Tag Archives: LHC

Mega science (e.g., a Large Hadron Collider) for agriculture

They are not talking about smashing plants together at high speeds when they suggest creating a CERN LHC (European Particle Physics Laboratory Large Hadron Collider) for agricultural sciences. Rather, three scientists have published a discussion paper about enabling large scale collaborations amongst agricultural scientists in Europe, according to a Jan. 5, 2016 news item on phys.org,

The Large Hadron Collider, a.k.a. CERN, found success in a simple idea: Invest in a laboratory that no one institution could sustain on their own and then make it accessible for physicists around the world. Astronomers have done the same with telescopes, while neuroscientists are collaborating to build brain imaging observatories. Now, in Trends in Plant Science on January 5 [2016], agricultural researchers present their vision for how a similar idea could work for them.

Rather than a single laboratory, the authors want to open a network of research stations across Europe—from a field in Scotland to an outpost in Sicily. Not only would this provide investigators with easy access to a range of different soil properties, temperatures, and atmospheric conditions to study plant/crop growth, it would allow more expensive equipment (for example, open-field installations to create artificial levels of carbon dioxide) to be a shared resource.

A Jan. 5, 2016 Cell Press news release on EurekAlert, which originated the news item, expands on the theme,

“Present field research facilities are aimed at making regional agriculture prosperous,” says co-author Hartmut Stützel of Leibniz Universität Hannover in Germany. “To us, it is obvious that the ‘challenges’ of the 21st century–productivity increase, climate change, and environmental sustainability–will require more advanced research infrastructures covering a wider range of environments.”

Stützel and colleagues, including Nicolas Brüggemann of Forschungszentrum Jülich in Germany and Dirk Inzé of VIB and Ghent University in Belgium, are just at the beginning of the process of creating their network, dubbed ECOFE (European Consortium for Open Field Experimentation). The idea was born last February at a meeting of Science Europe and goes back to discussions within a German Research Foundation working group starting four years ago. Now, they are approaching European ministries to explore the possibilities for ECOFE’s creation.

In addition to finding financial and political investment, ECOFE’s success will hinge on whether scientists at the various institutional research stations will be able to sacrifice a bit of their autonomy to focus on targeted research projects, Stützel says. He likens the network to a car sharing service, in which researchers will be giving up the autonomy and control of their own laboratories to have access to facilities in different cities. If ECOFE catches on, thousands of scientists could be using the network to work together on a range of “big picture” agricultural problems.

“It will be a rather new paradigm for many traditional scientists, but I think the communities are ready to accept this challenge and understand that research in the 21st century requires these types of infrastructures,” Stützel say. “We must now try to make political decision makers aware that a speedy implementation of a network for open field experimentation is fundamental for future agricultural research.”

Here’s a link to and a citation for the paper,

The Future of Field Trials in Europe: Establishing a Network Beyond Boundaries by Hartmut Stützel, Nicolas Brüggemann, Dirk Inzé. Publication stage: In Press Corrected Proof DOI: http://dx.doi.org/10.1016/j.tplants.2015.12.003 Published Online: January 05, 2016

This paper appears to be open access.

Become a Higgs Hunter (anyone can do it)

The Higgs you’d be hunting is a Higgs boson; the one that was confirmed to worldwide jubilation in 2012. (For anyone not familiar with the Higgs, I have a Dec. 14, 2011 post which provides a introductory video from the US Fermi Lab along with more information.)

Thanks to David Bruggeman and a Nov. 29, 2014 post on his Pasco Phronesis blog I have additional details about this citizen science, aka, crowdsourced science, project,

If you accept the assignment, Higgs Hunters will provide you several particle images from the ATLAS detector at CERN.  Mark any tracks that are off-centre in the images and move on to the next.  The tracks represent decay of exotic particles, particles that could have resulted from the decay of the Higgs boson.

Here’s more from a Science Magazine Nov. 26, 2014 posting (Note: Links have been removed),

Today [Nov. 26, 2014] marks the beginning of your chance to hunt for tiny explosions that could eventually lead to entirely new physics. Head to higgshunters.org to help scientists analyze 25,000 images from CERN’s particle collider, but be warned, you’ll be looking for evidence of the Higgs boson’s death. Some scientists believe that when the Higgs boson decays, it leaves behind other, completely new particles. …

Higgshunters.org has prepared its own video introduction to the project,

For those who prefer text, Higgs Hunters has this to say on its Introductory page,

In 2012, the world of Particle Physics rejoiced with the discovery of the long sought after Higgs boson particle. But this is just the beginning. In our search for answers to the most fundamental questions about the nature of reality, we are looking for your help in finding evidence of new physics beyond our current understanding. Through searching for exotic decays (particles falling apart in unexpected ways) in the Large Hadron Collider’s particle collisions, you can be a part of the next great revolution in Physics. The LHC’s computer programs were not designed to look for these decays, but we are willing to bet that a keen pair of human eyes can. So how about it, are you ready to change our understanding of the world?

On its How you can help page, the Higgs Hunters scientists describe the magnitude of the project and The Zooniverse (a citizen science organization), which is providing the platform for this project Note: Links have been removed,

Particle colliders produce a huge amount of data – so large in fact that the world-wide web was invented at CERN so scientists could share the data with each other to handle it. CERN now has a global computing grid of 170 computing centres in 40 countries trawling through the data, but computers are far from perfect. Unlike the human brain, which is naturally curious and excellent at pattern recognition, computer programs can only find what they have been taught how to find.

The Zooniverse has a rich history of making new discoveries that computers had completely missed (some older members will recall the excitement surrounding ‘Hanny’s Voorwerp’ found by a citizen scientist working on the Galaxy Zoo project). In this spirit, we need your help to look for the weird and wonderful secrets hiding in the LHC data. In doing so, you will also be teaching our computers how to better spot exotic particle events, speeding up the process of future scientific discoveries! To do this Higgs Hunters shows you a combination of simulated and real data. We need to understand what kind of events can be ‘detected’ using this site, and so we include computer-generated data as well as real data. You’ll be told after each classification if it was a simulation.

With your help, we can collectively improve our understanding of the universe. The next new discovery is waiting to be found!

Good luck!

I last mentioned The Zooniverse and citizen science in a Nov. 19, 2014 post about the upcoming American Association for the Advancement of Science (AAAS) 2015 meeting in California. Citizen science will be discussed in presentations at the meeting and also at the  Citizen Science Association’s first conference (which is being held as a pre-AAAS 2015 meeting conference).

Quantum; the dance performance about physics in Vancouver, Canada (2 of 2)

Gilles Jobin kindly made time to talk about his arts residency at CERN (European Particle Physics Laboratory) prior to the performances of Quantum (a dance piece resulting from the residency) from Oct. 16 -18, 2014 at Vancouver’s Dance Centre.

Jobin was the first individual to be selected as an artist-in-residence for three months in the CERN/Geneva programme (there is another artist-in-residence programme at the laboratory which is the CERN/Ars Electronica programme). Both these artist-in-residence programmes were announced in the same year, 2011. (You can find out more about the CERN artist-in-residence programmes on the Collide@CERN webpage,

As a main strategy of CERN’s Cultural Policy for Engaging with the Arts, Collide@CERN is a 3-year artist’s residency programme initiated by Arts@CERN in 2011.

By bringing world-class artists and scientists together in a free exchange of ideas, the Collide@CERN residency programme explores elements even more elusive than the Higgs boson: human ingenuity, creativity and imagination.

See below for more information about the Collide@CERN artist residency programmes:

Collide@CERN Geneva Residency

Prix Ars Electronica Collide@CERN Residency

The Collide@CERN prize – an open call to artists working in different art forms to win a fully funded residency – will be awarded annually in two strands (Collide@CERN Geneva and Prix Ars Electronica Collide@CERN) until 2013. It comprises prize money and a residency grant for up to 3 months at CERN.

The winning artists will interact and engage with CERN scientists in order to take their artistic work to new creative dimensions.

The awards are made following two annual international open calls and the jury comprises the cultural partners as well as representatives from Arts@CERN, including scientists.

Planned engagement with artists at CERN is a relatively new concept according to an August 4, 2011 CERN press release,

Today CERN1 launches its cultural policy for engaging with the arts. Called ‘Great Arts for Great Science’, this new cultural policy has a central strategy – a selection process for arts engagement at the level of one of the world’s leading research organizations.

“This puts CERN’s engagement with the arts on a similar level as the excellence of its science,” said Ariane Koek, CERN’s cultural specialist.

CERN’s newly appointed Cultural Board for the Arts will be the advisers and guardians of quality. It is made up of renowned cultural leaders in the arts from CERN’s host-state countries: Beatrix Ruf, Director of the Kunsthalle Zurich; Serge Dorny, Director General of the Lyon Opera House; Franck Madlener, Director of the music institute IRCAM in Paris. Geneva and CERN are represented by Christoph Bollman of ArtbyGenève and Michael Doser, an antimatter scientist. Membership of the board is an honorary position that will change every three years.

The Cultural Board will select one or two art projects a year to receive a CERN letter of approval, enabling these projects to seek external funding for their particle-physics inspired work. This will also build up an international portfolio of CERN-inspired work over the years to come, in conjunction with the Collide@CERN (link sends e-mail) Artists Residency Programme, details of which will be announced in the coming month.

To date, Jobin is the only choreographer to become, so to speak, a member of the CERN community. It was a position that was treated like a job. Jobin went to his office at CERN every day for three months to research particle physics. He had two science advisors, Nicholas Chanon and Michael Doser to help him gain an understanding of the physics being studied in the facility. Here’s Jobin describing his first experiences at CERN (from Jobin’s Collide Nov. 13, 2012 posting),

When I first arrived at Cern, I was captivated by the place and overwhelmed by the hugeness of the subject: Partical [sic] physics… And I had some serious catch up to do… Impressed by the two introduction days in which I had the opportunity to meet many different scientists, Ariane Koeck told me “not to panic” and “to spend my first month following my instinct and not my head…”. …

I found out about the 4 fundamental forces and the fact that gravity was the weakest of all the forces. For a contemporary dancer formed basically around the question of gravity and “groundness” that came as a total shock! I was not a “pile of stuff”, but particles bound together by the strong force and “floating” on the surface of the earth… Me, the earth, you readers, the LHC flying at incredible speed through space, without any of us, (including the physicists!) noticing anything…  Stardust flying into space… I was baffled…

Jobin was required deliver two public lectures, one at the beginning of his residency and the other at the end, as well as, a series of ‘interventions’. He instituted four ‘interventions’, one each in CERN’s library, data centre, anti-matter hall, and cafeteria. Here’s an image and a description of what Jobin was attempting with his library intervention (from his Nov. 13, 2012 posting),

CERN library dance intervention Credit: Gilles Jobin

CERN library dance intervention Credit: Gilles Jobin

 My idea was to “melt” our bodies into the timeline of the library. Like time chameleons, we were to adapt our movements and presence to the quiet and studious atmosphere of the library and be practically unnoticed. My postulate was to imagine that the perception of time is relative; there was a special texture to “time” inside the library. How long is an afternoon in a library? Never ending or passing by too quickly? It is a shared space, with the unique density you can feel in studious atmosphere and its user’s different virtual timelines. We melted into the element of the library and as we guessed, our “unusual” presence and actions did not create conflicts with our surroundings and the students at work. It was a bit like entering slowly into water and becoming part of the element without disturbing its balance. The time hypothesis worked… I wanted to do more site specific interventions in Cern because I was learning things differently. Some understanding was going through my body. Being in action into the labs…

It was only after the residency was completed that he started work on Quantum (producing a dance piece was not a requirement of the residency). After the residency, he did bring his science advisors, Chanon and Doser to his studio and brought his studio to CERN. Jobin managed to get rehearsal time in one of the halls that is 100 metres directly above the large hadron collider (LHC) during the time period when scientists were working to confirm the existence of the Higgs Boson). There were a number of announcements ‘confirming’ the Higgs. They started in July 2012 and continued, as scientists refined their tests, to March 2013 (Wikipedia entry)  when a definitive statement was issued. The definitive statement was recently followed with more confirmation as a June, 25, 2014 article by Amir Aczel for Discover declares Confirmed: That Was Definitely the Higgs Boson Found at LHC [large hadron collider].

As scientists continue to check and doublecheck, Jobin presented Quantum in October 2013 for the first time in public, fittingly, at CERN (from Jobin’s Oct. 3, 2013 blog posting),

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

Jobin was greatly influenced by encounters at CERN with Julius von Bismarck who won the 2012 Prix Ars Electronica Collide@CERN Residency and with his science advisors, Dosen and Chanon. Surprisingly, Jobin was also deeply influenced by Richard Feynman (American physicist; 1918 – 1988). “I loved his approach and his humour,” says Jobin while referring to a book Feynman wrote, then adding,  “I used Feynman diagrams, learning to draw them for my research and for my choreographic work on Quantum.”

For those unfamiliar with Feynman diagrams, from the Wikipedia entry (Note: Links have been removed),

In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions describing the behavior of subatomic particles. The scheme is named for its inventor, American physicist Richard Feynman, and was first introduced in 1948. The interaction of sub-atomic particles can be complex and difficult to understand intuitively, and the Feynman diagrams allow for a simple visualization of what would otherwise be a rather arcane and abstract formula.

There’s also an engaging Feb. 14, 2010 post by Flip Tanedo on Quantum Diaries with this title, Let’s draw Feynman diagrams! and there’s this paper, by David Kaiser on the Massachusetts Institute of Technology website, Physics and Feynman’s Diagrams; In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics. In the spirit of Richard Feynman, both the Tanedo post and Kaiser paper are quite readable. Also, here’s an example (simplified) of what a diagram (from the Quantum Diaries website) can look like,

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

Getting back to Quantum (dance), Jobin describes this choreography as a type of collaboration where the dancers have responsibility for the overall look and feel of the piece. (For more details, Jobin describes his ‘momement generators’ in the radio interview embedded in part 1 of this piece on Quantum.)

In common with most contemporary dance pieces, there is no narrative structure or narrative element to the piece although Jobin does note that there is one bit that could be described as a ‘Higgs moment’ where a dancer is held still by his or her feet, signifying the Higgs boson giving mass to the universe.

As to why Vancouver, Canada is being treated to a performance of Quantum, Jobin has this to say, “When I knew the company was traveling to New York City and then San Francisco, I contacted my friend and colleague, Mirna Zagar, who I met at a Croatian Dance Week Festival that she founded and produces every year.”  She’s also the executive director for Vancouver’s Dance Centre. “After that it was easy.”

Performances are Oct. 16 – 18, 2014 at 8 pm with a Post-show artist talkback on October 17, 2014.

Compagnie Gilles Jobin

$30/$22 students, seniors, CADA members/$20 Dance Centre members
Buy tickets online or call Tickets Tonight: 604.684.2787 (service charges apply to telephone bookings)

You can find part 1 of this piece about Quantum in my Oct. 15, 2014 posting. which includes a video, a listing of the rest of the 2014 tour stops, a link to an interview featuring Jobin and his science advisor, Michael Doser, on a US radio show, and more.

Finally, company dancers are posting video interviews (the What’s Up project mentioned in part 1) with dancers they meet in the cities where the tour is stopping will be looking for someone or multiple someones in Vancouver. These are random acts of interviewing within the context of the city’s dance community.

Vancouver’s Georgia Straight has featured an Oct. 15, 2014 article by Janet Smith about Jobin and his particle physics inspiration for Quantum.

The Higgs boson on its own has inspired other creativity as noted in my Aug. 1, 2012 posting (Playing and singing the Higgs Boson).

As noted in my Oct. 8, 2013 post, Peter Higgs (UK) after whom the particle was named  and François Englert (Belgium) were both awarded the 2013 Nobel Prize in Physics for their contributions to the theory of the Higgs boson and its role in the universe.

Liverpool Science Festival

The first Liverpool Science Festival (UK)  is being held June 25 – July 9, 2014 according to a June 6, 2014 Festival announcement, which has a very exciting lineup guests and events,

Liverpool Science Festival was founded with the mission to create a unique platform to engage the public in all things scientific – from natural science to science in its most interdisciplinary and cultural contexts.

For 2014, we are part of the science programme of events during the UK’s inaugural International Festival for Business (IFB 2014). We are also proud to be contributing events to the official 60th Anniversary celebrations of CERN – birthplace of the internet, the Large Hadron Collider (LHC), site of the discovery of the Higgs Boson – and home to scientists from more than 100 countries.

Highlights of the festival include:

The Hitchhiker’s Guide to the Solar System:
1 river, 9 planets, 14 days and 70 miles

An ambitious public engagement project setting off from the source of the Mersey on a journey to the sea, culminating in a series of pop-up astronomy events and happenings which will mark out the positions of the planets and a scale model of the Solar System. The journey begins on 25 June with astronomy at the source of the Mersey (Stockport, Cheshire) and ends on the evening of 9 July on Crosby Beach.

www.liverpoolsciencefestival.com/the-hitchhikers-guide-to-the-solar-system

This is the second reference to the Hitchhiker’s Guide to the Galaxy that I’ve had on this blog in less than one week. Rice University (US) researcher, Nikta Fakhri, referenced the book in a description of her work on carbon nanotubes in a June 5, 2014 post titled, Hitchhikers at the nanoscale show how cells stir themselves. (For anyone unfamiliar with the book and/or its cultural import, here’s a Wikipedia entry devoted to it.)

Next the festival is featuring its physics with two live events, one featuring Jon Butterworth and the other featuring Butterworth and Lyn Evans (from the announcement),

“If you want to know what being a professional scientist is really like, read Smashing Physics!” – Professor Brian Cox

Professor Jon Butterworth (CERN {European Organization for Nuclear Research ], UCL [University College of London] & Guardian Science) at Waterstones Liverpool One on 27 June – one of the UK’s foremost physicists, on Smashing Physics, his smashing new science book about the hunt for Higgs Boson and real life as a real scientist at the cusp of scientific discovery.

www.liverpoolsciencefestival.com/smashing-physics-ft-prof-jon-butterworth  

Dr Lyn Evans (chief engineer at CERN who spent 15 years leading the team constructing the LHC, the most complex machine ever built) flies in from CERN, Geneva, to speak on Engineering the LHCon 28 June at Stanley Dock.

www.liverpoolsciencefestival.com/engineering-the-lhc-ft-prof-jon-butterworth-dr-lyn-evans

Butterworth has a blog, Life and Physics, hosted by the Guardian newspaper as part of its science blog network. I find his writing to be quite approachable. From time to time he starts talking in ‘physics’ but he usually prepares his audience for these brief outbursts by explaining the concept first in plain English and/or approaching the topic from a mundane angle, e.g., ‘it can be lonely being a physicist’.

Evans was in Vancouver, Canada last February 2013 to launch a global project (from a Feb. 18, 2013 news release posted on The Exchange),

… On February 21 [2013], TRIUMF will do its part in fulfilling this role as it plays host to a meeting of the leaders of the major high-energy physics laboratories around the world. The key outcome of this meeting will be the completion of an existing global collaboration and the launch of a new team that will coordinate and advance the global development work for the Linear Collider, the world’s next accelerator project aimed at pulling back the curtain on the secrets of nature’s most innermost workings.

The new Linear Collider Collaboration (LCC) will combine the two next-generation collider projects, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), under one organizational roof and will be headed by Lyn Evans, former Project Manager of CERN’s Large Hadron Collider (LHC). Some may recognize Lyn Evans as recent co-recipient of the Milner Foundation’s Fundamental Physics Prize. (Evans will give a public science lecture on Wednesday evening at Science World.)

The Linear Collider Board, headed by the University of Tokyo’s Sachio Komamiya, is a new oversight committee for the LCC that will take up office at the same time.

Evans’ public talk mentioned in my Jan. 29, 2013 posting of Vancouver science events features a description that resembles the one for the Liverpool Science Festival (from my posting),

There is a video of the Evan’s February 20, 2013 talk here for anyone who can’t get to Evans’ talk in Liverpool.

Here’s more from the Liverpool Science Festival announcement,

“Wax has an extraordinary mind, and she has brought it to bear with her trademark wit.” – Stephen Fry

Ruby Wax brings her unique wit to the festival with her Sane New World stage show, at Stanley Dock on the evening of 28 June. Since obtaining a Masters Degree in Mindfulness-based Cognitive Therapy from Oxford University, Wax has become a respected campaigner for mental illness in the UK.

www.liverpoolsciencefestival.com/sane-new-world-ft-ruby-wax

“As the scouts say – be prepared! Say your prayers that you never need this book” – Bear Grylls

Dr Lewis Dartnell presents The Knowledge, How to Rebuild Our World from Scratch, his guide to everything you need to know to survive the apocalypse, avert another Dark Age and accelerate the rebuilding of civilization. Based on Dartnell’s best-selling book which has been the top-selling science book on Amazon in recent weeks.

www.liverpoolsciencefestival.com/the-knowledge-how-to-rebuild-our-world-from-scratch-ft-dr-lewis-dartnel 

For the last highlight from the festival announcement, we return to physics,

“Mind-blowing.” – New York Times on Particle Fever

Screening of Particle Fever – Liverpool Science Festival has special permission to screen this new movie on CERN and the hunt for the Higgs Boson, three months ahead of its UK general release. The screening will be followed by a Q&A featuring Professor Tara Shears, CERN particle physicist and the University of Liverpool’s first ever female professor of physics. The screening takes place on the evening of 5 July at Stanley Dock.

www.liverpoolsciencefestival.com/particle-fever

“Particle Fever” received its May 16, 2014 Canadian premiere in Vancouver, which included a discussion with a panel of physicists.  (There was a also a showing when the Vancouver International Film Festival was held in Oct. 2013 and that has a separate webpage description. I assume a showing during a film festival is not considered a premiere) Here’s a description of the documentary from the Vancouver International Film Festival theatre’s Particle Fever webpage,

May 16th, 7:00 PM screening will be followed by a panel discussion of physicists, copresented by TRIUMF and supported by Reel Causes.
May 19th, 6:30 PM screening is open to youth, the film is rated PG

Imagine being able to watch as Edison turned on the first light bulb, or as Franklin received his first jolt of electricity. Physicist turned filmmaker Mark Levinson gives us the modern equivalent of those world-changing moments with this as-it-happens front-row seat to our generation’s most significant and inspiring scientific breakthrough—the launch of the Large Hadron Collider, near Geneva, built to recreate conditions that existed just moments after the Big Bang and to potentially explain the origin of all matter. Following a team of brilliant scientists, Levinson—aided by master editor Walter Murch—crafts a celebration of discovery while revealing the very human stories behind this epic machine.

“Set in crummy offices and towering facilities worthy of a Bond movie, the documentary is edited with the momentum of a thriller by the great Walter Murch (Apocalypse Now), as we follow six scientists. They come across as simultaneously passionate thinkers and endearing nerds: There’s the elegant Italian physicist and classical pianist Fabiola Gianotti, obliviously stepping into traffic while talking excitedly on her phone. Or postdoc student and experimental physicist Monica Dunford, declaring effusively: “It’s unbelievably fantastic how great data is.”

