Tag Archives: Kostya Novoselov

Wearable tech for Christmas 2015 and into 2016

This is a roundup post of four items to cross my path this morning (Dec. 17, 2015), all of them concerned with wearable technology.

The first, a Dec. 16, 2015 news item on phys.org, is a fluffy little piece concerning the imminent arrival of a new generation of wearable technology,

It’s not every day that there’s a news story about socks. But in November [2015], a pair won the Best New Wearable Technology Device Award at a Silicon Valley conference. The smart socks, which track foot landings and cadence, are at the forefront of a new generation of wearable electronics, according to an article in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society [ACS].

That news item was originated by a Dec. 16, 2015 ACS news release on EurekAlert which adds this,

Marc S. Reisch, a senior correspondent at C&EN, notes that stiff wristbands like the popular FitBit that measure heart rate and the number of steps people take have become common. But the long-touted technology needed to create more flexible monitoring devices has finally reached the market. Developers have successfully figured out how to incorporate stretchable wiring and conductive inks in clothing fabric, program them to transmit data wirelessly and withstand washing.

In addition to smart socks, fitness shirts and shoe insoles are on the market already or are nearly there. Although athletes are among the first to gain from the technology, the less fitness-oriented among us could also benefit. One fabric concept product — designed not for covering humans but a car steering-wheel — could sense driver alertness and make roads safer.

Reisch’s Dec. 7, 2015 article (C&EN vol. 93, issue 48, pp. 28-90) provides more detailed information and market information such as this,

Materials suppliers, component makers, and apparel developers gathered at a printed-electronics conference in Santa Clara, Calif., within a short drive of tech giants such as Google and Apple, to compare notes on embedding electronics into the routines of daily life. A notable theme was the effort to stealthily [emphasis mine] place sensors on exercise shirts, socks, and shoe soles so that athletes and fitness buffs can wirelessly track their workouts and doctors can monitor the health of their patients.

“Wearable technology is becoming more wearable,” said Raghu Das, chief executive officer of IDTechEx [emphasis mine], the consulting firm that organized the conference. By that he meant the trend is toward thinner and more flexible devices that include not just wrist-worn fitness bands but also textiles printed with stretchable wiring and electronic sensors, thanks to advances in conductive inks.

Interesting use of the word ‘stealthy’, which often suggests something sneaky as opposed to merely secretive. I imagine what’s being suggested is that the technology will not impose itself on the user (i.e., you won’t have to learn how to use it as you did with phones and computers).

Leading into my second item, IDC (International Data Corporation), not to be confused with IDTechEx, is mentioned in a Dec. 17, 2015 news item about wearable technology markets on phys.org,

The global market for wearable technology is seeing a surge, led by watches, smart clothing and other connected gadgets, a research report said Thursday [Dec. 16, 2015].

IDC said its forecast showed the worldwide wearable device market will reach a total of 111.1 million units in 2016, up 44.4 percent from this year.

By 2019, IDC sees some 214.6 million units, or a growth rate averaging 28 percent.

A Dec. 17, 2015 IDC press release, which originated the news item, provides more details about the market forecast,

“The most common type of wearables today are fairly basic, like fitness trackers, but over the next few years we expect a proliferation of form factors and device types,” said Jitesh Ubrani , Senior Research Analyst for IDC Mobile Device Trackers. “Smarter clothing, eyewear, and even hearables (ear-worn devices) are all in their early stages of mass adoption. Though at present these may not be significantly smarter than their analog counterparts, the next generation of wearables are on track to offer vastly improved experiences and perhaps even augment human abilities.”

One of the most popular types of wearables will be smartwatches, reaching a total of 34.3 million units shipped in 2016, up from the 21.3 million units expected to ship in 2015. By 2019, the final year of the forecast, total shipments will reach 88.3 million units, resulting in a five-year CAGR of 42.8%.

“In a short amount of time, smartwatches have evolved from being extensions of the smartphone to wearable computers capable of communications, notifications, applications, and numerous other functionalities,” noted Ramon Llamas , Research Manager for IDC’s Wearables team. “The smartwatch we have today will look nothing like the smartwatch we will see in the future. Cellular connectivity, health sensors, not to mention the explosive third-party application market all stand to change the game and will raise both the appeal and value of the market going forward.

“Smartwatch platforms will lead the evolution,” added Llamas. “As the brains of the smartwatch, platforms manage all the tasks and processes, not the least of which are interacting with the user, running all of the applications, and connecting with the smartphone. Once that third element is replaced with cellular connectivity, the first two elements will take on greater roles to make sense of all the data and connections.”

Top Five Smartwatch Platform Highlights

Apple’s watchOS will lead the smartwatch market throughout our forecast, with a loyal fanbase of Apple product owners and a rapidly growing application selection, including both native apps and Watch-designed apps. Very quickly, watchOS has become the measuring stick against which other smartwatches and platforms are compared. While there is much room for improvement and additional features, there is enough momentum to keep it ahead of the rest of the market.

