Tag Archives: Lappeenranta University of Technology (LUT)

Replacing copper wire in motors?

Finnish researchers at Lappeenranta University of Technology (LUT) believe it may be possible to replace copper wire used in motors with spun carbon nanotubes. From an Oct. 15, 2014 news item on Azonano,

Lappeenranta University of Technology (LUT) introduces the first electrical motor applying carbon nanotube yarn. The material replaces copper wires in windings. The motor is a step towards lightweight, efficient electric drives. Its output power is 40 W and rotation speed 15000 rpm.

Aiming at upgrading the performance and energy efficiency of electrical machines, higher-conductivity wires are searched for windings. Here, the new technology may revolutionize the industry. The best carbon nanotubes (CNTs) demonstrate conductivities far beyond the best metals; CNT windings may have double the conductivity of copper windings.

”If we keep the design parameters unchanged only replacing copper with carbon nanotube yarns, the Joule losses in windings can be reduced to half of present machine losses. By lighter and more ecological CNT yarn, we can reduce machine dimensions and CO2 emissions in manufacturing and operation. Machines could also be run in higher temperatures,” says Professor Pyrhönen [Juha Pyrhönen], leading the prototype design at LUT.

An Oct. ??, 2014 (?) LUT press release, which originated the news item, further describes the work,

Traditionally, the windings in electrical machines are made of copper, which has the second best conductivity of metals at room temperature. Despite the high conductivity of copper, a large proportion of the electrical machine losses occur in the copper windings. For this reason, the Joule losses are often referred to as copper losses. The carbon nanotube yarn does not have a definite upper limit for conductivity (e.g. values of 100 MS/m have already been measured).

According to Pyrhönen, the electrical machines are so ubiquitous in everyday life that we often forget about their presence. In a single-family house alone there can be tens of electrical machines in various household appliances such as refrigerators, washing machines, hair dryers, and ventilators.

“In the industry, the number of electrical motors is enormous: there can be up to tens of thousands of motors in a single process industry unit. All these use copper in the windings. Consequently, finding a more efficient material to replace the copper conductors would lead to major changes in the industry,” tells Professor Pyrhönen.

There are big plans for this work according to the press release,

The prototype motor uses carbon nanotube yarns spun and converted into an isolated tape by a Japanese-Dutch company Teijin Aramid, which has developed the spinning technology in collaboration with Rice University, the USA. The industrial applications of the new material are still in their infancy; scaling up the production capacity together with improving the yarn performance will facilitate major steps in the future, believes Business Development Manager Dr. Marcin Otto from Teijin Aramid, agreeing with Professor Pyrhönen.

“There is a significant improvement potential in the electrical machines, but we are now facing the limits of material physics set by traditional winding materials. Superconductivity appears not to develop to such a level that it could, in general, be applied to electrical machines. Carbonic materials, however, seem to have a pole position: We expect that in the future, the conductivity of carbon nanotube yarns could be even three times the practical conductivity of copper in electrical machines. In addition, carbon is abundant while copper needs to be mined or recycled by heavy industrial processes.”

The researchers have produced this video about their research,

There’s a reference to some work done at Rice University (Texas, US) with Teijin Armid (Japanese-Dutch company) and Technion Institute (Israel) with spinning carbon nanotubes into threads that look like black cotton (you’ll see the threads in the video). It’s this work that has made the latest research in Finland possible. I have more about the the Rice/Teijin Armid/Technion CNT project in my Jan. 11, 2013 posting, Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel).