Tag Archives: King’s College London

Neural (brain) implants and hype (long read)

There was a big splash a few weeks ago when it was announced that Neuralink’s (Elon Musk company) brain implant had been surgically inserted into its first human patient.

Getting approval

David Tuffley, senior lecturer in Applied Ethics & CyberSecurity at Griffith University (Australia), provides a good overview of the road Neuralink took to getting FDA (US Food and Drug Administration) approval for human clinical trials in his May 29, 2023 essay for The Conversation, Note: Links have been removed,

Since its founding in 2016, Elon Musk’s neurotechnology company Neuralink has had the ambitious mission to build a next-generation brain implant with at least 100 times more brain connections than devices currently approved by the US Food and Drug Administration (FDA).

The company has now reached a significant milestone, having received FDA approval to begin human trials. So what were the issues keeping the technology in the pre-clinical trial phase for as long as it was? And have these concerns been addressed?

Neuralink is making a Class III medical device known as a brain-computer interface (BCI). The device connects the brain to an external computer via a Bluetooth signal, enabling continuous communication back and forth.

The device itself is a coin-sized unit called a Link. It’s implanted within a small disk-shaped cutout in the skull using a precision surgical robot. The robot splices a thousand tiny threads from the Link to certain neurons in the brain. [emphasis mine] Each thread is about a quarter the diameter of a human hair.

The company says the device could enable precise control of prosthetic limbs, giving amputees natural motor skills. It could revolutionise treatment for conditions such as Parkinson’s disease, epilepsy and spinal cord injuries. It also shows some promise for potential treatment of obesity, autism, depression, schizophrenia and tinnitus.

Several other neurotechnology companies and researchers have already developed BCI technologies that have helped people with limited mobility regain movement and complete daily tasks.

In February 2021, Musk said Neuralink was working with the FDA to secure permission to start initial human trials later that year. But human trials didn’t commence in 2021.

Then, in March 2022, Neuralink made a further application to the FDA to establish its readiness to begin humans trials.

One year and three months later, on May 25 2023, Neuralink finally received FDA approval for its first human clinical trial. Given how hard Neuralink has pushed for permission to begin, we can assume it will begin very soon. [emphasis mine]

The approval has come less than six months after the US Office of the Inspector General launched an investigation into Neuralink over potential animal welfare violations. [emphasis mine]

In accessible language, Tuffley goes on to discuss the FDA’s specific technical issues with implants and how they were addressed in his May 29, 2023 essay.

More about how Neuralink’s implant works and some concerns

Canadian Broadcasting Corporation (CBC) journalist Andrew Chang offers an almost 13 minute video, “Neuralink brain chip’s first human patient. How does it work?” Chang is a little overenthused for my taste but he offers some good information about neural implants, along with informative graphics in his presentation.

So, Tuffley was right about Neuralink getting ready quickly for human clinical trials as you can guess from the title of Chang’s CBC video.

Jennifer Korn announced that recruitment had started in her September 20, 2023 article for CNN (Cable News Network), Note: Links have been removed,

Elon Musk’s controversial biotechnology startup Neuralink opened up recruitment for its first human clinical trial Tuesday, according to a company blog.

After receiving approval from an independent review board, Neuralink is set to begin offering brain implants to paralysis patients as part of the PRIME Study, the company said. PRIME, short for Precise Robotically Implanted Brain-Computer Interface, is being carried out to evaluate both the safety and functionality of the implant.

Trial patients will have a chip surgically placed in the part of the brain that controls the intention to move. The chip, installed by a robot, will then record and send brain signals to an app, with the initial goal being “to grant people the ability to control a computer cursor or keyboard using their thoughts alone,” the company wrote.

Those with quadriplegia [sometimes known as tetraplegia] due to cervical spinal cord injury or amyotrophic lateral sclerosis (ALS) may qualify for the six-year-long study – 18 months of at-home and clinic visits followed by follow-up visits over five years. Interested people can sign up in the patient registry on Neuralink’s website.

Musk has been working on Neuralink’s goal of using implants to connect the human brain to a computer for five years, but the company so far has only tested on animals. The company also faced scrutiny after a monkey died in project testing in 2022 as part of efforts to get the animal to play Pong, one of the first video games.

I mentioned three Reuters investigative journalists who were reporting on Neuralink’s animal abuse allegations (emphasized in Tuffley’s essay) in a July 7, 2023 posting, “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” Later that year, Neuralink was cleared by the US Department of Agriculture (see September 24,, 2023 article by Mahnoor Jehangir for BNN Breaking).

Plus, Neuralink was being investigated over more allegations according to a February 9, 2023 article by Rachel Levy for Reuters, this time regarding hazardous pathogens,

The U.S. Department of Transportation said on Thursday it is investigating Elon Musk’s brain-implant company Neuralink over the potentially illegal movement of hazardous pathogens.

A Department of Transportation spokesperson told Reuters about the probe after the Physicians Committee of Responsible Medicine (PCRM), an animal-welfare advocacy group,wrote to Secretary of Transportation Pete Buttigieg, opens new tab earlier on Thursday to alert it of records it obtained on the matter.

PCRM said it obtained emails and other documents that suggest unsafe packaging and movement of implants removed from the brains of monkeys. These implants may have carried infectious diseases in violation of federal law, PCRM said.

There’s an update about the hazardous materials in the next section. Spoiler alert, the company got fined.

Neuralink’s first human implant

A January 30, 2024 article (Associated Press with files from Reuters) on the Canadian Broadcasting Corporation’s (CBC) online news webspace heralded the latest about Neurlink’s human clinical trials,

The first human patient received an implant from Elon Musk’s computer-brain interface company Neuralink over the weekend, the billionaire says.

In a post Monday [January 29, 2024] on X, the platform formerly known as Twitter, Musk said that the patient received the implant the day prior and was “recovering well.” He added that “initial results show promising neuron spike detection.”

Spikes are activity by neurons, which the National Institutes of Health describe as cells that use electrical and chemical signals to send information around the brain and to the body.

The billionaire, who owns X and co-founded Neuralink, did not provide additional details about the patient.

When Neuralink announced in September [2023] that it would begin recruiting people, the company said it was searching for individuals with quadriplegia due to cervical spinal cord injury or amyotrophic lateral sclerosis, commonly known as ALS or Lou Gehrig’s disease.

Neuralink reposted Musk’s Monday [January 29, 2024] post on X, but did not publish any additional statements acknowledging the human implant. The company did not immediately respond to requests for comment from The Associated Press or Reuters on Tuesday [January 30, 2024].

In a separate Monday [January 29, 2024] post on X, Musk said that the first Neuralink product is called “Telepathy” — which, he said, will enable users to control their phones or computers “just by thinking.” He said initial users would be those who have lost use of their limbs.

The startup’s PRIME Study is a trial for its wireless brain-computer interface to evaluate the safety of the implant and surgical robot.

Now for the hazardous materials, January 30, 2024 article, Note: A link has been removed,

Earlier this month [January 2024], a Reuters investigation found that Neuralink was fined for violating U.S. Department of Transportation (DOT) rules regarding the movement of hazardous materials. During inspections of the company’s facilities in Texas and California in February 2023, DOT investigators found the company had failed to register itself as a transporter of hazardous material.