Android/Android Wear will be a distant second behind watchOS even as its vendor list grows to include technology companies (ASUS, Huawei, LG, Motorola, and Sony) and traditional watchmakers (Fossil and Tag Heuer). The user experience on Android Wear devices has been largely the same from one device to the next, leaving little room for OEMs to develop further and users left to select solely on price and smartwatch design.

Smartwatch pioneer Pebble will cede market share to AndroidWear and watchOS but will not disappear altogether. Its simple user interface and devices make for an easy-to-understand use case, and its price point relative to other platforms makes Pebble one of the most affordable smartwatches on the market.

Samsung’s Tizen stands to be the dark horse of the smartwatch market and poses a threat to Android Wear, including compatibility with most flagship Android smartphones and an application selection rivaling Android Wear. Moreover, with Samsung, Tizen has benefited from technology developments including a QWERTY keyboard on a smartwatch screen, cellular connectivity, and new user interfaces. It’s a combination that helps Tizen stand out, but not enough to keep up with AndroidWear and watchOS.

There will be a small, but nonetheless significant market for smart wristwear running on a Real-Time Operating System (RTOS), which is capable of running third-party applications, but not on any of these listed platforms. These tend to be proprietary operating systems and OEMs will use them when they want to champion their own devices. These will help within specific markets or devices, but will not overtake the majority of the market.

The company has provided a table with five-year CAGR (compound annual growth rate) growth estimates, which can be found with the Dec. 17, 2015 IDC press release.

Disclaimer: I am not endorsing IDC’s claims regarding the market for wearable technology.

For the third and fourth items, it’s back to the science. A Dec. 17, 2015 news item on Nanowerk, describes, in general terms, some recent wearable technology research at the University of Manchester (UK), Note: A link has been removed),

Cheap, flexible, wireless graphene communication devices such as mobile phones and healthcare monitors can be directly printed into clothing and even skin, University of Manchester academics have demonstrated.

In a breakthrough paper in Scientific Reports (“Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications”), the researchers show how graphene could be crucial to wearable electronic applications because it is highly-conductive and ultra-flexible.

The research could pave the way for smart, battery-free healthcare and fitness monitoring, phones, internet-ready devices and chargers to be incorporated into clothing and ‘smart skin’ applications – printed graphene sensors integrated with other 2D materials stuck onto a patient’s skin to monitor temperature, strain and moisture levels.

Detail is provided in a Dec. 17, 2015 University of Manchester press release, which originated the news item, (Note: Links have been removed),

Examples of communication devices include:

• In a hospital, a patient wears a printed graphene RFID tag on his or her arm. The tag, integrated with other 2D materials, can sense the patient’s body temperature and heartbeat and sends them back to the reader. The medical staff can monitor the patient’s conditions wirelessly, greatly simplifying the patient’s care.

• In a care home, battery-free printed graphene sensors can be printed on elderly peoples’ clothes. These sensors could detect and collect elderly people’s health conditions and send them back to the monitoring access points when they are interrogated, enabling remote healthcare and improving quality of life.

Existing materials used in wearable devices are either too expensive, such as silver nanoparticles, or not adequately conductive to have an effect, such as conductive polymers.

Graphene, the world’s thinnest, strongest and most conductive material, is perfect for the wearables market because of its broad range of superlative qualities. Graphene conductive ink can be cheaply mass produced and printed onto various materials, including clothing and paper.

“Sir Kostya Novoselov

To see evidence that cheap, scalable wearable communication devices are on the horizon is excellent news for graphene commercial applications.

Sir Kostya Novoselov (tweet)„

The researchers, led by Dr Zhirun Hu, printed graphene to construct transmission lines and antennas and experimented with these in communication devices, such as mobile and Wifi connectivity.

Using a mannequin, they attached graphene-enabled antennas on each arm. The devices were able to ‘talk’ to each other, effectively creating an on-body communications system.

The results proved that graphene enabled components have the required quality and functionality for wireless wearable devices.

Dr Hu, from the School of Electrical and Electronic Engineering, said: “This is a significant step forward – we can expect to see a truly all graphene enabled wireless wearable communications system in the near future.

“The potential applications for this research are huge – whether it be for health monitoring, mobile communications or applications attached to skin for monitoring or messaging.

“This work demonstrates that this revolutionary scientific material is bringing a real change into our daily lives.”

Co-author Sir Kostya Novoselov, who with his colleague Sir Andre Geim first isolated graphene at the University in 2004, added: “Research into graphene has thrown up significant potential applications, but to see evidence that cheap, scalable wearable communication devices are on the horizon is excellent news for graphene commercial applications.”

Here’s a link to and a citation for the paper,

Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications by Xianjun Huang, Ting Leng, Mengjian Zhu, Xiao Zhang, JiaCing Chen, KuoHsin Chang, Mohammed Aqeeli, Andre K. Geim, Kostya S. Novoselov, & Zhirun Hu. Scientific Reports 5, Article number: 18298 (2015) doi:10.1038/srep18298 Published online: 17 December 2015

This is an open access paper.

The next and final item concerns supercapacitors for wearable tech, which makes it slightly different from the other items and is why, despite the date, this is the final item. The research comes from Case Western Research University (CWRU; US) according to a Dec. 16, 2015 news item on Nanowerk (Note: A link has been removed),

Wearable power sources for wearable electronics are limited by the size of garments.

With that in mind, researchers at Case Western Reserve University have developed flexible wire-shaped microsupercapacitors that can be woven into a jacket, shirt or dress (Energy Storage Materials, “Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes”).

A Dec. 16, 2015 CWRU news release (on EurekAlert), which originated the news item, provides more detail about a device that would make wearable tech more wearable (after all, you don’t want to recharge your clothes the same way you do your phone and other mobile devices),

By their design or by connecting the capacitors in series or parallel, the devices can be tailored to match the charge storage and delivery needs of electronics donned.

While there’s been progress in development of those electronics–body cameras, smart glasses, sensors that monitor health, activity trackers and more–one challenge remaining is providing less obtrusive and cumbersome power sources.

“The area of clothing is fixed, so to generate the power density needed in a small area, we grew radially-aligned titanium oxide nanotubes on a titanium wire used as the main electrode,” said Liming Dai, the Kent Hale Smith Professor of Macromolecular Science and Engineering. “By increasing the surface area of the electrode, you increase the capacitance.”

Dai and Tao Chen, a postdoctoral fellow in molecular science and engineering at Case Western Reserve, published their research on the microsupercapacitor in the journal Energy Storage Materials this week. The study builds on earlier carbon-based supercapacitors.

A capacitor is cousin to the battery, but offers the advantage of charging and releasing energy much faster.

How it works

In this new supercapacitor, the modified titanium wire is coated with a solid electrolyte made of polyvinyl alcohol and phosphoric acid. The wire is then wrapped with either yarn or a sheet made of aligned carbon nanotubes, which serves as the second electrode. The titanium oxide nanotubes, which are semiconducting, separate the two active portions of the electrodes, preventing a short circuit.

In testing, capacitance–the capability to store charge–increased from 0.57 to 0.9 to 1.04 milliFarads per micrometer as the strands of carbon nanotube yarn were increased from 1 to 2 to 3.

When wrapped with a sheet of carbon nanotubes, which increases the effective area of electrode, the microsupercapactitor stored 1.84 milliFarads per micrometer. Energy density was 0.16 x 10-3 milliwatt-hours per cubic centimeter and power density .01 milliwatt per cubic centimeter.

Whether wrapped with yarn or a sheet, the microsupercapacitor retained at least 80 percent of its capacitance after 1,000 charge-discharge cycles. To match various specific power needs of wearable devices, the wire-shaped capacitors can be connected in series or parallel to raise voltage or current, the researchers say.

When bent up to 180 degrees hundreds of times, the capacitors showed no loss of performance. Those wrapped in sheets showed more mechanical strength.

“They’re very flexible, so they can be integrated into fabric or textile materials,” Dai said. “They can be a wearable, flexible power source for wearable electronics and also for self-powered biosensors or other biomedical devices, particularly for applications inside the body.” [emphasis mine]

Dai ‘s lab is in the process of weaving the wire-like capacitors into fabric and integrating them with a wearable device.

So one day we may be carrying supercapacitors in our bodies? I’m not sure how I feel about that goal. In any event, here’s a link and a citation for the paper,

Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes by Tao Chen, Liming Dai. Energy Storage Materials Volume 2, January 2016, Pages 21–26 doi:10.1016/j.ensm.2015.11.004

This paper appears to be open access.

Musical suite at Graphene Week 2015

Graphene Week 2015 was held in Manchester, UK from June 22 – 26, 2015. (Some might call Manchester the home of graphene as it was first isolated at the University of Manchester by Andre Geim and Konstantin [Kostya] Novoselov  in 2004). As part of the Graphene week festivities and activities, a musical composition, Graphene Suite was premiered according to a July 3, 2015 news item on Azonano,

At Graphene Week 2015 in Manchester, delegates and others were treated to the premiere of a musical suite by Sara Lowes, composer-in-residence at the National Graphene Institute. Sara’s Graphene Suite was commissioned by Brighter Sound, a Manchester-based producer of creative music projects and other cultural events.