There is a Particle Fever May 14, 2014 review by Ken Eisner in the Vancouver local publication, The Georgia Straight.  Peculiarly and in the midst a poetic movie review, Eisner starts complaining about physics funding in the US,

In the rarefied world of quantum physics, “The ability to leap from failure to failure with undiminished enthusiasm is the key to success.” This is according to one scientist prominently featured in an absorbing doc that takes as its locus the Large Hadron Collider, in Switzerland, where some pretty amazing breakthroughs—and a few duds—have happened in the past few years.

The subtext is the struggle to keep pure learning alive with no promise of tangible return, except the possibility of knowledge that will forever alter our understanding of life. …

… its main activities take place at the huge site of CERN, near Lake Geneva—built there largely because right-wingers have managed to kill off nonprofit science in the U.S. [emphasis mine] Its hivelike realities, with staff drawn from a hundred nations, make it resemble a space station on Earth. …

I think there may have been a few other important  factors influencing the Large Hadron Collider’s location.

Getting back to Liverpool, if the website is any indication, this science festival has been beautifully conceptualized and thoughtfully implemented. I wish the organizers all the best as they get ready to launch their festival.

Finally, in the description of the Hitchhiker’s Guide to the Solar System event, I noticed a reference to the Mersey, which brought to mind this song from 1965. Gerry & the Pacemakers sing Ferry Cross the Mersey,

Peter Higgs and François Englert to receive 2013 Nobel Prize in Physics and TRIUMF name changes?

After all the foofaraw about finding/confirming the existence of the Higgs Boson or ‘god’ particle (featured in my July 4, 2012 posting amongst many others), the Royal Swedish Academy of Sciences has decided to award the 2013 Nobel prize for Physics to two of the individuals responsible for much of the current thinking about subatomic particles and mass (from the Oct. 8, 2013 news item on ScienceDaily),

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert of Université Libre de Bruxelles, Brussels, Belgium, and Peter W. Higgs of the University of Edinburgh, UK, “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

François Englert and Peter W. Higgs are jointly awarded the Nobel Prize in Physics 2013 for the theory of how particles acquire mass. In 1964, they proposed the theory independently of each other (Englert together with his now deceased colleague Robert Brout). In 2012, their ideas were confirmed by the discovery of a so called Higgs particle at the CERN laboratory outside Geneva in Switzerland.

TRIUMF, sometimes known as Canada’s national laboratory for particle and nuclear physics, has issued an Oct. 8, 2013 news release,

HIGGS, ENGLERT SHARE 2013 NOBEL PRIZE IN PHYSICS

Canadians Key Part of Historical Nobel Prize to “Godfathers” of the “God Particle”

(Vancouver, BC) — The Royal Swedish Academy of Sciences today awarded the Nobel Prize in physics to Professor Peter W. Higgs (Univ. of Edinburgh) and Professor François Englert (Univ. Libre de Bruxelles) to recognize their work developing the theory of what is now known as the Higgs field, which gives elementary particles mass.  Canadians have played critical roles in all stages of the breakthrough discovery Higgs boson particle that validates the original theoretical framework.  Throngs across Canada are celebrating.

More than 150 Canadian scientists and students at 10 different institutions are presently involved in the global ATLAS experiment at CERN.  Canada’s national laboratory for particle and nuclear physics, TRIUMF, has been a focal point for much of the Canadian involvement that has ranged from assisting with the construction of the LHC accelerator to building key elements of the ATLAS detector and hosting one of the ten global Tier-1 Data Centres that stores and processes the physics for the team of thousands.

“The observation of a Higgs Boson at about 125 GeV, or 130 times the mass of the proton, by both the ATLAS and CMS groups is a tremendous achievement,” said Rob McPherson, spokesperson of the ATLAS Canada collaboration, a professor of physics at the University of Victoria and Institute of Particle Physics scientist. “Its existence was predicted in 1964 when theorists reconciled how massive particles came into being.  It took almost half a century to confirm the detailed predictions of the theories in a succession of experiments, and finally to discover the Higgs Boson itself using our 2012 data.”

The Brout-Englert-Higgs (BEH) mechanism was first proposed in 1964 in two papers published independently, the first by Belgian physicists Robert Brout and François Englert, and the second by British physicist Peter Higgs. It explains how the force responsible for beta decay is much weaker than electromagnetism, but is better known as the mechanism that endows fundamental particles with mass. A third paper, published by Americans Gerald Guralnik and Carl Hagen with their British colleague Tom Kibble further contributed to the development of the new idea, which now forms an essential part of the Standard Model of particle physics. As was pointed out by Higgs, a key prediction of the idea is the existence of a massive boson of a new type, which was discovered by the ATLAS and CMS experiments at CERN in 2012.

The next step will be to determine the precise nature of the Higgs particle and its significance for our understanding of the universe. Are its properties as expected for the Higgs boson predicted by the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing
in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure.

TRIUMF salutes Peter Higgs and François Englert for their groundbreaking work recognized by today’s Nobel Prize and congratulates the international team of tens of thousands of scientists, engineers, students, and many more from around the world who helped make the discovery.

For spokespeople at the major Canadian universities involved in the Higgs discovery, please see the list below:

CANADIAN CONTACTS

U of Alberta: Doug Gingrich, gingrich@ualberta.ca, 780-492-9501
UBC:  Colin Gay, cgay@physics.ubc.ca, 604-822-2753
Carleton U: Gerald Oakham (& TRIUMF), oakham@physics.carleton.ca, 613-520-7539
McGill U: Brigitte Vachon (also able to interview in French), vachon@physics.mcgill.ca, 514-398-6478
U of Montreal: Claude Leroy (also able to interview in French),leroy@lps.uontreal.ca, 514-343-6722
Simon Fraser U: Mike Vetterli (& TRIUMF, also able to interview in French), vetm@triumf.ca, 778-782-5488
TRIUMF: Isabel Trigger (also able to interview in French), itrigger@triumf.ca, 604-222-7651
U of Toronto: Robert Orr, orr@physics.utoronto.ca, 416-978-6029
U of Victoria: Rob McPherson, rmcphers@triumf.ca, 604-222-7654
York U: Wendy Taylor, taylorw@yorku.ca, 416-736-2100 ext 77758

While I know Canadians have been part of the multi-year, multi-country effort to determine the existence or non-existence of the Higgs Boson and much more in the field of particle physics, I would prefer we were not described as “… Key Part of Historical Nobel Prize … .” The question that springs to mind is: how were Canadian efforts key to this work? The answer is not revealed in the news release, which suggests that the claim may be a little overstated. On the other hand, I do like the bit about ‘saluting Higgs and Englert for their groundbreaking work’.

As for TRIUMF and what appears to be a series of name changes, I’m left somewhat puzzled, This Oct. 8, 2013 news release bears the name (or perhaps it’s a motto or tagline of some sort?): TRIUMF — Accelerating Science for Canada, meanwhile the website still sports this: TRIUMF Canada’s national laboratory for particle and nuclear physics while a July 17, 2013 TRIUMF news release gloried in this name: TRIUMF Accelerators, Inc., (noted in my July 18, 2013 posting). Perhaps TRIUMF is trying to follow in CERN’s footsteps. CERN was once known as the ‘European particle physics laboratory’ but is now known as the European Organization for Nuclear Research and seems to also have the tagline: ‘Accelerating science’.

Accelerator-on-a-chip at Stanford University’s SLAC National Accelerator Laboratory

For anyone who’s ever seen a picture of the accelerators at CERN’s (European Particle Physics Laboratory) Large Hadron Collider, the notion of an accelerator-on-a-chip seems unbelievable. Scientists at Stanford’s SLAC National Accelerator Laboratory thought otherwise according to a Sept. 27, 2013 SLAC news release (also on EurekAlert),

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

“We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces,” said Joel England, the SLAC physicist who led the experiments. “It could also help enable compact accelerators and X-ray devices for security scanning, medical therapy and imaging, and research in biology and materials science.”

