Enabling Technologies Strategy released today.

“Technologies like nanotechnology and biotechnology have enormous potential, but we can only realise that potential with the community’s support,” said Innovation Minister, Senator Kim Carr.

“Health, safety and environmental protection are paramount for the Government. This strategy is about ensuring we meet the highest standards while at the same time maximising opportunities to develop these cutting-edge technologies.

I’m not sure what happened to the report but this announcement was a bit of a surprise. Given the material cited in Jones’ story, I would have expected the government to pull back rather than invest more heavily. It seems the government has recognized the barriers noted in the report (which has yet to be released or even seen by anyone other than Cheryl Jones [see my posting here] ETA: my apologies to Ms. Jones, I did find the report days later here at a location I failed to check, for penance I will leave my original wrong-headed and now embarrassing comment) and decided to address the issues head on.

Meanwhile, the ‘Olympics of Science’ is finishing today in San Diego (Feb. 18-22, 2010), the 176th annual meeting of the American Association for the Advancement of Science (AAAS). From the AAAS site,

The 2010 AAAS Annual Meeting is coming to San Diego for the first time, bringing cutting-edge research and a host of free events for the public in its role as the United States’ largest general scientific conference.

Described in The Times Higher Education Supplement as “the Olympics of science conferences,” the Annual Meeting has long been known as the premier multidisciplinary science gathering in the United States. This year, it will continue its evolution to a prime international affair: When the 176th meeting of the society convenes from 18-22 February, scientists, journalists, and educators from more than 50 nations will be there.

Under the banner “Bridging Science and Society,” top researchers will discuss their findings in the context of global challenges in the environment, economy, health, and education. Attendees can explore research in the neurosciences, energy, astrobiology, public health, and environmental change, and learn how these advances directly affect courtroom trials, care for the elderly, sustainable cities, border security, and other public concerns.

As part of an unprecedented effort to share the excitement of scientific discovery with the public, AAAS’s Family Science Days and other free events offer a chance at hands-on learning for students of all ages.

I mention it not just because I’m currently experiencing Vancouver’s Winter Olympics but because, in 2012, the AAAS  will be hosting its annual meeting in Vancouver.  To get a better idea of what this means, I’ve excerpted parts of a story by Maggie Koerth-Baker on Boing, Boing about attending some of the presentations at the AAAS 2010 San Diego Meeting. First an excerpt from a nanotechnology presentation,

[David] Cahill [University of Illinois] is part of a team working to improve thermal insulation with nanotechnology. His goal: Create some kind of new material that will disrupt the transfer of heat energy between two objects. Getting it right would have big implications. For instance, we could drastically improve our ability to capture the waste heat from electrical generation and put it to use in other ways.One possible solution is silicon nanowires. These structures are normally baby-butt smooth, but as you make their surfaces more and more rough, the nanowires conduct less and less thermal energy. Right now, it’s not exactly clear why that trick works. But understanding it could put Cahill’s team on the right path.

He’s not the only one taking energy technology nano. Another researcher on the same panel, Yi Cui, Ph.D., of Stanford, is applying nanostructures to energy storage, in hopes of developing smaller batteries that can hold more power.

In fact, according to Cui, nanotech is absolutely essential to any future progress with batteries. Storage capacity for size has plateaued, he explained. To go further, we have to start making electrodes out of completely different—and probably completely new—materials.

Note: I’ve mentioned Cui and his work at Stanford University here. More from Koerth-Baker, this time it’s from a science history presentation on measurements and averages,

Before that [1761], obviously, scientists still made mistakes. Multiple measurements or experiments still yielded varying results. But they dealt with the variation in a very different way—they picked the answer they thought represented their best work.

To modern ears, that sounds like cheating—”You just randomly decided on the number you liked best? That’s science?” But, at the time, it was perfectly logical. Historically, scientists viewed themselves as craftsmen,[Jeff]  Buchwald said. If you were building a piece of fine furniture, you wouldn’t make a bunch and pick the average to display. You’d choose the finished version that was the best, and best displayed your woodworking skill.