A June 26, 2015 Graphene Flagship press release by Frances Sedgemore, which originated the news item, reveals more about the music,

Graphene Suite is scored for a somewhat unusual combination of musical forces, with a string quartet joined by oboe, trumpet, percussion, electric bass guitar, electric guitar and electronic keyboards. Strong visual effects accompanied the musical performance, with electronically manipulated video images of the musicians projected onto a screen behind the stage. For the Graphene Week participants present, the music was a welcome cultural complement to an intense programme of science-centred events.

The Graphene Suite has six movements, and the number six features strongly in the structure of the piece. Here it is sufficient to say that the performance was for this scientist-writer and sometime musician utterly fascinating. In technical terms the music is electro-acoustic, but at the same time Sara’s compositional style is traditional. It is also strongly melodic.

Immediately following the concert I conducted a video interview with the composer, focussing on her music, her experience of the graphene science community, and the nature of and similarities between art and science as creative processes.

The interview which includes some of the music is courtesy of the Graphene Flagship ,

According to the Bright Lights undated [2015] news release, there were two full performances on June 25 and June 26, 2015 while excerpts were performed at Manchester’s Museum of Science and Industry on June 27 and June 28, 2015.

Graphene light bulb to hit UK stores later in 2015

I gather people at the University of Manchester are quite happy about the graphene light bulb which their spin-off (or spin-out) company, Graphene Lighting PLC, is due to deliver to the market sometime later in 2015. From a March 30, 2015 news item by Nancy Owano on phys.org (Note: A link has been removed),

The BBC reported on Saturday [March 28, 2015] that a graphene bulb is set for shops, to go on sale this year. UK developers said their graphene bulb will be the first commercially viable consumer product using the super-strong carbon; bulb was developed by a Canadian-financed company, Graphene Lighting, one of whose directors is Prof Colin Bailey at the University of Manchester. [emphasis mine]

I have not been able to track down the Canadian connection mentioned (*never in any detail) in some of the stories. A March 30, 2015 University of Manchester press release makes no mention of Canada or any other country in its announcement (Note: Links have been removed),

A graphene lightbulb with lower energy emissions, longer lifetime and lower manufacturing costs has been launched thanks to a University of Manchester research and innovation partnership.

Graphene Lighting PLC is a spin-out based on a strategic partnership with the National Graphene Institute (NGI) at The University of Manchester to create graphene applications.

The UK-registered company will produce the lightbulb, which is expected to perform significantly better and last longer than traditional LED bulbs.

It is expected that the graphene lightbulbs will be on the shelves in a matter of months, at a competitive cost.

The University of Manchester has a stake in Graphene Lighting PLC to ensure that the University benefits from commercial applications coming out of the NGI.

The graphene lightbulb is believed to be the first commercial application of graphene to emerge from the UK, and is the first application from the £61m NGI, which only opened last week.

Graphene was isolated at The University of Manchester in 2004 by Sir Andre Geim and Sir Kostya Novoselov, earning them the Nobel prize for Physics in 2010. The University is the home of graphene, with more than 200 researchers and an unrivalled breadth of graphene and 2D material research projects.

The NGI will see academic and commercial partners working side by side on graphene applications of the future. It is funded by £38m from the Engineering and Physical Sciences Research Council (EPSRC) and £23m from the European Regional Development Fund (ERDF).

There are currently more than 35 companies partnering with the NGI. In 2017, the University will open the Graphene Engineering Innovation Centre (GEIC), which will accelerate the process of bringing products to market.

Professor Colin Bailey, Deputy President and Deputy Vice-Chancellor of The University of Manchester said: “This lightbulb shows that graphene products are becoming a reality, just a little more than a decade after it was first isolated – a very short time in scientific terms.

“This is just the start. Our partners are looking at a range of exciting applications, all of which started right here in Manchester. It is very exciting that the NGI has launched its first product despite barely opening its doors yet.”

James Baker, Graphene Business Director, added: “The graphene lightbulb is proof of how partnering with the NGI can deliver real-life products which could be used by millions of people.

“This shows how The University of Manchester is leading the way not only in world-class graphene research but in commercialisation as well.”

Chancellor George Osborne and Sir Kostya Novoselov with the graphene lightbulb Courtesy: University of Manchester

Chancellor George Osborne and Sir Kostya Novoselov with the graphene lightbulb Courtesy: University of Manchester

This graphene light bulb announcement comes on the heels of the university’s official opening of its National Graphene Institute mentioned here in a March 26, 2015 post.

Getting back to graphene and light bulbs, Judy Lin in a March 30, 2015 post on LEDinside.com offers some details such as proposed pricing and more,

These new bulbs will be priced at GBP 15 (US $22.23) each.

The dimmable bulb incorporates a filament-shaped LED coated in graphene, which was designed by Manchester University, where the strong carbon material was first discovered.

$22 seems like an expensive light bulb but my opinion could change depending on how long it lasts. ‘Longer lasting’ (and other variants of the term) seen in the news stories and press release are not meaningful to me. Perhaps someone could specify how many hours and under what conditions?