Because it employs commercial lasers and low-cost, mass-production techniques, the researchers believe it will set the stage for new generations of “tabletop” accelerators.

At its full potential, the new “accelerator on a chip” could match the accelerating power of SLAC’s 2-mile-long linear accelerator in just 100 feet, and deliver a million more electron pulses per second. [emphasis mine]

The news release goes on to describe how the researchers have achieved a more efficient acceleration,

Particles are generally accelerated in two stages. First they are boosted to nearly the speed of light. Then any additional acceleration increases their energy, but not their speed; this is the challenging part.

In the accelerator-on-a-chip experiments, electrons are first accelerated to near light-speed in a conventional accelerator. Then they are focused into a tiny, half-micron-high channel within a fused silica glass chip just half a millimeter long. The channel had been patterned with precisely spaced nanoscale ridges. Infrared laser light shining on the pattern generates electrical fields that interact with the electrons in the channel to boost their energy.

The researchers’ have produced an animation which illustrates their work,

Caption: This animation explains how the accelerator on a chip uses infrared laser light to accelerate electrons to increasingly higher energies. Credit:  (Greg Stewart/SLAC)

Here’s a citation for and a link to the  research paper (‘near final version as of Sept. 30, 2013),

Demonstration of electron acceleration in a laser-driven dielectric microstructure by E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, & R. L. Byer. Nature (2013) doi:10.1038/nature12664  Published online 27 September 2013

It is behind a paywall although you can get reading access via ReadCube.

Finally, here’s what the chip looks like,

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

TRIUMF looks for new Director as Nigel S. Lockyer exits for the Fermilab (US)

The circumstances around Nigel S. Lockyer’s departure as Director of Canada’s National Laboratory for Particle and Nuclear Physics, TRIUMF,  are very interesting. Just weeks ago, TRIUMF announced a major innovation for producing medical isotopes (my June 9, 2013 posting), which should have an enormous impact on cities around the world and their access to medical isotopes. (Briefly, cities with cyclotrons could produce, using the technology developed by TRIUMF,  their own medical isotopes without using material from nuclear reactors.)

Also in the recent past, Canada’s much storied McGill University joined the TRIUMF consortium (I’m surprized it took this long), from the May 10, 2013 news release,

At its recent Board of Management meeting, TRIUMF approved McGill University as an associate member of the consortium of universities that owns and operates Canada’s national laboratory for particle and nuclear physics. McGill joins 17 other Canadian universities in leading TRIUMF.

Paul Young, Chair of the Board and Vice President for Research at the University of Toronto, said, “The addition of McGill to the TRIUMF family is a great step forward. McGill brings world-class scientists and students to TRIUMF and TRIUMF brings world-leading research tools and partnerships to McGill.”

The university’s closer association with TRIUMF will allow it to participate in discussions about setting the direction of the laboratory as well provide enhanced partnerships for new research infrastructure that strengthens efforts on McGill’s campuses. Dr. Rose Goldstein, McGill Vice-Principal (Research and International Relations), said, “We are delighted to formalize our long-standing involvement in TRIUMF. It is an important bridge to international research opportunities at CERN and elsewhere. Associate membership in TRIUMF will also help McGill advance its Strategic Research Plan, especially in the priority area of exploring the natural environment, space, and the universe.”

McGill University has been involved in TRIUMF-led activities for several decades, most notably as part of the Higgs-hunting efforts at CERN. TRIUMF constructed parts of the Large Hadron Collider that ultimately produced Higgs bosons. The co-discovery was made by the ATLAS experiment for which TRIUMF led Canadian construction of several major components, and McGill played a key role in the development of the experiment’s trigger system. McGill and TRIUMF have also worked together on particle-physics projects in Japan and the U.S.

Professor Charles Gale, chair of the Department of Physics, played a key role in formalizing the relationship between TRIUMF and McGill. He said, “Our department is one of the top in North America in research, teaching, and service. Undoubtedly our work with TRIUMF has helped contribute to that and I expect both institutions to blossom even further.” Professor of physics and Canadian Research Chair in Particle Physics Brigitte Vachon added, “TRIUMF provides key resources to my students and me that make our research at CERN possible; the discovery of the Higgs boson is a perfect example of what such collaboration can achieve.”

Nigel S. Lockyer, director of TRIUMF, commented, “The addition of McGill to the TRIUMF team is welcome and long overdue. We have been working together for decades in subatomic physics and this acknowledgment of the partnership enhances both institutions and builds stronger ties in areas such as materials science and nuclear medicine.”

A scant month after McGill joins the consortium and weeks after a major announcement about medical isotopes, Lockyer announces his departure for the Fermilabs in the US, from the May 20, 2013 TRIUMF news release,

In his capacity as Chairman of the Board of Directors of Fermi Research Alliance, LLC, University of Chicago President Robert J. Zimmer today announced that TRIUMF’s director Nigel S. Lockyer has been selected to become the next director of the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago.  Lockyer is expected to complete his work at TRIUMF this summer and begin at Fermilab in the autumn.

Paul Young, Chair of TRIUMF’s Board of Management and Vice President of Research and Innovation at the University of Toronto said, “Nigel was selected from a truly outstanding set of international candidates for this challenging and important position.  Although it will be a short-term loss, this development is a clear recognition of Nigel’s vision and passion for science and the international leadership taken by TRIUMF and Canada in subatomic physics.  On behalf of the entire TRIUMF Board, we wish Nigel, TRIUMF, and Fermilab every success in the future.”

Lockyer set TRIUMF upon a new course when he arrived six years ago, focusing the team on “Advancing isotopes for science and medicine.”  Based on TRIUMF’s existing infrastructure and talent, this initiative ranged from expanding the nuclear-medicine program so that it is now playing a leading role in resolving the medical-isotope crisis to the formulation and funding of a new flagship facility called ARIEL that will double TRIUMF’s capabilities for producing exotic isotopes used in science and for developing tomorrow’s medical isotopes.  At the heart of ARIEL is a next-generation electron accelerator using modern superconducting radio-frequency technology.

Commenting on Nigel’s leadership of TRIUMF, Paul Young added, “One look at TRIUMF’s current trajectory and you can see that this is a man of great ambition and talent.  Working with the Board and a great team at the lab, he propelled TRIUMF to new heights.  We have all been fortunate at TRIUMF to have Nigel as a colleague and leader.”

Reflecting on his time at TRIUMF and the upcoming transition to Fermilab, Nigel Lockyer said, “Knowing that TRIUMF is in good hands with a superb leadership team and seeing its growing string of accomplishments has helped make this decision a tiny bit easier.  The laboratory’s future is secure and TRIUMF knows exactly what it is doing.  I am proud to have contributed to TRIUMF’s successes and it is my hope to ignite the same energy and enthusiasm in the U.S. by heading the team at Fermilab.”  He added, “I also expect to foster a new level of partnership between the U.S. and Canada in these key areas of science and technology.”

“Nigel has had a profound impact on TRIUMF,” said David B. MacFarlane, chair of the National Research Council’s Advisory Committee on TRIUMF and Associate Laboratory Director at the U.S. SLAC National Accelerator Laboratory.  “He articulated an ambitious new vision for the laboratory and energetically set it upon a path toward an exciting world-class program in rare-isotope beams and subatomic-physics research.  When ARIEL comes online, the lab will be fulfilling the vision that Nigel and his team boldly initiated.”  David MacFarlane added, “The TRIUMF community will certainly miss his warmth, his insatiable scientific curiosity, his creativity, and his faith in the laboratory and its entire staff.  However, I fully expect these same characteristics will serve Nigel well in his new leadership role as Fermilab director.”