They also found improper packaging of hazardous waste, including the flammable liquid Xylene. Xylene can cause headaches, dizziness, confusion, loss of muscle co-ordination and even death, according to the U.S. Centers for Disease Control and Prevention.

The records do not say why Neuralink would need to transport hazardous materials or whether any harm resulted from the violations.

Skeptical thoughts about Elon Musk and Neuralink

Earlier this month (February 2024), the British Broadcasting Corporation (BBC) published an article by health reporters, Jim Reed and Joe McFadden, that highlights the history of brain implants, the possibilities, and notes some of Elon Musk’s more outrageous claims for Neuralink’s brain implants,

Elon Musk is no stranger to bold claims – from his plans to colonise Mars to his dreams of building transport links underneath our biggest cities. This week the world’s richest man said his Neuralink division had successfully implanted its first wireless brain chip into a human.

Is he right when he says this technology could – in the long term – save the human race itself?

Sticking electrodes into brain tissue is really nothing new.

In the 1960s and 70s electrical stimulation was used to trigger or suppress aggressive behaviour in cats. By the early 2000s monkeys were being trained to move a cursor around a computer screen using just their thoughts.

“It’s nothing novel, but implantable technology takes a long time to mature, and reach a stage where companies have all the pieces of the puzzle, and can really start to put them together,” says Anne Vanhoestenberghe, professor of active implantable medical devices, at King’s College London.

Neuralink is one of a growing number of companies and university departments attempting to refine and ultimately commercialise this technology. The focus, at least to start with, is on paralysis and the treatment of complex neurological conditions.

Reed and McFadden’s February 2024 BBC article describes a few of the other brain implant efforts, Note: Links have been removed,

One of its [Neuralink’s] main rivals, a start-up called Synchron backed by funding from investment firms controlled by Bill Gates and Jeff Bezos, has already implanted its stent-like device into 10 patients.

Back in December 2021, Philip O’Keefe, a 62-year old Australian who lives with a form of motor neurone disease, composed the first tweet using just his thoughts to control a cursor.

And researchers at Lausanne University in Switzerland have shown it is possible for a paralysed man to walk again by implanting multiple devices to bypass damage caused by a cycling accident.

In a research paper published this year, they demonstrated a signal could be beamed down from a device in his brain to a second device implanted at the base of his spine, which could then trigger his limbs to move.

Some people living with spinal injuries are sceptical about the sudden interest in this new kind of technology.

“These breakthroughs get announced time and time again and don’t seem to be getting any further along,” says Glyn Hayes, who was paralysed in a motorbike accident in 2017, and now runs public affairs for the Spinal Injuries Association.

If I could have anything back, it wouldn’t be the ability to walk. It would be putting more money into a way of removing nerve pain, for example, or ways to improve bowel, bladder and sexual function.” [emphasis mine]

Musk, however, is focused on something far more grand for Neuralink implants, from Reed and McFadden’s February 2024 BBC article, Note: A link has been removed,

But for Elon Musk, “solving” brain and spinal injuries is just the first step for Neuralink.

The longer-term goal is “human/AI symbiosis” [emphasis mine], something he describes as “species-level important”.

Musk himself has already talked about a future where his device could allow people to communicate with a phone or computer “faster than a speed typist or auctioneer”.

In the past, he has even said saving and replaying memories may be possible, although he recognised “this is sounding increasingly like a Black Mirror episode.”

One of the experts quoted in Reed and McFadden’s February 2024 BBC article asks a pointed question,

… “At the moment, I’m struggling to see an application that a consumer would benefit from, where they would take the risk of invasive surgery,” says Prof Vanhoestenberghe.

“You’ve got to ask yourself, would you risk brain surgery just to be able to order a pizza on your phone?”

Rae Hodge’s February 11, 2024 article about Elon Musk and his hyped up Neuralink implant for Salon is worth reading in its entirety but for those who don’t have the time or need a little persuading, here are a few excerpts, Note 1: This is a warning; Hodge provides more detail about the animal cruelty allegations; Note 2: Links have been removed,

Elon Musk’s controversial brain-computer interface (BCI) tech, Neuralink, has supposedly been implanted in its first recipient — and as much as I want to see progress for treatment of paralysis and neurodegenerative disease, I’m not celebrating. I bet the neuroscientists he reportedly drove out of the company aren’t either, especially not after seeing the gruesome torture of test monkeys and apparent cover-up that paved the way for this moment. 

All of which is an ethics horror show on its own. But the timing of Musk’s overhyped implant announcement gives it an additional insulting subtext. Football players are currently in a battle for their lives against concussion-based brain diseases that plague autopsy reports of former NFL players. And Musk’s boast of false hope came just two weeks before living players take the field in the biggest and most brutal game of the year. [2024 Super Bowl LVIII]

ESPN’s Kevin Seifert reports neuro-damage is up this year as “players suffered a total of 52 concussions from the start of training camp to the beginning of the regular season. The combined total of 213 preseason and regular season concussions was 14% higher than 2021 but within range of the three-year average from 2018 to 2020 (203).”

I’m a big fan of body-tech: pacemakers, 3D-printed hips and prosthetic limbs that allow you to wear your wedding ring again after 17 years. Same for brain chips. But BCI is the slow-moving front of body-tech development for good reason. The brain is too understudied. Consequences of the wrong move are dire. Overpromising marketable results on profit-driven timelines — on the backs of such a small community of researchers in a relatively new field — would be either idiotic or fiendish. 

Brown University’s research in the sector goes back to the 1990s. Since the emergence of a floodgate-opening 2002 study and the first implant in 2004 by med-tech company BrainGate, more promising results have inspired broader investment into careful research. But BrainGate’s clinical trials started back in 2009, and as noted by Business Insider’s Hilary Brueck, are expected to continue until 2038 — with only 15 participants who have devices installed. 

Anne Vanhoestenberghe is a professor of active implantable medical devices at King’s College London. In a recent release, she cautioned against the kind of hype peddled by Musk.

“Whilst there are a few other companies already using their devices in humans and the neuroscience community have made remarkable achievements with those devices, the potential benefits are still significantly limited by technology,” she said. “Developing and validating core technology for long term use in humans takes time and we need more investments to ensure we do the work that will underpin the next generation of BCIs.” 

Neuralink is a metal coin in your head that connects to something as flimsy as an app. And we’ve seen how Elon treats those. We’ve also seen corporate goons steal a veteran’s prosthetic legs — and companies turn brain surgeons and dentists into repo-men by having them yank anti-epilepsy chips out of people’s skulls, and dentures out of their mouths. 

“I think we have a chance with Neuralink to restore full-body functionality to someone who has a spinal cord injury,” Musk said at a 2023 tech summit, adding that the chip could possibly “make up for whatever lost capacity somebody has.”

Maybe BCI can. But only in the careful hands of scientists who don’t have Musk squawking “go faster!” over their shoulders. His greedy frustration with the speed of BCI science is telling, as is the animal cruelty it reportedly prompted.

There have been other examples of Musk’s grandiosity. Notably, David Lee expressed skepticism about hyperloop in his August 13, 2013 article for BBC news online

Is Elon Musk’s Hyperloop just a pipe dream?