* ‘but’ removed as it was unnecessary, April 3, 2015.

ETA April 3, 2105: Dexter Johnson has provided a thought-provoking commentary about this graphene light bulb in an April 2, 2015 post on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website), Note: Links have been removed,

The big story this week in graphene, after taking into account the discovery of “grapene,” [Dexter’s April Fool’s Day joke posting] has to be the furor that has surrounded news that a graphene-coated light bulb was to be the “first commercially viable consumer product” using graphene.

Since the product is not expected to be on store shelves until next year, “commercially viable” is both a good hedge and somewhat short on meaning. The list of companies with a commercially viable graphene-based product is substantial, graphene-based conductive inks and graphene-based lithium-ion anodes come immediately to mind. Even that list neglects products that are already commercially available, never mind “viable”, like Head’s graphene-based tennis racquets.

Dexter goes on to ask more pointed questions and shares the answers he got from Daniel Cochlin, the graphene communications and marketing manager at the University of Manchester. I confess I got caught up in the hype. It’s always good to have someone bringing things back down to earth. Thank you Dexter!

University of Manchester’s National Graphene Institute opens—officially

A little over two years after the announcement of a National Graphene Institute at the UK’s University of Manchester in my Jan. 14, 2013 post, Azonano provides a March 24, 2015 news item which describes the opening,

The Chancellor of the Exchequer, George Osborne, was invited to open the recently completed £61m National Graphene Institute (NGI) at the University of Manchester on Friday 20th March [2015].

Mr Osbourne was accompanied by Nobel Laureate Professor Sir Kostya Novoselov as he visited the institute’s sophisticated cleanrooms and laboratories.

For anyone unfamiliar with the story, the University of Manchester was the site where two scientists, Kostya (Konstantin) Novoselof and Andre Geim, first isolated graphene. In 2010, both scientists received a Nobel prize for this work. As well, the European Union devoted 1B Euros to be paid out over 10 years for research on graphene and the UK has enthusiastically embraced graphene research. (For more details: my Oct. 7, 2010 post covers graphene and the newly awarded Nobel prizes; my Jan. 28, 2013 post covers the 1B Euros research announcements.)

A March 20, 2015 University of Manchester press release, which originated the news item, gives more detail,

The NGI is the national centre for graphene research and will enable academics and industry to work side-by-side on the graphene applications of the future.

More than 35 companies from across the world have already chosen to partner with The University of Manchester working on graphene-related projects.

The Government provided £38m for the construction of the Institute via the Engineering and Physical Sciences Research Council (EPSRC), with the remaining £23m provided by the European Regional Development Fund (ERDF).

Mr Osborne said: “Backing science and innovation is a key part of building a Northern Powerhouse. The new National Graphene Institute at The University of Manchester will bring together leading academics, scientists and business leaders to help develop the applications of tomorrow, putting the UK in pole position to lead the world in graphene technology.”

One-atom thick graphene was first isolated and explored in 2004 at The University of Manchester. Its potential uses are vast but one of the first areas in which products are likely to be seen is in electronics.

The 7,825 square metre, five-storey building features cutting-edge facilities and equipment throughout to create a world-class research hub. The NGI’s 1,500 square metres of clean room space is the largest academic space of its kind in the world for dedicated graphene research.

Professor Dame Nancy Rothwell, President and Vice-Chancellor of The University of Manchester said: “The National Graphene Institute will be the world’s leading centre of graphene research and commercialisation.

“It will be the home of graphene scientists and engineers from across The University of Manchester working in collaboration with colleagues from many other universities and from some of the world’s leading companies.

“This state-of-the-art institute is an incredible asset, not only to this University and to Manchester but also to the UK. The National Graphene Institute is fundamental to continuing the world-class graphene research which was started in Manchester.”

The NGI is a significant first step in the vision to create a Graphene City® in Manchester. Set to open in 2017 the £60m Graphene Engineering Innovation Centre (GEIC) will complement the NGI and initiate further industry-led development in graphene applications with academic collaboration.

Last year the Chancellor also announced the creation of the £235m Sir Henry Royce Institute for Advanced Materials at The University of Manchester with satellite centres in Sheffield, Leeds, Cambridge, Oxford and London.

Speaking at the opening ceremony, Professor Colin Bailey, Deputy President and Deputy Vice-Chancellor of The University of Manchester said: “The opening of the National Graphene Institute today, complemented by the Graphene Engineering Innovation Centre opening in 2017 and the future Sir Henry Royce Institute for Advanced Materials, will provide the UK with the facilities required to accelerate new materials to market.

“It will allow the UK to lead the way in the area which underpins all manufacturing sectors, resulting in significant inward investment, the stick-ability of innovation, and significant long-term job creation.”

Congratulations to everyone involved in the effort.