As per standard practice, the TRIUMF Board of Management will announce plans and timelines for the international search process and interim leadership within the next few weeks.

Before speculating on the search process and interim leadership appointment, I have a comment of sorts about the Fermilab, which was last mentioned here in my Feb. 1, 2012 posting where I excerpted this interesting comment from a news release,

From the Feb. 1, 2012 news release on EurekAlert,

In this month’s Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the Tevatron accelerator has finally surrendered to the mighty Large Hadron Collider (LHC) at CERN [European Laboratory for Particle Physics], placing Fermilab, in some people’s mind, on the brink of disappearing into obscurity. [emphasis mine]

It seems the Fermilab is in eclipse and Lockyer is going there to engineer a turnaround. It makes one wonder what the conditions were when he arrived at TRIUMF six years ago (2006?). Leading on from that thought, the forthcoming decisions as to whom will be the interim Director and/or the next Director should be intriguing.

Usually an interim position is filled by a current staff member, which can lead to some fraught moments amongst internal competitors.  That action, however fascinating, does not tend to become fodder for public consumption.

Frankly, I’m more interested in the board’s perspective. What happens if they pick an internal candidate while they prepare for the next stage when they’re conducting their international search? Based on absolutely no inside information whatsoever, I’m guessing that Tim Meyer, Head, Strategic Planning & Communications for TRIUMF, would be a viable internal candidate for interim director.

From a purely speculative position, let’s assume he makes a successful play to become the interim Director. At this point, the board will have to consider what direction is the right one for TRIUMF while weighing up the various candidates for the permanent position.  Assuming the interim Director is ambitious and wants to become the permanent Director, the dynamics could get very interesting indeed.

From the board’s perspective, you want the best candidate and you want to keep your staff. In Canada, there’s one TRIUMF; there are no other comparable institutions in the country.  Should an internal candidate such as Meyer get the interim position but not the permanent one (assuming he’d want to be the permanent Director) he would have very few options in Canada.

Based on this speculation, I can safety predict some very interesting times ahead for TRIUMF and its board. In the meantime, I wish Lockyer all the best as he moves back to the US to lead the Fermilab.

Is a philosophy of the Higgs and other physics particles a good idea?

Michael  Krämer of the RWTH Aachen University (Germany) muses about philosophy, the Higgs Boson, and more in a Mar. 24, 2013 posting on Jon Butterworth’s Life and Physics blog (Guardian science blogs; Note: A link has been removed),

Many of the great physicists of the 20th century have appreciated the importance of philosophy for science. Einstein, for example, wrote in a letter in 1944:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest.

At the same time, physics has always played a vital role in shaping ideas in modern philosophy. It appears, however, that we are now faced with the ruins of this beautiful marriage between physics and philosophy. Stephen Hawking has claimed recently that philosophy is “dead” because philosophers have not kept up with science …

Krämer is part of an interdisciplinary (physics and philosophy) project at the LHC (Large Hadron Collider at CERN [European Particle Physics Laboratory]), The Epistemology of the Large Hadron Collider. From the project home page (Note: A link has been removed),

This research collaboration works at the crossroads of physics, philosophy of science, and contemporary history of science. It aims at an epistemological analysis of the recently launched new accelerator experiment at CERN, the Large Hadron Collider (LHC). Central themes are (i) the mechanisms of generating the masses of the particles of the standard model, especially the Higgs-mechanism and the Higgs-particle the LHC has set out to detect; (ii) the ongoing research process with special emphasis on the interaction between a large experiment and a community of theoreticians; and (iii) the implications of an experiment that is characterized by its enormous complexity and the need to be highly selective in data gathering. With the heading “Epistemology of the LHC” the research group intends both a philosophical analysis of the theoretical structures and of the conditions of knowledge production, among them the criteria of acceptance, and a real-time monitoring of the ongoing physical development from the perspective of the history of science. Theresearch group has emerged from a collaboration between a High Energy Working group and the Interdisciplinary Centre for Science and Technology Studies and is based in Wuppertal but also involves external members and collaborators.

Krämer shares some of his ideas and the type of thinking generated when physicists and philosophers collide (I plead guilty to the word play; from Butterworth’s Guardian science blog),

… The relationship between experiment and theory (what impact does theoretical prejudice have on empirical findings?) or the role of models (how can we assess the uncertainty of a simplified representation of reality?) are scientific issues, but also issues from the foundation of philosophy of science. In that sense they are equally important for both fields, and philosophy may add a wider and critical perspective to the scientific discussion. And while not every particle physicist may be concerned with the ontological question of whether particles or fields are the more fundamental objects, our research practice is shaped by philosophical concepts. We do, for example, demand that a physical theory can be tested experimentally and thereby falsified, a criterion that has been emphasized by the philosopher Karl Popper already in 1934. The Higgs mechanism can be falsified, because it predicts how Higgs particles are produced and how they can be detected at the Large Hadron Collider.

On the other hand, some philosophers tell us that falsification is strictly speaking not possible: What if a Higgs property does not agree with the standard theory of particle physics? How do we know it is not influenced by some unknown and thus unaccounted factor, like a mysterious blonde walking past the LHC experiments and triggering the Higgs to decay? (This was an actual argument given in the meeting!)

The meeting Krämer is referring to is this one (from the meeting/conference website),

The first international conference and kick-off meeting of the German Society for Philosophy of Science/Gesellschaft für Wissenschaftsphilosophie (GWP) will take place from 11-14 March 2013 at the University of Hannover under the title:

How Much Philosophy in the Philosophy of Science?

Krämer then highlights some of the discussion that most interested in him (Note: A link has been removed),

… It is very hard for a philosopher to keep up with scientific progress, and how could one integrate various fields without having fully appreciated the essential features of the individual sciences? As Margaret Morrison from the University of Toronto pointed out in her talk, if philosophy steps back too far from the individual sciences, the account becomes too general and isolated from scientific practice. On the other hand, if philosophy is too close to an individual science, it may not be philosophy any longer.

I think philosophy of science should not consider itself primarily as a service to science, but rather identify and answer questions within its own domain. I certainly would not be concerned if my own research went unnoticed by biologists, chemists, or philosophers, as long as it advances particle physics. On the other hand, as Morrison pointed out, science does generate its own philosophical problems, and philosophy may provide some kind of broader perspective for understanding those problems.

It’s well worth reading Krämer’s full post for anyone who’s interested in how physicists (or Krämer) think about the role that philosophy could play (or not) in the field of physics.

The reference to Margaret Morrison from the University of Toronto (U of T) reminded me of the Bubble Chamber blog which is written by U of T historians and philosophers of science. Here’s a July 10, 2012 posting by Mike Thicke about the Higgs Boson and his response to philosopher Wayne Myrvold’s (University of Western Ontario) explanation of the statistics claims being made about the particle at that time,

We can all agree that reasoning and decision making in science is complicated. Scientists reason in many different contexts: in the lab, in their published papers, as career-minded professionals, as interested consumers of science, and as people going about their lives. It’s plausible to think that they reason in different ways in all of these contexts. When we’re discussing their reasoning as scientists, I believe distinguishing between the first three contexts is especially important. While Wayne’s explanation of the statistics behind the Higgs Boson discovery is very interesting, informative, and as far as I can tell correct, I think there are some confusions arising from his failure to make these distinctions.

Thicke does advise reading Myrvold’s July 4, 2012 posting before tackling his riposte.

Inside story on doping; build it and they will collide; and physicist, feminist, and philosopher superstar Evelyn Fox Keller visits

Here are a few events being held in Vancouver (Canada) over the next weeks and months. This is not an exhaustive list (three events) but it certainly offers a wide range of topics.