Much like the pun in the headline, the bright idea of transporting people using some kind of vacuum-like tube is neither new nor imaginative.

There was Robert Goddard, considered the “father of modern rocket propulsion”, who claimed in 1909 that his vacuum system could suck passengers from Boston to New York at 1,200mph.

And then there were Soviet plans for an amphibious monorail  – mooted in 1934  – in which two long pods would start their journey attached to a metal track before flying off the end and slipping into the water like a two-fingered Kit Kat dropped into some tea.

So ever since inventor and entrepreneur Elon Musk hit the world’s media with his plans for the Hyperloop, a healthy dose of scepticism has been in the air.

“This is by no means a new idea,” says Rod Muttram, formerly of Bombardier Transportation and Railtrack.

“It has been previously suggested as a possible transatlantic transport system. The only novel feature I see is the proposal to put the tubes above existing roads.”

Here’s the latest I’ve found on hyperloop, from the Hyperloop Wikipedia entry,

As of 2024, some companies continued to pursue technology development under the hyperloop moniker, however, one of the biggest, well funded players, Hyperloop One, declared bankruptcy and ceased operations in 2023.[15]

Musk is impatient and impulsive as noted in a September 12, 2023 posting by Mike Masnick on Techdirt, Note: A link has been removed,

The Batshit Crazy Story Of The Day Elon Musk Decided To Personally Rip Servers Out Of A Sacramento Data Center

Back on Christmas Eve [December 24, 2022] of last year there were some reports that Elon Musk was in the process of shutting down Twitter’s Sacramento data center. In that article, a number of ex-Twitter employees were quoted about how much work it would be to do that cleanly, noting that there’s a ton of stuff hardcoded in Twitter code referring to that data center (hold that thought).

That same day, Elon tweeted out that he had “disconnected one of the more sensitive server racks.”

Masnick follows with a story of reckless behaviour from someone who should have known better.

Ethics of implants—where to look for more information

While Musk doesn’t use the term when he describes a “human/AI symbiosis” (presumably by way of a neural implant), he’s talking about a cyborg. Here’s a 2018 paper, which looks at some of the implications,

Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance by Eva Reinares-Lara, Cristina Olarte-Pascual, and Jorge Pelegrín-Borondo. Computers in Human Behavior Volume 85, August 2018, Pages 43-53 DOI: https://doi.org/10.1016/j.chb.2018.03.032

This paper is open access.

Getting back to Neuralink, I have two blog posts that discuss the company and the ethics of brain implants from way back in 2021.

First, there’s Jazzy Benes’ March 1, 2021 posting on the Santa Clara University’s Markkula Center for Applied Ethics blog. It stands out as it includes a discussion of the disabled community’s issues, Note: Links have been removed,

In the heart of Silicon Valley we are constantly enticed by the newest technological advances. With the big influencers Grimes [a Canadian musician and the mother of three children with Elon Musk] and Lil Uzi Vert publicly announcing their willingness to become experimental subjects for Elon Musk’s Neuralink brain implantation device, we are left wondering if future technology will actually give us “the knowledge of the Gods.” Is it part of the natural order for humans to become omniscient beings? Who will have access to the devices? What other ethical considerations must be discussed before releasing such technology to the public?

A significant issue that arises from developing technologies for the disabled community is the assumption that disabled persons desire the abilities of what some abled individuals may define as “normal.” Individuals with disabilities may object to technologies intended to make them fit an able-bodied norm. “Normal” is relative to each individual, and it could be potentially harmful to use a deficit view of disability, which means judging a disability as a deficiency. However, this is not to say that all disabled individuals will reject a technology that may enhance their abilities. Instead, I believe it is a consideration that must be recognized when developing technologies for the disabled community, and it can only be addressed through communication with disabled persons. As a result, I believe this is a conversation that must be had with the community for whom the technology is developed–disabled persons.

With technologies that aim to address disabilities, we walk a fine line between therapeutics and enhancement. Though not the first neural implant medical device, the Link may have been the first BCI system openly discussed for its potential transhumanism uses, such as “enhanced cognitive abilities, memory storage and retrieval, gaming, telepathy, and even symbiosis with machines.” …

Benes also discusses transhumanism, privacy issues, and consent issues. It’s a thoughtful reading experience.

Second is a July 9, 2021 posting by anonymous on the University of California at Berkeley School of Information blog which provides more insight into privacy and other issues associated with data collection (and introduced me to the concept of decisional interference),

As the development of microchips furthers and advances in neuroscience occur, the possibility for seamless brain-machine interfaces, where a device decodes inputs from the user’s brain to perform functions, becomes more of a reality. These various forms of these technologies already exist. However, technological advances have made implantable and portable devices possible. Imagine a future where humans don’t need to talk to each other, but rather can transmit their thoughts directly to another person. This idea is the eventual goal of Elon Musk, the founder of Neuralink. Currently, Neuralink is one of the main companies involved in the advancement of this type of technology. Analysis of the Neuralink’s technology and their overall mission statement provide an interesting insight into the future of this type of human-computer interface and the potential privacy and ethical concerns with this technology.

As this technology further develops, several privacy and ethical concerns come into question. To begin, using Solove’s Taxonomy as a privacy framework, many areas of potential harm are revealed. In the realm of information collection, there is much risk. Brain-computer interfaces, depending on where they are implanted, could have access to people’s most private thoughts and emotions. This information would need to be transmitted to another device for processing. The collection of this information by companies such as advertisers would represent a major breach of privacy. Additionally, there is risk to the user from information processing. These devices must work concurrently with other devices and often wirelessly. Given the widespread importance of cloud computing in much of today’s technology, offloading information from these devices to the cloud would be likely. Having the data stored in a database puts the user at the risk of secondary use if proper privacy policies are not implemented. The trove of information stored within the information collected from the brain is vast. These datasets could be combined with existing databases such as browsing history on Google to provide third parties with unimaginable context on individuals. Lastly, there is risk for information dissemination, more specifically, exposure. The information collected and processed by these devices would need to be stored digitally. Keeping such private information, even if anonymized, would be a huge potential for harm, as the contents of the information may in itself be re-identifiable to a specific individual. Lastly there is risk for invasions such as decisional interference. Brain-machine interfaces would not only be able to read information in the brain but also write information. This would allow the device to make potential emotional changes in its users, which be a major example of decisional interference. …

For the most recent Neuralink and brain implant ethics piece, there’s this February 14, 2024 essay on The Conversation, which, unusually, for this publication was solicited by the editors, Note: Links have been removed,

In January 2024, Musk announced that Neuralink implanted its first chip in a human subject’s brain. The Conversation reached out to two scholars at the University of Washington School of Medicine – Nancy Jecker, a bioethicst, and Andrew Ko, a neurosurgeon who implants brain chip devices – for their thoughts on the ethics of this new horizon in neuroscience.

Information about the implant, however, is scarce, aside from a brochure aimed at recruiting trial subjects. Neuralink did not register at ClinicalTrials.gov, as is customary, and required by some academic journals. [all emphases mine]

Some scientists are troubled by this lack of transparency. Sharing information about clinical trials is important because it helps other investigators learn about areas related to their research and can improve patient care. Academic journals can also be biased toward positive results, preventing researchers from learning from unsuccessful experiments.