Intriguing, eh? If you want to find out who introduced the concept of averaging scientific measurements and why he was too embarrassed to publish this in his first research, do read Koerth-Baker’s piece.

For my last bit, I’m back on the copyright trail and thanks to Techdirt for alerting me to this essay on file-sharing and morality written by a grade 12 student at Balmoral Hall School (all girls) in Winnipeg,Manitoba. Kamal Dhillon won the 2010 Glassen Ethics competition,

This year’s essay topic was: “Is it OK to download music, movies and games without paying?” There were about 80 entries from high schools in Winnipeg and across the province. The contest, held annually since 2007, is jointly sponsored by The Centre for Professional and Applied Ethics and The Department of Philosophy at the University of Manitoba. The winner receives $1,000. The Winnipeg Free Press publishes the winning essay.

From the Winnipeg Free Press (Feb.13, 2010 edition), an excerpt from Dhillon’s essay,

MILLIONS of people, mostly but not all young, engage in file sharing.

The multinational corporations who make and sell the material are not happy with this development. Their profits are threatened and they, in turn, are threatening to sue, for huge amounts of money, individuals who engage in file sharing.

I support the act of file sharing and argue that the free sharing of these forms of intellectual property would likely produce, overall, more good than harm for society.

It’s a thoughtful piece and well worth reading.

Australia sees shrinkage in nanotechnology business sector?; Off the deep end: an interview with Cheryl Geisler (part 2 of 3)

There is a new report, Nanotechnology in Australia: Trends, Applications and Collaborative Opportunities, to be released Monday, February 22, 2010, which, apparently, claims that the number of Australian companies in the nanotechnology market has “plummeted.” Dexter Johnson, Nanoclast blog, on the IEEE website wrote the first item I read about this report which is being produced by the Australian Academy of Science and will be launched by the Innovation, Industry, Science and Research Minister, Kim Carr on Monday.

From Nanoclast,

The Australian Academy of Sciences in a soon-to-be-released report indicates that the number of nanotechnology companies in Australia is declining from an estimate of about 80 to around 55, and that the technology is simply not finding its way into commercial products.

According to the report, one of the key obstacles to this commercialization is “often dysfunctional” university intellectual property offices. I have covered this problem of poor tech transfer offices before when discussing a Cientifica report that came out late last year that recommended the following in order to start making money from nanotechnology: “Fire 90% of university tech transfer people and replace them with people who understand how small businesses and science based innovation actually works.”

Cientifica, mentioned in the excerpt from Nanoclast, is a company that’s been mentioned here before. Tim Harper, the principal, writes a blog (TNTlog) and has commented on the forthcoming report. From TNTlog,

My colleague Dexter Johnson (aka the Nanoclast) highlights a forthcoming report about the decline in the number of Australian nanotech companies, but it’s hardly surprising. Before anyone heralds the death of anything consider this:

* The global economy has resulted in a reduction of the number of companies in just about every sector of the economy. High streets where a third of the shops have closed are now common outside London, and everyone from estate agents to Starbucks have been rationalising, downsizing or going bust.

* As I mentioned back in 2001, most nanomaterials companies will go bust, some sooner, some later, but there is almost no way that anyone apart from large diversified chemical and materials companies can create a sustainable business in that sector. Of course if you told your VCs that nanotubes were the new gold you probably got closed down five years ago.

* Nanotech has been subject to a large amount of M&A [mergers and acquisitions] activity, Singular ID being snapped up by Bilicare for example, thereby disappearing from the Singapore register of nanotech companies and joining the Indian pharmaceutical industry.

* Most nanotech companies were start ups, and most start ups don’t survive too long, whatever the sector.

* I can think of plenty of companies making use of nanotechnologies that no one would consider being nanotech companies, so how a nanotech company is defined is also part of the problem.

I can’t believe I’m doing this but I agree with Harper on each and every point he makes in this excerpt. (For contrast, you can read my critique of one of Harper’s reports here in my July 24, 2008 post.) As for the rest of his post, I bow to his superior knowledge of the market reports and hype.

