Tag Archives: Lawrence Berkeley National Lab

Carbon nanotubes transport protons faster than bulk water

An April 4, 2016 news item on Science Daily focuses on carbon nanotubes that measure eight-tenths of a nanometre and transport protons more quickly than bulk water by an order of magnitude,

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have shown that carbon nanotubes as small as eight-tenths of a nanometer in diameter can transport protons faster than bulk water, by an order of magnitude.

The research validates a 200-year old mechanism of proton transport.

A US Department of Energy Lawrence Livermore National Laboratory (LLNL) news release on EurekAlert, which originated the news item, provides more explanation,

The transport rates in these nanotube pores, which form one-dimensional water wires, also exceed those of biological channels and man-made proton conductors, making carbon nanotubes the fastest known proton conductor. …

Practical applications include proton exchange membranes, proton-based signaling in biological systems and the emerging field of proton bioelectronics (protonics).

“The cool thing about our results is that we found that when you squeeze water into the nanotube, protons move through that water even faster than through normal (bulk) water,” said Aleksandr Noy, an LLNL biophysicist and a lead author of the paper. (Bulk water is similar to what you would find in a cup of water that is much bigger than the size of a single water molecule).

The idea that protons travel fast in solutions by hopping along chains of hydrogen-bonded water molecules dates back 200 years to the work of Theodore von Grotthuss and still remains the foundation of the scientific understanding of proton transport. In the new research, LLNL researchers used carbon nanotube pores to line up water molecules into perfect one-dimensional chains and showed that they allow proton transport rates to approach the ultimate limits for the Grotthuss transport mechanism.

“The possibility to achieve fast proton transport by changing the degree of water confinement is exciting,” Noy said. “So far, the man-made proton conductors, such as polymer Nafion, use a different principle to enhance the proton transport. We have mimicked the way biological systems enhance the proton transport, took it to the extreme, and now our system realizes the ultimate limit of proton conductivity in a nanopore.”

Of all man-made materials, the narrow hydrophobic inner pores of carbon nanotubes (CNT) hold the most promise to deliver the level of confinement and weak interactions with water molecules that facilitate the formation of one-dimensional hydrogen-bonded water chains that enhance proton transport.

Earlier molecular dynamic simulations showed that water in 0.8 nm diameter carbon nanotubes would create such water wires and predicted that these channels would exhibit proton transport rates that would be much faster than those of bulk water. Ramya Tunuguntla, an LLNL postdoctoral researcher and the first author on the paper, said that despite significant efforts in carbon nanotube transport studies, these predictions proved to be hard to validate, mainly because of the difficulties in creating sub-1-nm diameter CNT pores.

However, the Lawrence Livermore team along with colleagues from the Lawrence Berkeley National Lab and UC Berkeley was able to create a simple and versatile experimental system for studying transport in ultra-narrow CNT pores. They used carbon nanotube porins (CNTPs), a technology they developed earlier at LLNL, which uses carbon nanotubes embedded in the lipid membrane to mimic biological ion channel functionality. The key breakthrough was the creation of nanotube porins with a diameter of less than 1 nm, which allowed researchers for the first time to achieve true one-dimensional water confinement.

Here’s a link to and a citation for the paper,

Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins by Ramya H. Tunuguntla, Frances I. Allen, Kyunghoon Kim, Allison Belliveau, & Aleksandr Noy. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.43 Published online 04 April 2016

This paper is behind a paywall.

Smart windows from Texas (US)

I’ve been waiting for ‘smart’ windows and/or self-cleaning windows since 2008. While this research on ‘smart’ windows at the University of Texas at Austin looks promising I suspect it will be years before these things are in the marketplace. A July 22, 2015 news item on Nanotechnology Now announces the latest research,

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for heating and cooling buildings.