As I mentioned earlier today in a post about Kawasaki city (Japan), Manchester will be the European City of Science when it hosts the EuropeanScience Open Forum (ESOF) in 2016.

Graphene and your sex life

This is a first, as far as I know, for graphene, which is usually discussed in the context of electronics. A research team at the University of Manchester (where it was first isolated by Andre Gerim and Kostya Novoselov in 2004) has won a research grant to develop condoms made of graphere, from the Nov. 22, 2013 news item on Azonano,

Wonder material graphene faces its stiffest challenge yet – providing thinner, stronger, safer and more desirable condoms.

Dr Aravind Vijayaraghavan and his team from The University of Manchester have received a Grand Challenges Explorations grant of $100,000 (£62,123) from the Bill and Melinda Gates Foundation to develop new composite nano-materials for next-generation condoms, containing graphene.

Dr Vijayaraghavan took on a challenge that had been presented to inventors around the world– to develop new technology that would make the condom more desirable for use, which could lead to an increase in condom use.

Here’s how the challenge was presented in March 2013 (from the Develop the Next Generation of Condom challenge webpage on the Grand Challenges (the Bill & Melinda Gates Foundation) website,

Male condoms are cheap, easy to manufacture, easy to distribute, and available globally, including in resource poor settings, through numerous well developed distribution channels.  The current rate of global production is 15 billion units/year with an estimated 750 million users and a steadily growing market. …

The one major drawback to more universal use of male condoms is the lack of perceived incentive for consistent use. The primary drawback from the male perspective is that condoms decrease pleasure as compared to no condom, creating a trade-off that many men find unacceptable, particularly given that the decisions about use must be made just prior to intercourse. …

Likewise, female condoms can be an effective method for prevention of unplanned pregnancy or HIV infection, but suffer from some of the same liabilities as male condoms, require proper insertion training and are substantially more expensive than their male counterparts. …

The Challenge: 

Condoms have been in use for about 400 years yet they have undergone very little technological improvement in the past 50 years. The primary improvement has been the use of latex as the primary material and quality control measures which allow for quality testing of each individual condom. Material science and our understanding of neurobiology has undergone revolutionary transformation in the last decade yet that knowledge has not been applied to improve the product attributes of one of the most ubiquitous and potentially underutilized products on earth. New concept designs with new materials can be prototyped and tested quickly.  Large-scale human clinical trials are not required. Manufacturing capacity, marketing, and distribution channels are already in place.

We are looking for a Next Generation Condom that significantly preserves or enhances pleasure, in order to improve uptake and regular use. Additional concepts that might increase uptake include attributes that increase ease-of-use for male and female condoms, for example better packaging or designs that are easier to properly apply. In addition, attributes that address and overcome cultural barriers are also desired.  Proposals must (i) have a testable hypothesis, (ii) include an associated plan for how the idea would be tested or validated, and (iii) yield interpretable and unambiguous data in Phase I, in order to be considered for Phase II funding.

A few examples of work that would be considered for funding:

  • Application of safe new materials that may preserve or enhance sensation;
  • Development and testing of new condom shapes/designs that may provide an improved user experience;
  • Application of knowledge from other fields (e.g. neurobiology, vascular biology) to new strategies for improving condom desirability.

The project’s team leader, Dr Vijayaraghavan had a few things to say about the possibilities for this composite material (graphene and latex) they are hoping to develop (from the Nov. 21, 2013 University of Manchester news release, which originated the news item on Azonano),

Dr Vijayaraghavan said: “This composite material will be tailored to enhance the natural sensation during intercourse while using a condom, which should encourage and promote condom use.

“This will be achieved by combining the strength of graphene with the elasticity of latex, to produce a new material which can be thinner, stronger, more stretchy, safer and, perhaps most importantly, more pleasurable.”

He also comments on the impact of this project: “Since its isolation in 2004, people have wondered when graphene will be used in our daily life. Currently, people imagine using graphene in mobile-phone screens, food packaging, chemical sensors, etc.

“If this project is successful, we might have a use for graphene which will literally touch our every-day life in the most intimate way.”

I wonder who will be testing these condoms when the time comes.

For anyone who wants to know more about the graphene story, there are these postings (excerpted from my Jan. 3, 2012 posting about their then newly acquired knighthoods): regarding Geim and Novoselov’s work and their Nobel prizes, “my Oct. 7, 2010 posting, which also features a video of a levitating frog (one of Geim’s favourite science stunts) and my Nov. 26, 2010 posting features a video demonstrating how you can make your own graphene sheets.”

One final note, I posted about the Canadian Grand Challenges funding (not be contused with the US-based Bill and Melinda Gates Foundation programme) in this Nov. 21, 2013 posting.