The original story was written by Cheryl Jones for The Australian. I’ve not been able to find a reference to the forthcoming report on  the Australian Academy of Science website.

As Harper points out the economy is global and affects everyone including Simon Fraser University (Vancouver, Burnaby & Surrey, Canada) where I interviewed Cheryl Geisler, Dean of the Faculty of Communication, Art and Technology.

Off the deep end: an interview with Cheryl Geisler (part 2)

Arriving at SFU on the heels of one of the largest economic meltdowns in decades and presiding over a new faculty during what is still considered a shaky economic recovery. Geisler is dealing with budgetary cuts and restraints. “Oh yeah, there were budgetary cuts this year across SFU, it was about 3%. [At the point] I think we’re pretty much flat in terms of the budget over the next three years but since salaries will not be flat that means other non-salary items have to suffer some re-organization.”

When pressed for more information, Geisler noted, “In the first instances you look for things that people are doing that they don’t really care about any more. Obviously, those can go [and that’s what we] more or less did this year. I always think it’s a bad idea to [say] we’ve got to cut, that’s a very demoralizing kind of goal. I’d rather think—ok—what can we create that’s new within the kinds of incentives, resources, and interests that we have. We might not be able to do everything we want but we can make sure that what we’re doing is what we really want to do.”

In looking at what any component of FCAT may want to achieve, it might be useful to cast an eye backward at each component’s history. The School for the Contemporary Arts started as a non credit cluster of courses in 1965 at SFU’s founding. By 1975 the programme had become an academic unit in the Faculty of Interdisciplinary Studies. In 1989 the centre was renamed a school, a name it retains to this day. No mention is made as to membership in any faculty other than interdisciplinary studies. (More details can be found here on their web page or here in the faculty’s wikipedia entry although there doesn’t seem to have been an update noting the school’s new home faculty). NOTE: I received the wikipedia information (never occurred to me to look there) after I posted part 1. Thanks Livleen! The entry also gives information that I’ll use to update contextual details about this interview that I posted on Feb.16.10)

Memory (mine) will have to serve for an abbreviated history of FCAT’s other components.

  • The School of Communication was an outgrowth from the Sociology/Anthropology Dept. It seems to have achieved departmental status by sometime in the late 1970s, presumably in the Faculty of Arts and Social Sciences. At some point in the 1980s, the department of communication became a member of the Faculty of Applied Sciences.
  • The School of Interactive Arts and Technology (SIAT) got its start in the late 1990s as part of the Technical University in Surrey, BC. The university was absorbed by SFU sometime in the early 2000s where it resided in the Faculty of Applied Sciences.
  • The Master’s of Publishing Programme was instituted in the late 1980s and was an outgrowth of the Canadian Centre for Studies in Publishing which, itself, was at one time affiliated with or housed in the Department of Communication and, presumably, in the Faculty of Applied Sciences.
  • The Masters of Digital Media came about as an initiative from the consortium (University of British Columbia, British Columbia Institute of Technology, Emily Carr University of Art + Design) which manages the Great Northern Way Campus facility in Vancouver. The programme was instituted in 2007 and has not been anchored in a faculty.

(If you have more accurate historical or other information, please do let me know.)

The discussion about faculties is not purely academic (pun intended) as there has been an impact for SIAT, at least. “Yes, both schools (Interactive Arts & Technology and Communication) were in the Faculty of Applied Sciences but if you look at the research programmes for most of the [faculty members in Communication] there’s a strong critical analysis of media component which is more in line with the Humanities. Really, the move from Applied Sciences is affecting SIAT more. One of the consequences is that the students who are applying are not as technically literate. SIAT has a mix of Humanities and Art Practice and Science so they need to make sure they maintain and nurture that kind of mix even though there’s always a potential for drift towards design and they’re not [associated as closely] with the Computer Science Department [through their membership] in Applied Sciences anymore.”

I’m moving fast today so may have to make some changes when I review this post later. Tomorrow: part 3 where we discuss access to research, public outreach, and Cheryl Geisler’s ‘dreams’.

Off the deep end: an interview with Cheryl Geisler Introduction, Part 1, Part 3