In 2013, chemical engineering professor Delia Milliron and her team became the first to develop dual-band electrochromic materials that blend two materials with distinct optical properties for selective control of visible and heat-producing near-infrared light (NIR). In a 2013 issue of Nature, Milliron’s research group demonstrated how, using a small jolt of electricity, a nanocrystal material could be switched back and forth, enabling independent control of light and energy.

A July 23, 2015 University of Texas at Austin news release, which originated the news item, provides more details about the research which has spawned two recently published papers,

The team now has engineered two new advancements in electrochromic materials — a highly selective cool mode and a warm mode — not thought possible several years ago.

The cool mode material is a major step toward a commercialized product because it enables control of 90 percent of NIR and 80 percent of the visible light from the sun and takes only minutes to switch between modes. The previously reported material could require hours.

To achieve this high performance, Milliron and a team, including Cockrell School postdoctoral researcher Jongwook Kim and collaborator Brett Helms of the Lawrence Berkeley National Lab, developed a new nanostructured architecture for electrochromic materials that allows for a cool mode to block near-infrared light while allowing the visible light to shine through. This could help reduce energy costs for cooling buildings and homes during the summer. The researchers reported the new architecture in Nano Letters on July 20.

“We believe our new architected nanocomposite could be seen as a model material, establishing the ideal design for a dual-band electrochromic material,” Milliron said. “This material could be ideal for application as a smart electrochromic window for buildings.”

In the paper, the team demonstrates how the new material can strongly and selectively modulate visible light and NIR by applying a small voltage.

To optimize the performance of electrochromics for practical use, the team organized the two components of the composite material to create a porous interpenetrating network. The framework architecture provides channels for transport of electronic and ionic change. This organization enables substantially faster switching between modes.
Smart Window

The researchers are now working to produce a similarly structured nanocomposite material by simple methods, suitable for low-cost manufacturing.

In a second research paper, Milliron and her team, including Cockrell School graduate student Clayton Dahlman, have reported a proof-of-concept demonstrating how they can achieve optical control properties in windows from a well-crafted, single-component film. The concept includes a simple coating that creates a new warm mode, in which visible light can be blocked, while near-infrared light can enter. This new setting could be most useful on a sunny winter day, when an occupant would want infrared radiation to pass into a building for warmth, but the glare from sunlight to be reduced.

In this paper, published in the Journal of the American Chemical Society, Milliron proved that a coating containing a single component ­— doped titania nanocrystals — could demonstrate dynamic control over the transmittance of solar radiation. Because of two distinct charging mechanisms found at different applied voltages, this material can selectively block visible or infrared radiation.

“These two advancements show that sophisticated dynamic control of sunlight is possible,” Milliron said. “We believe our deliberately crafted nanocrystal-based materials could meet the performance and cost targets needed to progress toward commercialization of smart windows.”

Interestingly, the news release includes this statement,

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. The lead UT investigator involved with this project, Delia Milliron, is the chief scientific officer and owns an equity position in Heliotrope Technologies, an early-stage company developing new materials and manufacturing processes for electrochromic devices with an emphasis on energy-saving smart windows. Milliron is associated with patents at Lawrence Berkeley National Laboratory licensed to Heliotrope Technologies. Collaborator Brett Helms serves on the scientific advisory board of Heliotrope and owns equity in the company.

Here are links to and citations for the two papers,

Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance by Jongwook Kim, Gary K. Ong, Yang Wang, Gabriel LeBlanc, Teresa E. Williams, Tracy M. Mattox, Brett A. Helms, and Delia J. Milliron. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b02197 Publication Date (Web): July 20, 2015

Copyright © 2015 American Chemical Society

Spectroelectrochemical Signatures of Capacitive Charging and Ion Insertion in Doped Anatase Titania Nanocrystals by Clayton J. Dahlman, Yizheng Tan, Matthew A. Marcus, and Delia J. Milliron. J. Am. Chem. Soc., 2015, 137 (28), pp 9160–9166 DOI: 10.1021/jacs.5b04933 Publication Date (Web): July 8, 2015

Copyright © 2015 American Chemical Society

These papers are behind paywalls.