The race to commercialize graphene as per the University of Manchester (UK)

The University of Manchester (UK) has a particular interest in graphene as the material was isolated by future Nobel Prize winners, Andre Gheim and Kostya (Konstantin) Novoselov in the university’s laboratories. There’s a Feb. 18, 2013 news item on Nanowerk highlighting the university’s past and future role in the development of graphene on the heels of the recent research bonanza,

The European Commission has announced that it is providing 1bn euros over 10 years for research and development into graphene – the ‘wonder material’ isolated at The University of Manchester by Nobel Prize winners Professors Andre Geim and Kostya Novoselov.

The University is very active in technology transfer and has an excellent track-record of spinning out technology, but some think that the University has taken a different view when it comes to patenting and commercialising graphene. Others have expressed a broader concern about British Industry lagging behind in the graphene ‘race’, based upon international ‘league tables’ of numbers of graphene patents.

A recent interview with Clive Rowland (CEO of the University’s Innovation Group) addresses the assumptions about the University’s approach and reflects more generally about graphene patenting and about industry up-take of graphene. The interview is summarised below.

Question: Has the University set up any commercial graphene activities?

Answer: The University owns a company, called 2-DTech Limited, which makes and supplies two-dimensional materials and has an interest in another, Graphene Industries Limited, which sells graphene made by a different technique to 2-DTech.

Question: Is the University falling behind in graphene?

Answer: The University is the world’s leading university for graphene research and publications. It led the charge for UK investment into the field and has been awarded The National Graphene Institute, which will be a £61m state-of-the art centre. This Institute will act as a focus for all sorts of commercial graphene activity in Manchester, from industrial research and development laboratories locating “alongside” the Institute, developing new processes and products, to start-up companies. The University championed the major flagship research funding programmes that have been initiated in the UK and Europe and has been awarded a number of prestigious grants. Graphene is still a science-driven research field and not yet a commercialised technology.

The rest of the summary can be found either at Nanowerk or in this University of Manchester Feb. 18, 2013 news release.

The University of Manchester Innovation Group (aka UMI3) mentioned in connection with Clive Rowland hosts the complete interview (12 pp), which, read from the beginning, provides an enhanced perspective on the university’s graphene commercialization goals,

Graphene – The University of Manchester and Intellectual Property. Dan Cochlin talks to Clive Rowland – The University’s InnovationGroup CEO —‐ about the launch of a new grapheme company at the University, 2–‐DTech Ltd, And grapheme patents and commercialisation.

What is grapheme and why is there so much interest in it?

Graphene is a revolutionary nano material which was first isolated at The University of Manchester By Professors Andre Geim And Konstantin Novoselov. They received the Nobel Prize in 2010 For their ingenious work on graphene. People are excited about it because it has the potential to transform a vast range of products due to its very superior capabilities compared to existing materials.

So what’s the new company about?

It makes and sells CVD graphene, grapheme platelets, grapheme oxide and other advanced materials with amazing properties, which are being called 2–‐D – two dimensional – due to  their single atomic layer thickness. In other words, they’re so thin it’s as if they only have length and breadth dimensions. It will soon have an e–‐commerce site too, where customers can shop on–‐line. The Company will create and develop intellectual property, especially by engaging in interesting assignments such as collaborating with firms on design projects. It will also provide consulting services ,in the field, either directly or by sub–‐contracting to our relevant academic colleagues here at the University. We’re already an international team – with Antiguan, British and Italian people actively involved in the business and a fast developing business agency network in the Far East and the USA.

What’s CVD?

It’s one of the techniques for making grapheme that 2-DTech uses –‐ chemical vapour deposition –‐ which allows us to grow grapheme on foils and films in quite large area sizes for various potential uses, particularly information technology and communications because of graphene’s high quality and unique electronic transport, flexibility and other astounding attributes.

Well why have you only just set this up when others have been doing so for a while now?

The University’s researchers in physics and materials science have been able to make enough grapheme for their own needs until lately, but not any longer. Besides, there has been an expansion of interest across the University in the potential of the material, including from areas such as health and bio–‐sciences. Hence we want to make sure that the University has a regular supply for those colleagues who cannot continue to make it in sufficient quantities or who aren’t familiar with the material.

In addition many of the companies in contact with the University’s Researchers are in a similarly constrained position. So we feel the need to have a University Facility to handle this which is free of the normal academic duties and interests. At the same time we see an international business opportunity.

There’s a strong market demand for high quality grapheme of a consistent nature and a growing interest in other 2–‐D crystals. A number of researchers, especially our CTO Dr Branson Belle, who had been researching 2–‐D Materials and making grapheme for a long time became interested in the business side. …

Thank you Clive Rowland and the University of Manchester for insight into the graphene commercialization efforts on the part of at least one university.  Meanwhile, the comment about producing enough graphene for research reminds me of the queries I get from entrepreneurs about getting access to nanocrystalline cellulose (NCC) or cellulose nanocrystals (CNC). To my knowledge, no one outside the research community has gotten access to the materials. I wonder if despite the fact there are two manufacturing facilities whether this may be due to an inability to produce enough CNC or NCC.

