Tag Archives: LHC

Physicists at CERN film Decay—their first zombie movie?

Decay, the movie, seems to have been released in late November 2012.  It is, according to the Nov. 1, 2012 preview article written by Rebecca Pahle for The Mary Sue website, a project developed by physics students working at CERN’s (European Particle Physics Laboratory) Large Hadron Collider facility.

There are a lot of zombie movies out there. But Decay is the only one filmed in CERN, a.k.a. the home of the Large Hadron Collider. The film is the brainchild (mmmm… brains) of Luke Thompson and Clara Nellist, both Ph.D. students in physics, who despite having no filmmaking experience decided that, dammit, they were going to make a film about exposure to the Higgs Boson particle turning people into zombies. (If that sounds critical, it’s unintentional—jumping in and just doing it is a time-honored method for indie film.)

Though Thompson and Nellist got permission to shoot their film in CERN, the just-released trailer makes it very clear that officials there in no way endorse it. (Which—of course they wouldn’t. But they let them shoot there! How cool is that?)

Here’s the movie trailer,


J. Bryan Lowder’s Dec. 12, 2012 article for Slate describes some of Lowder’s experiences as a science writing intern dealing with myths about science and the filmmaking team’s motivations (laughing at science horror myths),

Back when I was a science writing intern at a major U.S. lab, there was a short list of words we were cautioned never to use in our public articles. Radiation was at the top of that list, not because the lab produced it in dangerous amounts (actually, it produced less than exists normally in nature), but because when people read the word, they freak out. The public’s fear—and by extension, this lab’s fear of talking about—radiation is understandable, but it’s also unreasonable and reveals a disappointing ignorance of science. …

Burton DeWilde, a physics Ph.D. and Decay’s director of photography/editor (and a friend of mine), explained the genesis of the project in an email:

The idea of filming a zombie movie at CERN was originally conceived by Luke Thompson (writer-director) and Hugo Day (props master) while exploring the lab’s creepy labyrinth of underground maintenance tunnels. It was agreed that they would make an excellent setting for a horror film. From there, the story evolved into a cheeky riff on the black hole hysteria: “The LHC didn’t produce earth-devouring black holes after all—but have you considered brain-devouring zombies?” Concerns about the Higgs in particular and clichés of mad scientists were also mixed in. We took all these worries to a totally ridiculous place.

And Decay is totally ridiculous, in the best sense of the word. The 75-min, $3,500 movie is remarkably well-made, given the creative team’s lack of experience. It’s studded with all the gratuitous gore, cheap shocks, and absurd plot twists that zombie fans crave. Science nerds and those who love them will bask in its shameless use of sci-fi clichés like “the results are inconclusive at best,” and “my research is too important!”

You can view the whole movie by clicking the link to Lowder’s article where it is embedded, visiting this Dec. 11, 2012 posting on The Mary Sue website, or going to the Decay website.

Zombies are a very hot topic in popular culture these days as per this Nov. 12, 2012 posting on this website which mentions my presentation ‘Zombies, brains, collapsing boundaries, and entanglements’ at the S.NET 2012 (Society for the Study of Nanoscience and Emerging Technologies) conference in Enschede, Holland.

BTW, Mary Sue is a term used to describe a female character who is perfect. From the Urban Dictionary definition,

  1. A female character who is so perfect that she is annoying. The name originated in a very short Star Trek story that mocked the sort of female characters who showed up in fanfiction. It usually refers to original female characters put into fanfiction, but can refer to any character. …
  2. An original character (fem.) in fanfic or an original story, usually on the internet, who is far superior to all other characters. She is typically beautiful, intelligent, kind, and in all other ways “perfect”. She usually serves as an important part in a pivotal plot element (ie: a prophecy) and becomes romantically involved with the author’s favourite character in the story. The internet fiction world runs rampant with these characters. …

Do go to the Urban Dictionary to reed the examples of ‘Mary Sue’ characters as they are very funny. The male equivalent may be called Marty Stu, Gary Stu, or Marty Sam.

In depth and one year later—the nanotechnology bombings in Mexico

Last year in an Aug. 11, 2011 post I covered some stories about terrorism and nanotechnology in the aftermath of a major bombing in Mexico where two scientists were injured. Leigh Phillips has written a substantive news feature focusing largely on the situation in Mexico.

From the Aug. 29, 2012 news feature (open access) in the journal Nature,

Nature assesses the aftermath of a series of nanotechnology-lab bombings in Mexico — and asks how the country became a target of eco-anarchists.

The shoe-box-sized package was addressed to Armando Herrera Corral. It stated that he was the recipient of an award and it was covered in official-looking stamps. Herrera, a computer scientist at the Monterrey Institute of Technology and Higher Education in Mexico City, shook the box a number of times, and something solid jiggled inside. What could it be? He was excited and a little nervous — so much so, that he walked down the hall to the office of a colleague, robotics researcher Alejandro Aceves López, and asked Aceves to open it for him.

Aceves sat down at his desk to tear the box open. So when the 20-centimetre-long pipe bomb inside exploded, on 8 August 2011, Aceves took the full force in his chest. Metal pierced one of his lungs. “He was in intensive care. He was really bad,” says Herrera’s brother Gerardo, a theoretical physicist at the nearby Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav). Armando Herrera Corral, who was standing nearby when the bomb went off, escaped with a burst eardrum and burns to his legs.