Fellows at the Hastings Center, a bioethics think tank, have warned that Musk’s brand of “science by press release, while increasingly common, is not science. [emphases mine]” They advise against relying on someone with a huge financial stake in a research outcome to function as the sole source of information.

When scientific research is funded by government agencies or philanthropic groups, its aim is to promote the public good. Neuralink, on the other hand, embodies a private equity model [emphasis mine], which is becoming more common in science. Firms pooling funds from private investors to back science breakthroughs may strive to do good, but they also strive to maximize profits, which can conflict with patients’ best interests.

In 2022, the U.S. Department of Agriculture investigated animal cruelty at Neuralink, according to a Reuters report, after employees accused the company of rushing tests and botching procedures on test animals in a race for results. The agency’s inspection found no breaches, according to a letter from the USDA secretary to lawmakers, which Reuters reviewed. However, the secretary did note an “adverse surgical event” in 2019 that Neuralink had self-reported.

In a separate incident also reported by Reuters, the Department of Transportation fined Neuralink for violating rules about transporting hazardous materials, including a flammable liquid.

…the possibility that the device could be increasingly shown to be helpful for people with disabilities, but become unavailable due to loss of research funding. For patients whose access to a device is tied to a research study, the prospect of losing access after the study ends can be devastating. [emphasis mine] This raises thorny questions about whether it is ever ethical to provide early access to breakthrough medical interventions prior to their receiving full FDA approval.

Not registering a clinical trial would seem to suggest there won’t be much oversight. As for Musk’s “science by press release” activities, I hope those will be treated with more skepticism by mainstream media although that seems unlikely given the current situation with journalism (more about that in a future post).

As for the issues associated with private equity models for science research and the problem of losing access to devices after a clinical trial is ended, my April 5, 2022 posting, “Going blind when your neural implant company flirts with bankruptcy (long read)” offers some cautionary tales, in addition to being the most comprehensive piece I’ve published on ethics and brain implants.

My July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” offers a brief overview of the international scene.

Nanoparticles and strange forces

An April 10, 2017 news item on Nanowerk announces work from the University of New Mexico (UNM), Note: A link has been removed,

A new scientific paper published, in part, by a University of New Mexico physicist is shedding light on a strange force impacting particles at the smallest level of the material world.

The discovery, published in Physical Review Letters (“Lateral Casimir Force on a Rotating Particle near a Planar Surface”), was made by an international team of researchers lead by UNM Assistant Professor Alejandro Manjavacas in the Department of Physics & Astronomy. Collaborators on the project include Francisco Rodríguez-Fortuño (King’s College London, U.K.), F. Javier García de Abajo (The Institute of Photonic Sciences, Spain) and Anatoly Zayats (King’s College London, U.K.).

An April 7,2017 UNM news release by Aaron Hill, which originated the news item, expands on the theme,

The findings relate to an area of theoretical nanophotonics and quantum theory known as the Casimir Effect, a measurable force that exists between objects inside a vacuum caused by the fluctuations of electromagnetic waves. When studied using classical physics, the vacuum would not produce any force on the objects. However, when looked at using quantum field theory, the vacuum is filled with photons, creating a small but potentially significant force on the objects.

“These studies are important because we are developing nanotechnologies where we’re getting into distances and sizes that are so small that these types of forces can dominate everything else,” said Manjavacas. “We know these Casimir forces exist, so, what we’re trying to do is figure out the overall impact they have very small particles.”

Manjavacas’ research expands on the Casimir effect by developing an analytical expression for the lateral Casimir force experienced by nanoparticles rotating near a flat surface.

Imagine a tiny sphere (nanoparticle) rotating over a surface. While the sphere slows down due to photons colliding with it, that rotation also causes the sphere to move in a lateral direction. In our physical world, friction between the sphere and the surface would be needed to achieve lateral movement. However, the nano-world does not follow the same set of rules, eliminating the need for contact between the sphere and the surface for movement to occur.

“The nanoparticle experiences a lateral force as if it were in contact with the surface, even though is actually separated from it,” said Manjavacas. “It’s a strange reaction but one that may prove to have significant impact for engineers.”

While the discovery may seem somewhat obscure, it is also extremely useful for researchers working in the always evolving nanotechnology industry. As part of their work, Manjavacas says they’ve also learned the direction of the force can be controlled by changing the distance between the particle and surface, an understanding that may help nanotech engineers develop better nanoscale objects for healthcare, computing or a variety of other areas.

For Manjavacas, the project and this latest publication are just another step forward in his research into these Casimir forces, which he has been studying throughout his scientific career. After receiving his Ph.D. from Complutense University of Madrid (UCM) in 2013, Manjavacas worked as a postdoctoral research fellow at Rice University before coming to UNM in 2015.

Currently, Manjavacas heads UNM’s Theoretical Nanophotonics research group, collaborating with scientists around the world and locally in New Mexico. In fact, Manjavacas credits Los Alamos National Laboratory Researcher Diego Dalvit, a leading expert on Casimir forces, for helping much of his work progress.

“If I had to name the person who knows the most about Casimir forces, I’d say it was him,” said Manjavacas. “He published a book that’s considered one of the big references on the topic. So, having him nearby and being able to collaborate with other UNM faculty is a big advantage for our research.”

Here’s a link to and a citation for the paper,

Lateral Casimir Force on a Rotating Particle near a Planar Surface by Alejandro Manjavacas, Francisco J. Rodríguez-Fortuño, F. Javier García de Abajo, and Anatoly V. Zayats. Phys. Rev. Lett. (Vol. 118, Iss. 13 — 31 March 2017) 118, 133605 DOI:https://doi.org/10.1103/PhysRevLett.118.133605 Published 31 March 2017

This paper is behind a paywall.

Movies and science, science, science (Part 1 of 2)

In the last few years, there’s been a veritable plethora of movies (and television shows in Canada and the US) that are about science and technology or have a significant  component or investigate the social impact. The trend does not seem to be slowing.

This first of two parts features the film, *Hidden* Figures, and a play being turned into a film, Photograph 51. The second part features the evolving Theranos story and plans to turn it into a film, The Man Who Knew Infinity, a film about an Indian mathematician, the science of the recent all woman Ghostbusters, and an ezine devoted to science films.

For the following movie tidbits, I have David Bruggeman to thank.

Hidden Figures

From David’s June 21, 2016 post on his Pasco Phronesis blog (Note: A link has been removed),

Hidden Figures is a fictionalized treatment of the book of the same name written by Margot Lee Shetterly (and underwritten by the Sloan Foundation).  Neither the book nor the film are released yet.  The book is scheduled for a September release, and the film currently has a January release date in the U.S.

Both the film and the book focus on the story of African American women who worked as computers for the government at the Langley National Aeronautic Laboratory in Hampton, Virginia.  The women served as human computers, making the calculations NASA needed during the Space Race.  While the book features four women, the film is focused on three: Katherine Johnson (recipient of the Presidential Medal of Freedom), Dorothy Vaughan, and Mary Jackson.  They are played by, respectively, Taraji P. Henson, Octavia Spencer, and Janelle Monae.  Other actors in the film include Kevin Costner, Kirsten Dunst, Aldis Hodge, and Jim Parsons.  The film is directed by Theodore Melfi, and the script is by Allison Schroeder.