Inside story on doping

First, Café Scientifique will be holding a meeting on the subject of doping and athletic pursuits at The Railway Club on the 2nd floor of 579 Dunsmuir St. (at Seymour St.) next Tuesday,

Our next café will happen on Tuesday January 29th, 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Jim Rupert.[School of Kinesiology, University of British Columbia]

The title and abstract for his café is:

The use of genetics in doping and in doping control

Sports performance is an outcome of the complex interactions between an athlete’s genes and the environment(s) in which he or she develops and competes.  As more is learned about the contribution of genetics to athletic ability, concerns have been raised that unscrupulous athletes will attempt manipulate their DNA in an attempt to get an ‘edge‘ over the competition. The World Anti-doping Agency (WADA) has invested research funds to evaluate this possibility and to support studies into methods to detect so-called “gene doping”.  Superimposed on these concerns is the realisation that, in addition to contributing to performance, an athlete’s genes may influence the results of current doping-control tests. Natural genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To help differentiate between naturally occurring deviations in blood and urine ‘markers’ and those potentially caused by doping, the ‘biological-passport’ program uses intra-individual variability rather than population values to establish an athlete’s parameters.  The next step in ‘personalised’ doping-control may be the inclusion of genetic data; however, while this may benefit ‘clean’ athletes, it will do so at the expense of risks to privacy.  In my talk, I will describe some examples of the intersection of genetics and doping-control, and discuss how genetic technology might be used to both enhance physical performance as well as to detect athletes attempting to do so.

This is a timely topic  given hugely lauded Lance Armstrong’s recent confession that he was doping when he won his multiple cycling awards. From the Lance Armstrong essay on Wikipedia (Note: Footnotes and links have been removed),

Lance Edward Armstrong (born Lance Edward Gunderson, September 18, 1971) is an American former professional road racing cyclist. Armstrong was awarded victory in the Tour de France a record seven consecutive times between 1999 and 2005, but in 2012 he was disqualified from all his results since August 1998 for using and distributing performance-enhancing drugs, and he was banned from professional cycling for life. Armstrong did not appeal the decision to the Court of Arbitration for Sport. Armstrong confessed to doping in a television interview in January 2013, two-and-a-half months after the Union Cycliste Internationale (UCI), the sport’s governing body, announced its decision to accept USADA’s findings regarding him, and after he had consistently denied it throughout his career.

Build it and they will collide

Next, both TRIUMF (Canada’s national laboratory for particle and nuclear physics) and ARPICO (Society of Italian Researchers and Professionals in Western Canada) have sent Jan. 23, 2013 news releases concerning Dr. Lyn Evans and his talk about building the Large Hadron Collider (LHC) at CERN (European Particle Physics Laboratory) which led to the discovery of the Higgs Boson. The talk will be held at 6:30 pm on Feb. 20, 2013 at Telus World of Science, 1455 Quebec Street, Vancouver,

Fundamental Physics Prize winner to deliver public lecture Wed. Feb. 20 at Science World

Back to the Big Bang – From the LHC to the Higgs, and Beyond
Unveiling the Universe Lecture Series
Wednesday, 20 February 2013 at 6:30 PM (PST)
Vancouver, British Columbia

(Vancouver, B.C.)  The Large Hadron Collider (LHC) is history’s most powerful atom smasher, capable of recreating the conditions that existed less than a billionth of a second after the Big Bang. The construction of the LHC was a massive engineering challenge that spanned almost 15 years, yielding the most technologically sophisticated instrument mankind ever has created.

Join Science World and TRIUMF in welcoming Dr. Lyn Evans, project leader for the LHC construction, in his Milner Foundation Special Fundamental Physics Prize lecture. In this free event, Dr Evans will detail some of the design features and technical challenges that make the LHC such an awe-inspiring scientific instrument. He will also discuss recent results from the LHC and touch on what’s next in the world of high-energy physics. The lecture will be followed by an audience question and answer session.

Dr Evans, born in Wales in 1945, has spent his whole career in the field of high energy physics and particle accelerators. In 2012, he was awarded the Special Fundamental Physics Prize for his contribution to the discovery of the Higgs-like boson. See http://www.fundamentalphysicsprize.org

Tickets are free, but registration is required.

See  http://fpplecture.eventbrite.ca

Physicist, feminist, philosopher superstar Evelyn Fox Keller

Here’s the information available from the Situating Science Cluster Winter 2013 newsletter,

The UBC [University of British Columbia] Node and partners are pleased to welcome Dr. Evelyn Fox Keller as Cluster Visiting Scholar Th. April 4th. The Node and partners continue to support the UBC STS [University of British Columbia Science and Technology Studies] colloquium.

There is more information Fox Keller and the first talk she gave to kick off this Canadawide tour in an Oct. 29, 2012 posting. She will be visiting the University of Alberta and the University of Calgary (Alberta) just prior to the April 4, 2013 visit to Vancouver. There are no further details about Fox Keller’s upcoming visit either on the Situating Science website or on the UBC website.

Simon Fraser University completes a successful mating dance while TRIUMF (Canada’s national laboratory for particle and nuclear physics) gets its groove on

The Federal Government of Canada in the guise of the Canada Foundation for Innovation has just awarded $7.7M to Simon Fraser University (SFU) and its partners for a global innovation hub. From the Jan. 15, 2013 Canada Foundation for Innovation news release,

British Columbia’s research-intensive universities are coming together to create a global hub for materials science and engineering. Simon Fraser University, the University of Victoria, the University of British Columbia and the British Columbia Institute of Technology have received $7.7 million in funding from the Canada Foundation of Innovation to create the Prometheus Project — a research hub for materials science and engineering innovation and commercialization.

“Our goal with the Prometheus Project is to turn our world-class research capacity into jobs and growth for the people of British Columbia,” said Neil Branda, Canada Research Chair in Materials Science at Simon Fraser University and leader of the Prometheus Project. “We know that materials science is changing the way we create energy and fight disease. We think it can also help B.C.’s economy evolve.”

This project builds on a strong collective legacy of collaborating with industry. Researchers involved in the Prometheus Project have created 13 spin-off companies, filed 67 patents and have generated 243 new processes and products. [emphasis mine] Branda himself has founded a company called Switch Materials that seizes the power of advanced chemistry to create smarter and more efficient window coatings.

This funding will allow members of the research team to build their capacity in fabrication, device testing and advanced manufacturing, ensuring that they have the resources and expertise they need to compete globally.

There’s a bit more information about the Prometheus project in a Jan.15, 2013 backgrounder supplied by SFU,

Led by Neil Branda, a Canada Research Chair in Materials Science and SFU chemistry professor, The Prometheus Project is destined to become a research hub for materials science and engineering innovation, and commercialization globally.

It brings together 10 principal researchers, including Branda, co-founder of SFU’s 4D LABS (a materials research facility with capabilities at the nanoscale], and 20 other scientists at SFU, University of British Columbia, the University of Victoria and the British Columbia Institute of Technology. They will create new materials science and engineering (MS&E) technology innovations, which will trigger and support sustained economic growth by creating, transforming and making obsolete entire industries.

Working with internationally recognized industrial, government, hospital and academic collaborators, scientists at the Prometheus partners’ labs, including 4D LABS, a $40 million materials science research institute, will deliver innovations in three areas. The labs will:

  • Develop new solar-industry related materials and devices, including novel organic polymers, nanoparticles, and quantum dots, which will be integrated in low cost, high efficiency solar cell devices. The goal is to create a new generation of efficient solar cells that can compete in terms of cost with non-renewable technologies, surpassing older ones in terms of miniaturization and flexibility.
  • Develop miniaturized biosensors that can be used by individuals in clinical settings or at home to allow early detection of disease and treatment monitoring. They will be integrated into flexible electronic skins, allowing health conditions to be monitored in real-time.
  • Develop spintronics (magnetic devices) and quantum computing and information devices that will enable new approaches to significantly improve encrypted communication and security in financial transactions.