National Graphene Institute at the UK’s University of Manchester

It will house the UK’s graphene research efforts according to the Jan. 14, 2013 news item Nanowerk,

This is the first glimpse of the new £61m research institute into wonder material graphene, which is to be built at The University of Manchester.

The stunning, glass-fronted National Graphene Institute (NGI) will be the UK’s home of research into the world’s thinnest, strongest and most conductive material, providing the opportunity for researchers and industry to work together on a huge variety of potential applications.

The University of Manchester Jan. 14, 2013 news release, which originated the news item, spells out some of the hopes and dreams along with descriptions of the building plans,

It is hoped the centre will initially create around 100 jobs, with the long-term expectation of many thousands more in the North West and more widely in the UK.

The 7,600 square metre building will house state-of-the-art facilities, including two ‘cleanrooms’ – one which will take up the whole of the lower ground floor – where scientists can carry out experiments and research without contamination.

The Institute will also feature a 1,500 square metre research lab for University of Manchester graphene scientists to collaborate with their colleagues from industry and other UK universities.

Funding for the NGI will come from £38m from the Government, as part of £50m allocated for graphene research, and the University has applied for £23m from the European Research and Development Fund (ERDF). The NGI will operate as a ‘hub and spoke’ model, working with other UK institutions involved in graphene research.

Some of the world’s leading companies are also expected to sign up to work at the NGI, where they will be offered the chance to work on cutting edge projects, across various sectors, with Nobel Laureates and other leading members of the graphene team.

Graphene, isolated for the first time at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov in 2004, has the potential to revolutionise a huge number of diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips.


Professor Colin Bailey, Vice-President and Dean of the Faculty of Engineering and Physical Sciences, added: “The National Graphene Institute will be the world’s leading centre of graphene research, combining the expertise of University of Manchester academics with their counterparts at other UK universities and with leading global commercial organisations.

“The potential for its impact on the city and the North West is huge, and will be one of the most exciting centres of cutting edge research in the UK.”

Work is set to start on the five-story NGI, which will have its entrance on Booth Street East, in March, and is expected to be completed in early 2015.

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

The University of Manchester is one of the institutions that forms the Graphene Flagship consortium which is currently competing for one of two European Union prizes of 1 Billion Euros for research to be awarded later this year.

Follow the ‘graphene brick’ road

Today (Oct. 11, 2012), I’m highlighting a second article in Nature. This time it’s a “A roadmap for graphene ” (behind a paywall) in the Oct. 11, 2012 online issue of Nature written by Nobel Prize-winner Professor Kostya Novoselov of the University of Manchester; V. I. Fal′ko Department of Physics, Lancaster University;  L. Colombo, Texas Instruments Incorporated; P. R. Gellert, AstraZeneca; M. G. Schwab, BASF SE; and K. Kim, Samsung Advanced Institute of Technology.

If you can get behind the paywall, the article offers excellent insight into the state of graphene research and the state of graphene applications.  The authors cover:

Challenges in Production

Chemical vapour deposition

Synthesis on SiC

Other growth methods

Graphene electronics

Flexible electronics

High-frequency transistors

Logic transistor

Photonics

Photodetectors

Optical modulator

Mode-locked laser/THz generator

Optical polarization controller

Composite materials, paints, and coating

Energy generation and storage

Graphene for sensors and metrology

Bioapplications

You can get more details about the article from the Oct. 11, 2012 news release from the University of Manchester,

The authors estimate that the first graphene touchscreen devices could be on the market within three to five years, but will only realise its full potential in flexible electronics applications.

Rollable e-paper is another application which should be available as a prototype by 2015 – graphene’s flexibility proving ideal for fold-up electronic sheets which could revolutionise electronics.

Timescales for applications vary greatly upon the quality of graphene required, the report claims. For example, the researchers estimate devices including photo-detectors, high-speed wireless communications and THz generators (for use in medical imaging and security devices) would not be available until at least 2020, while anticancer drugs and graphene as a replacement for silicon is unlikely to become a reality until around 2030.

I notice the lead authors are from the University of Manchester and Lancaster University. These UK educational institutions are part of the FET (Future and Emerging Technologies) GRAPHENE-CA flagship project, which is in competition for one of two prizes of 1B Euros for research. As I’ve noted previously in my Feb. 21, 2012 posting and many others, the UK is leading a tremendous public relations/marketing campaign on behalf of this project and the UK’s own interests. Good luck to them as I believe the announcement of which are the two winning projects from a field of six should be made in the next few months.

The current international infatuation with roadmaps sometimes reminds me of The Wizard of Oz and the Yellow Brick Road,

I always appreciate the optimism shown by the lead character, Dorothy, as she takes off for parts unknown.