*ETA Oct. 6, 2016: The book ‘Hidden Figures’ is nonfiction while the movie is a fictionalized adaptation  based on a true story.*

According to imdb.com, the movie’s release date is Dec. 25, 2016 (this could change again).

The history for ‘human computers’ stretches back to the 17th century, at least. From the Human Computer entry in Wikipedia (Note: Links have been removed),

The term “computer”, in use from the early 17th century (the first known written reference dates from 1613),[1] meant “one who computes”: a person performing mathematical calculations, before electronic computers became commercially available. “The human computer is supposed to be following fixed rules; he has no authority to deviate from them in any detail.” (Turing, 1950) Teams of people were frequently used to undertake long and often tedious calculations; the work was divided so that this could be done in parallel.

Prior to NASA, a team of women in the 19th century in the US were known as Harvard Computers (from the Wikipedia entry; Note: Links have been removed),

Edward Charles Pickering (director of the Harvard Observatory from 1877 to 1919) decided to hire women as skilled workers to process astronomical data. Among these women were Williamina Fleming, Annie Jump Cannon, Henrietta Swan Leavitt and Antonia Maury. This staff came to be known as “Pickering’s Harem” or, more respectfully, as the Harvard Computers.[1] This was an example of what has been identified as the “harem effect” in the history and sociology of science.

It seems that several factors contributed to Pickering’s decision to hire women instead of men. Among them was the fact that men were paid much more than women, so he could employ more staff with the same budget. This was relevant in a time when the amount of astronomical data was surpassing the capacity of the Observatories to process it.[2]

The first woman hired was Williamina Fleming, who was working as a maid for Pickering. It seems that Pickering was increasingly frustrated with his male assistants and declared that even his maid could do a better job. Apparently he was not mistaken, as Fleming undertook her assigned chores efficiently. When the Harvard Observatory received in 1886 a generous donation from the widow of Henry Draper, Pickering decided to hire more female staff and put Fleming in charge of them.[3]

While it’s not thrilling to find out that Pickering was content to exploit the women he was hiring, he deserves kudos for recognizing that women could do excellent work and acting on that recognition. When you consider the times, Pickering’s was an extraordinary act.

Getting back to Hidden Figures, an Aug.15, 2016 posting by Kathleen for Lainey Gossip celebrates the then newly released trailer for the movie,

If you’ve been watching the Olympics [Rio 2016], you know how much the past 10 days have been an epic display of #BlackGirlMagic. Fittingly, the trailer for Hidden Figures was released last night during Sunday’s Olympic coverage. It’s the story of three brilliant African American women, played by Taraji P Henson, Octavia Spencer and Janelle Monae, who made history by serving as the brains behind the NASA launch of astronaut John Glenn into orbit in 1962.

Three black women helped launch a dude into space in the 60s. AT NASA. Think about how America treated black women in the 60s. As Katherine Johnson, played by Taraji P Henson, jokes in the trailer, they were still sitting at the back of the bus. In 1962 Malcolm X said, “The most disrespected person in America is the Black woman, the most unprotected person in America is the Black woman. The most neglected person in America is the Black woman.” These women had to face that truth every day and they still rose to greatness. I’m obsessed with this story.

Overall, the trailer is good. I like the pace and the performances look strong. …

I’m most excited for Hidden Figures (as Lainey pointed out, this title is THE WORST) because black girls are being celebrated for their brains on screen. That is rare. When the trailer aired, my brother Sam texted me, “WHOA, a smart black girl movie!”

*ETA Sept. 5, 2016: Aran Shetterly contacted me to say this:

What you may not know is that the term “Hidden Figures” is a specific reference to flight science. It tested a pilot’s ability to pick out a simple figure from a set of more complex, difficult to see images. http://www.militaryaptitudetests.com/afoqt/

Thank you Mr. Shetterly!

Photograph 51 (the Rosalind Franklin story)

Also in David’s June 21, 2016 post is a mention of Photograph 51, a play and soon-to-be film about Rosalind Franklin, the discovery of the double helix, and a science controversy. I first wrote about Photograph 51 in a Jan. 16, 2012 posting (scroll down about 50% of the way) regarding an international script writing competition being held in Dublin, Ireland. At the time, I noted that Anna Ziegler’s play, Photograph 51 had won a previous competition cycle of the screenwriting competition. I wrote again about the play in a Sept. 2, 2015 posting about its London production (Sept. 5 – Nov. 21, 2015) featuring actress Nicole Kidman.

The versions of the Franklin story with which I’m familiar paint her as the wronged party, ignored and unacknowledged by the scientists (Francis, Crick, James Watson, and Maurice Wilkins) who got all the glory and the Nobel Prize. Stephen Curry in a Sept. 16, 2015 posting on the Guardian science blogs suggests the story may not be quite as simple as that (Note: A link has been removed),

Ziegler [Anna Ziegler, playwright] is up front in admitting that she has rearranged facts to suit the drama. This creates some oddities of chronology and motive for those familiar with the history. I know of no suggestion of romantic interest in Franklin from Wilkins, or of a separation of Crick from his wife in the aftermath of his triumph with Watson in solving the DNA structure. There is no mention in the play of the fact that Franklin published her work (and the famous photograph 51) in the journal Nature alongside Watson and Crick’s paper and one by Wilkins. Nor does the audience hear of the international recognition that Franklin enjoyed in her own right between 1953 and her untimely death in 1958, not just for her involvement in DNA, but also for her work on the structure of coal and of viruses.

Published long after her death, The Double Helix is widely thought to treat Franklin unfairly. In the minds of many she remains the wronged woman whose pioneering results were taken by others to solve DNA and win the Nobel prize. But the real story – many elements of which come across strongly in the play – is more complex*.

Franklin is a gifted experimentalist. Her key contributions to the discovery were in improving methods for taking X-ray pictures of and discovering the distinct A and B conformations of DNA. But it becomes clear that her methodical, meticulous approach to data analysis – much to Wilkins’ impotent frustration – eventually allows the Kings ‘team’ to be overtaken by the bolder, intuitive stratagem of Watson and Crick.

Curry’s piece is a good read and provides insight into the ways temperament affects how science is practiced.

Interestingly, there was a 1987 dramatization of the ‘double helix or life story’ (from the Life Story entry on Wikipedia; Note: Links have been removed),

The film tells the story of the rivalries of the two teams of scientists attempting to discover the structure of DNA. Francis Crick and James D. Watson at Cambridge University and Maurice Wilkins and Rosalind Franklin at King’s College London.

The film manages to convey the loneliness and competitiveness of scientific research but also educates the viewer as to how the structure of DNA was discovered. In particular, it explores the tension between the patient, dedicated laboratory work of Franklin and the sometimes uninformed intuitive leaps of Watson and Crick, all played against a background of institutional turf wars, personality conflicts and sexism. In the film Watson jokes, plugging the path of intuition: “Blessed are they who believed before there was any evidence.” The film also shows why Watson and Crick made their discovery, overtaking their competitors in part by reasoning from genetic function to predict chemical structure, thus helping to establish the then still-nascent field of molecular biology.