“This project will allow B.C.’s four most research intensive institutes to collaborate on fundamental materials research projects with a wide range of potential commercial applications,” notes Branda. “By engaging with a large community of industry, government and NGO partners, we will move this research out of the lab and into society to solve current and future challenges in important areas such as energy, health and communications.”

The Prometheus team already has a strong network of potential end users of resulting technologies. It is based on its members’ relationships with many of more than 25 companies in BC commercializing solar, biomedical and quantum computing devices.

Researchers and industries worldwide will be able to access Prometheus’s new capabilities on an open-access basis. [emphasis mine]

There are a few things I’d like to point out (a) 13 spin-off companies? There’s no mention as to whether they were successful, i.e., created jobs or managed a life beyond government funding. (b) Patents as an indicator for innovation? As I’ve noted many, many times that’s a very problematic argument to make. (c) New processes and products? Sounds good but there are no substantiating details.  (d) Given the emphasis on commercializing discoveries and business, can I assume that open-access to Prometheus’ capabilities means that anyone willing and able to pay can have access?

In other exciting SFU news which also affects TRIUMF, an additional $1M is being awarded by the Canada Foundation for Innovation to upgrade the ATLAS Tier-1 Data Analysis Centre. From the SFU backgrounder,

Led by Mike Vetterli, a physics professor at SFU and TRIUMF, this project involves collaborating with scientists internationally to upgrade a component of a global network of always-on computing centres. Collectively, they form the Worldwide Large Hadron Collider Computing Grid (WLCG).

The Canadian scientists collaborating with Vetterli on this project are at several research-intensive universities. They include Carleton University, McGill University, University of British Columbia, University of Alberta, University of Toronto, University of Victoria, Université de Montréal, and York University, as well as TRIUMF. It’s Canada’s national lab for particle and nuclear physics research.

The grid, which has 10 Tier-1 centres internationally, is essentially a gigantic storage and processing facility for data collected from the ATLAS  experiment. The new CFI funding will enable Vetterli and his research partners to purchase equipment to upgrade the Tier-1 centre at TRIUMF in Vancouver, where the equipment will remain.

ATLAS is a multi-purpose particle detector inside a massive atom-smashing collider housed at CERN, the world’s leading laboratory for particle physics in Geneva, Switzerland.

More than 3,000 scientists internationally, including Vetterli and many others at SFU, use ATLAS to conduct experiments aimed at furthering global understanding of how the universe was physically formed and operates.

The detector’s fame for being a window into nature’s true inner workings was redoubled last year. It helped scientists, including Vetterli and others at SFU, discover a particle that has properties consistent with the Higgs boson.

Peter Higgs, a Scottish physicist, and other scientists theorized in 1964 about the existence of the long-sought-after particle that is central to the mechanism that gives subatomic particles their mass.

Scientists now need to upgrade the WLCG to accommodate the massive volume of data they’re reviewing to confirm that the newly discovered particle is the Higgs boson. If it is, it will revolutionize the way we see mass in physics.

“This project will enable Canadian scientists to continue to play a leading role in ATLAS physics analysis projects such as the Higgs boson discovery,” says Vetterli. “Much more work and data are required to learn more about the Higgs-like particle and show that it is indeed the missing link to our understanding of the fundamental structure of matter.

There is one more Canada Foundation for Innovation grant to be announced here, it’s a $1.6M grant for research that will be performed at TRIUMF, according to the Jan. 13, 2013 news release from St. Mary’s University (Halifax, Nova Scotia),

Dr. Rituparna Kanungo’s newest research collaboration has some lofty goals: improve cancer research, stimulate the manufacturing of high-tech Canadian-made instrumentation and help explain the origin of the cosmos.

The Saint Mary’s nuclear physicist’s goal moved one step closer to reality today when the federal government announced $1.6 million in support for an advanced research facility that will allow her to recreate, purify, and condition rare isotopes that haven’t existed on the planet for millions of years.

The federal fiscal support from the Canada Foundation for Innovation together with additional provincial and private sector investment will allow the $4.5 million project to be operational in 2015.

“The facility will dramatically advance Canada’s capabilities for isolating, purifying, and studying short-lived isotopes that hold the key not only for understanding the rules that govern the basic ingredients of our everyday lives but also for crafting new therapies that could target and annihilate cancers cell-by-cell within the human body, “ said Dr Kanungo.

The CANadian Rare-isotope facility with Electron-Beam ion source (CANREB) project is led by Saint Mary’s University partnering with the University of Manitoba and Advanced Applied Physics Solutions, Inc. in collaboration with the University of British Columbia, the University of Guelph, Simon Fraser University, and TRIUMF. TRIUMF is Canada’s national laboratory for particle and nuclear physics. It is owned and operated as a joint venture by a consortium of Canadian universities that includes Saint Mary’s University.

As one of the nation’s top nuclear researchers (she was one of only two Canadians invited to speak at a Nobel Symposium last June about exotic isotopes), Dr. Kanungo has been conducting research at the TRIUMF facility for many years, carrying out analyses from her office at Saint Mary’s University together with teams of students. Her students also often spend semesters at the Vancouver facility.

As the project leader for the new initiative, she said TRIUMF is the ideal location because of its world leading isotope-production capabilities and its ability to produce clean, precise, controlled beams of selected exotic isotopes not readily available anywhere else in the world.

In recent studies in the U.S., some of these isotopes have been shown to have dramatic impact in treating types of cancer, by delivering radioactive payloads directly to the cancerous cells. Canada’s mastery of the technology to isolate, study, and control these isotopes will change the course of healthcare.

An integral part of the project is the creation of a new generation of high resolution spectrometer using precision magnets. Advanced Cyclotron Systems, Inc. a company in British Columbia, has been selected for the work with the hope that the expertise it develops during the venture will empower it to design and build precision-magnet technology products for cutting-edge projects all around the world.

Exciting stuff although it does seem odd that the federal government is spreading largesse when there’s no election in sight. In any case, bravo!

There’s one last piece of news, TRIUMF is welcoming a new member to its board, from its Jan. 14, 2013 news release,

Dr. Sylvain Lévesque, Vice-President of Corporate Strategy at Bombardier Inc., a world-leading manufacturer of innovative transportation solutions, has joined the Board of Management for TRIUMF, Canada’s national laboratory for particle and nuclear physics, for a three-year term.  Owned and operated by a consortium of 17 Canadian universities with core operating funds administered via a contribution agreement through National Research Council Canada, TRIUMF is guided by a Board that includes university vice-presidents of research, prestigious scientists, and leading members of Canada’s private sector.

Paul Young, Chair of TRIUMF’s Board and Vice President, Research at the University of Toronto, said, “We welcome the participation of Sylvain and his extensive experience at Bombardier.  TRIUMF is a national resource for basic research and yet we also fulfill a technological innovation mission for Canada.  Dr. Lévesque will be a valuable addition to the Board.”

Dr. Sylvain Lévesque earned his Ph.D. from MIT in Engineering and worked at McKinsey & Company before joining Bombardier in 1999.  He brings deep experience with large, technical organizations and a passion for science and engineering. [emphasis mine]  He said, “I am excited to work more closely with TRIUMF.  It has a track record of excellence and I am eager to provide guidance on where Canada’s industrial sector might draw greater strength from the laboratory.”

TRIUMF’s Board of Management reflects the unique status of TRIUMF, a laboratory operating for more than forty years as a joint venture from Canada’s leading research universities.  The consortium includes universities from Halifax to Victoria.

Is deep experience like wide experience or is it a whole new kind of experience helpful for ‘getting one’s groove on’? For anyone who’s curious, ‘getting one’s groove on’ involves dancing.