You can find out more about the stars, crew, and cast here on imdb.com

In addition to Life Story, the dramatization is also sometimes titled as ‘The Race for the Double Helix’ or the ‘Double Helix’.

Getting back to Photograph 51 (the film), Michael Grandage who directed the stage play will also direct the film. Grandage just made his debut as a film director with ‘Genius’ starring Colin Firth and Jude Law. According to this June 23, 2016 review by Sarah on Laineygossip.com, he stumbled a bit by casting British and Australian actors as Americans,

The first hurdle to clear with Genius, the feature film debut of English theater director Michael Grandage, is that everyone is played by Brits and Aussies, and by “everyone” I mean some of the most towering figures of American literature. You cast the best actor for the role and a good actor can convince you they’re anyone, so it shouldn’t really matter, but there is something profoundly odd about watching a parade of Lit 101 All Stars appear on screen and struggle with American accents. …

That kind of casting should not be a problem with Photograph 51 where the action takes place with British personalities.

Part 2 is here.

*’Human’ corrected to ‘Hidden’ on Sept. 5, 2016.

Technology, athletics, and the ‘new’ human

There is a tension between Olympic athletes and Paralympic athletes as it is felt by some able-bodied athletes that paralympic athletes may have an advantage due to their prosthetics. Roger Pielke Jr. has written a fascinating account of the tensions as a means of asking what it all means. From Pielke Jr.’s Aug. 3, 2016 post on the Guardian Science blogs (Note: Links have been removed),

Athletes are humans too, and they sometimes look for a performance improvement through technological enhancements. In my forthcoming book, The Edge: The War Against Cheating and Corruption in the Cutthroat World of Elite Sports, I discuss a range of technological augmentations to both people and to sports, and the challenges that they pose for rule making. In humans, such improvements can be the result of surgery to reshape (like laser eye surgery) or strengthen (such as replacing a ligament with a tendon) the body to aid performance, or to add biological or non-biological parts that the individual wasn’t born with.

One well-known case of technological augmentation involved the South African sprinter Oscar Pistorius, who ran in the 2012 Olympic Games on prosthetic “blades” below his knees (during happier days for the athlete who is currently jailed in South Africa for the killing of his girlfriend, Reeva Steenkamp). Years before the London Games Pistorius began to have success on the track running against able-bodied athletes. As a consequence of this success and Pistorius’s interest in competing at the Olympic games, the International Association of Athletics Federations (or IAAF, which oversees elite track and field competitions) introduced a rule in 2007, focused specifically on Pistorius, prohibiting the “use of any technical device that incorporates springs, wheels, or any other element that provides the user with an advantage over another athlete not using such a device.” Under this rule, Pistorius was determined by the IAAF to be ineligible to compete against able-bodied athletes.

Pistorius appealed the decision to the Court of Arbitration for Sport. The appeal hinged on answering a metaphysical question—how fast would Pistorius have run had he been born with functioning legs below the knee? In other words, did the blades give him an advantage over other athletes that the hypothetical, able-bodied Oscar Pistorius would not have had? Because there never was an able-bodied Pistorius, the CAS looked to scientists to answer the question.

CAS concluded that the IAAF was in fact fixing the rules to prevent Pistorius from competing and that “at least some IAAF officials had determined that they did not want Mr. Pistorius to be acknowledged as eligible to compete in international IAAF-sanctioned events, regardless of the results that properly conducted scientific studies might demonstrate.” CAS determined that it was the responsibility of the IAAF to show “on the balance of probabilities” that Pistorius gained an advantage by running on his blades. CAS concluded that the research commissioned by the IAAF did not show conclusively such an advantage.

As a result, CAS ruled that Pistorius was able to compete in the London Games, where he reached the semifinals of the 400 meters. CAS concluded that resolving such disputes “must be viewed as just one of the challenges of 21st Century life.”

The story does not end with Oscar Pistorius as Pielke, Jr. notes. There has been another challenge, this time by Markus Rehm, a German long-jumper who leaps off a prosthetic leg. Interestingly, the rules have changed since Oscar Pistorius won his case (Note: Links have been removed),

In the Pistorius case, under the rules for inclusion in the Olympic games the burden of proof had been on the IAAF, not the athlete, to demonstrate the presence of an advantage provided by technology.

This precedent was overturned in 2015, when the IAAF quietly introduced a new rule that in such cases reverses the burden of proof. The switch placed the burden of proof on the athlete instead of the governing body. The new rule—which we might call the Rehm Rule, given its timing—states that an athlete with a prosthetic limb (specifically, any “mechanical aid”) cannot participate in IAAF events “unless the athlete can establish on the balance of probabilities that the use of an aid would not provide him with an overall competitive advantage over an athlete not using such aid.” This new rule effectively slammed the door to participation by Paralympians with prosthetics from participating in Olympic Games.
Advertisement

Even if an athlete might have the resources to enlist researchers to carefully study his or her performance, the IAAF requires the athlete to do something that is very difficult, and often altogether impossible—to prove a negative.

If you have the time, I encourage you to read Pielke Jr.’s piece in its entirety as he notes the secrecy with which the Rehm rule was implemented and the implications for the future. Here’s one last excerpt (Note: A link has been removed),

We may be seeing only the beginning of debates over technological augmentation and sport. Silvia Camporesi, an ethicist at King’s College London, observed: “It is plausible to think that in 50 years, or maybe less, the ‘natural’ able-bodied athletes will just appear anachronistic.” She continues: “As our concept of what is ‘natural’ depends on what we are used to, and evolves with our society and culture, so does our concept of ‘purity’ of sport.”

I have written many times about human augmentation and the possibility that what is now viewed as a ‘normal’ body may one day be viewed as subpar or inferior is not all that farfetched. David Epstein’s 2014 TED talk “Are athletes really getting faster, better, stronger?” points out that in addition to sports technology innovations athletes’ bodies have changed considerably since the beginning of the 20th century. He doesn’t discuss body augmentation but it seems increasingly likely not just for athletes but for everyone.

As for athletes and augmentation, Epstein has an Aug. 7, 2016 Scientific American piece published on Salon.com in time for the 2016 Summer Olympics in Rio de Janeiro,

I knew Eero Mäntyranta had magic blood, but I hadn’t expected to see it in his face. I had tracked him down above the Arctic Circle in Finland where he was — what else? — a reindeer farmer.

He was all red. Not just the crimson sweater with knitted reindeer crossing his belly, but his actual skin. It was cardinal dappled with violet, his nose a bulbous purple plum. In the pictures I’d seen of him in Sports Illustrated in the 1960s — when he’d won three Olympic gold medals in cross-country skiing — he was still white. But now, as an older man, his special blood had turned him red.

Mäntyranta had about 50 percent more red blood cells than a normal man. If Armstrong [Lance Armstrong, cyclist] had as many red blood cells as Mäntyranta, cycling rules would have barred him from even starting a race, unless he could prove it was a natural condition.

During his career, Mäntyranta was accused of doping after his high red blood cell count was discovered. Two decades after he retired, Finnish scientists found his family’s mutation. …

Epstein also covers the Pistorius story, albeit with more detail about the science and controversy of determining whether someone with prosthetics may have an advantage over an able-bodied athlete. Scientists don’t agree about whether or not there is an advantage.

I have many other posts on the topic of augmentation. You can find them under the Human Enhancement category and you can also try the tag, machine/flesh.

Growing a tooth—as an adult

These days it seems that teeth are the most erogenous zone of all. Actors on screens of all types flash pearly whites that are increasingly blinding while the rest of us are enjoined to buy teeth whiteners in toothpastes, mouthwashes, whitening strips, and/or find dental professionals to assist us in our quest for the brightest and whitest teeth. It would all be so much easier if we could just grow new teeth and discard the old ones.

Coincidentally or not, it seems researchers at King’s College London have also been thinking about how we might grow new teeth. Ben Schiller in a Mar. 14, 2013 article for Fast Company highlights the work,

Researchers from the U.K. have successfully bioengineered teeth from gum tissue and cells taken from mice. By combining and transplanting two groups of cells, they were able to grow full teeth, complete with roots, dentine, and enamel.

This King’s College London Mar. 11, 2013 news release provides more details,

New research published in the Journal of Dental Research describes an advance in efforts to develop a method to replace missing teeth with new bioengineered teeth generated from a person’s own gum cells. …

Current implant-based methods of whole tooth replacement fail to reproduce a natural root structure and as a consequence of the friction from eating and other jaw movement, loss of jaw bone can occur around the implant.

Research towards achieving the aim of producing bioengineered teeth (bioteeth) has largely focused on the generation of immature teeth (teeth primordia) that mimic those in the embryo that can be transplanted as small cell ‘pellets’ into the adult jaw to develop into functional teeth. Remarkably, despite the very different environments, embryonic teeth primordia can develop normally in the adult mouth and thus if suitable cells can be identified that can be combined in such a way to produce an immature tooth, there is a realistic prospect bioteeth can become a clinical reality. Subsequent studies have largely focussed on the use of embryonic cells and although it is clear that embryonic tooth primordia cells can readily form immature teeth following dissociation into single cell populations and subsequent recombination, such cell sources are impractical to use in a general therapy.

Professor Sharpe [Paul Sharpe, an expert in craniofacial development and stem cell biology at King’s College London’s Dental Institute] said: ‘What is required is the identification of adult sources of human epithelial and mesenchymal cells that can be obtained in sufficient numbers to make biotooth formation a viable alternative to dental implants.’

In this new work, the researchers isolated adult human gum (gingival) tissue from patients at the Dental Institute at King’s College London, grew more of it in the lab, and then combined it with the cells of mice that form teeth (mesenchyme cells). By transplanting this combination of cells into mice the researchers were able to grow hybrid human/mouse teeth containing dentine and enamel, as well as viable roots.

Professor Sharpe concluded: ‘Epithelial cells derived from adult human gum tissue are capable of responding to tooth inducing signals from embryonic tooth mesenchyme in an appropriate way to contribute to tooth crown and root formation and give rise to relevant differentiated cell types, following in vitro culture. These easily accessible epithelial cells are thus a realistic source for consideration in human biotooth formation. The next major challenge is to identify a way to culture adult human mesenchymal cells to be tooth-inducing, as at the moment we can only make embryonic mesenchymal cells do this.’

If I read this rightly, researchers are several years away from actually growing a new tooth in an adult human mouth but this work suggests they might be on the right research track.

Sunscreen from coral

It’s a fascinating project they’re working on at King’s College London (KCL), converting an amino acid found in coral into a sunscreen for humans. The researchers have just signed an agreement to work with skincare company, Aethic but the  research was first discussed when it was still at the laboratory stage in an Aug. 2011 video produced by KCL,

The Sept. 12, 2012 news item on physorg.com makes the latest announcement about the project,

King’s College London has entered into an agreement with skincare company Aethic to develop the first sunscreen based on MAA’s (mycosporine-like amino acids), produced by coral.

It was last year that a team led by Dr Paul Long at King’s discovered how the naturally-occurring MAA’s were produced. Algae living within coral make a compound that is transported to the coral, which then modifies it into a sunscreen for the benefit of both the coral and the algae. Not only does this protect them both from UV damage, but fish that feed on the coral also benefit from this sunscreen protection.

The KCL Sept. 11, 2012 news release (which originated the new item) notes,

The next phase of development is for the researchers to work with Professor Antony Young and colleagues at the St John’s Institute of Dermatology at King’s, to test the efficacy of the compounds using human skin models.

Aethic’s Sôvée sunscreen was selected as the best ‘host’ product for the compound because of its existing broad-spectrum UVA/UVB and photo-stability characteristics and scientifically proven ecocompatibility credentials.

Dr Paul Long, Reader in Pharmacognosy at King’s Institute of Pharmaceutical Science, said: “While MAA’s have a number of other potential applications, human sunscreen is certainly a good place to begin proving the compound’s features. If our further studies confirm the results we are expecting, we hope that we will be able to develop a sunscreen with the broadest spectrum of protection.  Aethic has the best product and philosophy with which to proceed this exciting project.” [emphasis mine]

I went to the Aethic website and found this on the Be Aethic page,

Being Aethic means you are one with nature through our products. It means your skin lives better, feels better and looks better.

It means you do too.

Your skin is your largest organ. It’s worth looking after from within, with a good diet, and from the outside by protecting it from daily life and the sun’s harmful rays, by keeping it nourished.

Aethic Sôvée has the most photostable sun filters – anywhere. It has organic moisturisers. It contains a skin anti-oxidant. We developed this formula to treat your skin like royalty. And nature will love you for it as well.

People have been telling us that doing less damage to your skin and the ocean are amazing things to do together

Be loved by nature even more – share this with your friends. The more people you tell, the bigger the difference you make. Here’s why.

Deep down, most people probably suspected that the many ingredients they put on their skin from other sunscreens, must do some harm somewhere. Sure enough, in 2008 it was proven by Prof Roberto Danovaro, from Marche Polytechnic University in Italy, that these products can seriously damage coral. He has since discovered they do damage to clams too.

When you use Aethic Sôvée, you know that you’re leaving nothing behind to harm the ocean. In fact, with your contribution to The Going Blue Foundation’s coral nursery fund, you are going positive. Marine Positive – the certification Aethic Sôvée has received.

Unfortunately this copy is a bit of heavy on the sanctimonious side but the possibility of minimizing one’s negative impact on the  world’s oceans while preventing damage to skin can’t be ignored.

In any event, I found the information about the sunscreen making its way up the food chain and benefitting predators amused me when I considered the possibility of a bear or cougar benefitting should they happen to eat me while I’m using this new sunscreen. Given that this solution is not based on metal oxides perhaps it will find more favour with the ‘anti-nanosunscreen’ crowd.

An art to synthetic biology governance?

The Woodrow Wilson Center for International Scholars will be hosting, courtesy of its Synthetic Biology Project (SynBio Project), an event on March 27, 2012 titled (from the March 21, 2012 event announcement),

The Art of Synthetic Biology Governance: Considering the Concepts of Scientific Uncertainty and Cross-Borderness

When: March 27, 2012 from 12:30 p.m. – 2:00 p.m. (Light lunch available at noon.)

Who: Dr. Claire Marris, [senior research fellow at] King’s College London [and one of the report’s authors]

David Rejeski, Director, Science and Technology Innovation Program, will moderate the session

Where: Woodrow Wilson International Center for Scholars

5th Floor Conference Room
Ronald Reagan Building
1300 Pennsylvania Ave NW
Washington, D.C.

Sadly, it seems that there will not be a webcast, livestreamed or otherwise so the only option is to attend in person. If you can attend in person, here’s the registration link.

This event marks the release of a new working paper from the London School Economics (LSE), “BIOS working paper no. 4, The Transnational Governance of Synthetic Biology: Scientific uncertainty, cross-borderness and the ‘art’ of governance.” BTW, BIOS is the LSE’s Centre for the Study of Bioscience, Biomedicine, Biotechnology and Society.

There’s more about the report here, as well as, a PDF of the report on the Synbio Project website. I’ve only read about 1/4 of the report and can only comment on their general approach which I find quite interesting. From the executive summary of the working report, The Transnational Governance of Synthetic Biology: Scientific uncertainty, cross-borderness and the ‘art’ of governance,

The paper goes beyond proposals to mitigate specific risks of synthetic biology to investigate the root causes of such concerns, and address the challenges at an overarching level.

…Effective governance seeks to foster good science, not to hamper it, but recognises that good science goes hand in hand with open, clear, transparent regulation to ensure both trust and accountability.

• Such an ‘art of governance’ seeks to facilitate effective interactions between the range of current and emerging social actors involved in or affected by scientific and technological developments, to ensure that all parties have the opportunity to express their perspectives and interests at all stages in the pathways of research and development, through transparent and democratic processes. The art of governance recognises that no decisions will suit all actors, but effective compromise depends on ensuring openness and transparency in the process by which decisions are reached, demonstrating genuine consideration of all perspectives.

We highlight three crucial challenges for the effective national and international governance of synthetic biology:

• FIRST, governance of science is not just a matter of governing the production and application of knowledge, but must also recognise that scientific uncertainty is not merely temporary but endemic: not merely calculable risks, but provisional unknowns, unknown unknowns, and even wilful ignorance or a conscious inability-to-know. Such ‘non-knowing’ cannot be overcome simply by acquiring more knowledge: increasing knowledge often leads to increasing uncertainty. [emphasis mine] Effective governance of synthetic biology must give explicit and attention to both knowledge and non-knowing.

• SECOND, synthetic biology relies on collaborative contributions from distinct disciplines and professions, and this requires accountability beyond that internal to each field. While good governance of synthetic biology demands proper accountability within scientific disciplines and professional bodies, it also requires the cultivation of external accountability, not only across and between such fields, but beyond, to all those who may be affected. Such networks of accountability accommodate change over time, facilitate mutual trust and responsiveness among various groups and constituencies, encourage good practice and robust science, and enhance openness and transparency. [emphasis mine]

• THIRD, the combination of scientific uncertainty and cross-borderness ensures that no single group, organization, constituency or regulatory body will have the capacity to oversee, let alone to control, the development of synthetic biology. An art of governance is required to accept the constitutive fragmentation of social authorities, and to work with such diversity, not as a hindrance, but as a condition of, and advantage for, effective governance. [emphasis mine]

In the light of these three challenges, we argue that scientifically informed, evidence-based approaches to policy-making, while essential, are insufficient. It is time to bring back a sense of the ‘art’ to the governance of biotechnology: an approach which employs proactive, open-ended regulatory styles able to work with uncertainty and change, to make links across borders, and to adapt to evolving relations among changing stakeholders, including researchers, research funders, industry, and multiple publics. (pp. 3-4)

I quite appreciate the descriptions of uncertainty and unknowingness as I’ve been coming to that conclusion for some time but they’ve said more elegantly than I can. As for the art of governance as a means of dealing with the cross-borderness (similar terms in academia include: transdisciplinary, crossdisciplinary, and multidisciplinary), as well as the uncertainty  inherent to synthetic biology (and the other emerging technologies) I like the proposed metaphor and scope of this approach to governance.  They may seem unattainable but it’s important to set one’s sights as high as possible in these types of efforts because inevitably the grand ideas will be chopped down to size in practice, in much the same way that one uses a large piece of marble to sculpt a statue which will have significantly less mass.

Science attitude kicks in by 10 years old

There’s a lot of talk these days about STEM (Science, Technology, Engineering, and Mathematics) in the field of education. It seems that every country that has produced materials about innovation, economic well being, etc.  in English and I’m guessing all the other countries too (I just can’t read their materia]s) want more children/young people studying STEM subjects.

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

I was particularly struck by the fact that attitudes are positive but, by age 10, researchers are already observing that children are concluding ‘it’s not for me’.

Here’s a little more about the ASPIRES project,

The ASPIRES research team, led by Louise Archer, Professor of Sociology of Education at King’s, is tracking children’s science and career aspirations over five years, from ages 10 to 14. To date they have surveyed over 9000 primary school children and carried out more than 170 interviews of parents and children. After the age of 10 or 11 children’s attitudes towards science often start to decline, suggesting that there is a critical period in which schools and parents can do much to educate the next generation of the options available to them. [emphasis mine]

As for the report ‘Ten Science Facts and Fictions’, you may be in for a surprise if you’re expecting a standard academic study. It’s very colourful and illustrated with cartoons; each fact/fiction has its own page and only one; it summarizes and aggregates other research; and the whole report is 16 pp.  It’s easy reading and the reference notes mean you can follow up and read the research studies yourself.

On a note related to the conclusions made the ASPIRES researchers, I came across a Jan. 27, 2012 news item on Medical Xpress about a US study where researchers attempted an intervention designed to encourage more teens to study science,

In a different intervention study aimed at changing teen behavior in math and science, researchers did not target the students themselves but rather their parents. The goal was to increase students’ interest in taking courses in science, technology, engineering, and mathematics (STEM). “We focus on the potential role of parents in motivating their teens to take more STEM courses, because we feel that they have been an untapped resource,” says Judith Harackiewicz of the University of Wisconsin, Madison. [emphasis mine]

The participants consisted of 188 U.S. high school students and their parents from the longitudinal Wisconsin Study of Families and Work. Harackiewicz and her colleague Janet Hyde found that a relatively simple intervention aimed at parents – two brochures mailed to parents and a website that all highlight the usefulness of STEM courses – led their children to take on average nearly one semester more of science and mathematics in the last two years of high school, compared with the control group. “Our indirect intervention,” funded by the National Science Foundation, “changed the way that parents interacted with their teens, leading to a significant and important change in their teens’ course-taking behavior,” Harackiewicz says.

Given Dr. David Kent’s panel at the 2011 Canadian Science Policy Conference (David’s interview about the panel is in my Oct. 24, 2011 posting) where he noted we have too many science graduates and not enough jobs, I’m wondering if we’re going to see a Canadian effort to encourage more study in STEM subjects. It wouldn’t surprise me; I have seen policy disconnects before. For example, there’s a big effort to get more children and teens to study science while graduate students from the universities have difficulty finding employment because the policy didn’t take the end result (the sector [e.g. universities] that needed people [science professors] when the policy was instituted had already started to shrink and 10 years later no one needs these graduates) into account.