As was reported at the time, an eco-anarchist group calling itself ‘Individuals Tending Towards (or To) Savagery’ laid claim to this ‘achievement’.

While there have been attacks elsewhere*, Mexico has experienced more attacks and more violence and the impact is being felt personally and institutionally,

One year on from the bombing at Monterrey Tec, the repercussions are still being felt. Armando Herrera Corral and Aceves will not speak to Nature about what happened. “It’s too sensitive, you understand?” is all Aceves would say. Herrera has left his job as director of the university’s technology park and is now head of postgraduate studies. Other Mexican universities with nanotechnology research programmes have evacuated campuses in response to bomb threats, and universities across the country have introduced stringent security measures. Some researchers are anxious for their own safety; some are furious about being targets. But all the researchers that Nature spoke to in Mexico are adamant that the attacks will not discourage them from their research or dissuade students from entering the field.

As for reasons why Mexico, to date, has experienced more attacks than other countries,

Reporting by Nature suggests that several broad trends have come together to precipitate the violence. Over the past decade, Mexico has invested heavily in nanotechnology relative to other developing countries, because it sees the field as a route to economic development; mainstream green groups worldwide have grown increasingly concerned about nanotechnology’s health and environmental risks; and there has been a shift towards extreme ideas and tactics among radical environmentalists critical of technology. In Mexico, this has been set against a general background of growing violence and political upheaval.

According to Phillips’ article there were three incidents in 2011 (April, May, and August, respectively)  in Mexico as compared to one attempted attack in Switzerland in 2010. This year, there has been one attack in Europe as I noted in my May 29, 2012 post which featured Andy Coghlan’s article for New Scientist on rising violence against scientists. From Coghlan’s article,

It’s like something out of Kafka. Anti-science anarchists in Italy appear to be ramping up their violent and frankly surreal campaign. Having claimed responsibility for shooting the boss of a nuclear engineering company in Genoa, the group has vowed to target Finmeccanica, the Italian aerospace and defence giant.

In  a diatribe sent on 11 May to Corriere della Sera newspaper on 11 May, the Olga Cell of the Informal Anarchist Federation International Revolutionary Front said it shot Roberto Adinolfi, head of Ansaldo Nucleare, in the leg four days earlier. “With this action of ours, we return to you a tiny part of the suffering that you, man of science, are pouring into this world,” the statement said. It also pledged a “campaign of struggle against Finmeccanica, the murderous octopus”.

Coghlan suggests that the focus is being shifted from nanotechnology to nuclear science in the wake of Japan’s Fukushima nuclear accident in 2011.

Philips takes a different tack in the Nature article,

As nanotechnology has been growing in Latin America, a violent eco-anarchist philosophy has taken root among certain radical groups in Mexico. Mexican intelligence services believe that the perpetrators of the bombings last year were mainly young and well educated: their communiqués are littered with references to English-language texts unlikely to have been translated into Spanish.[emphasis mine] Intelligence services say that the eco-anarchist groups have been around for about a decade. They started off protesting against Mexico’s economic and political system by setting off small explosives that destroyed bank machines.But around 2008, certain groups began to adopt an ‘anarcho-primitivist’ perspective. (Locally, they are called primativistas, says Gerardo Herrera Corral.) This philosophy had won little notice until the past few years, but with increasing media reports of looming global climate disaster, some radical green activists have latched on to it. California-based environmental writer Derrick Jensen — whose popular books call for an underground network of ‘Deep Green Resistance’ cells — is a highly influential figure in this otherwise leaderless movement, which argues that industrial civilization is responsible for environmental destruction and must be dismantled.

In their writings, anarcho-primitivist groups often express deep anxiety about a range of advanced research subjects, including genetic engineering, cloning, synthetic biology, geoengineering and neurosciences. But it is nanotechnology, a common subject for science-fiction doomsday scenarios, that most clearly symbolizes to them the power of modern science run amok. “Nanotechnology is the furthest advancement that may yet exist in the history of anthropocentric progress,” the ITS wrote in its first communiqué, in April 2011.

If the perpetrators are young and well-educated then the comment in this excerpt from the article does not follow logically and Phillips does not explain this seeming disparity,

In Mexico, the existing social and political climate may have helped light the fuse, says Miguel Méndez Rojas, coordinator of the department of nanotechnology and molecular engineering at the University of the Americas Puebla in Mexico. He says that the bombings cannot be understood outside the context of what he describes as a dangerous cocktail of poverty and poor education, widespread ignorance of science, ongoing social upheaval and a climate of violence. [emphasis mine]

Phillips’ article goes on to discuss some of the more moderate groups including the Canada-based ETC Group, which has an office in Mexico,

Some researchers in Mexico say that more-moderate groups are stoking fears about nanotechnology. One such body is the Action Group on Erosion, Technology and Concentration (ETC, pronounced et cetera), a small but vocal non-profit organization based in Ottawa, Canada, which was one of the first to raise concerns about nanotechnology and has to a large extent framed the international discussion. Silvia Ribeiro, the group’s Latin America director, based in Mexico City, says that the organization has no links to the ITS. The bombings were a “sick development”, she says. “These kinds of attacks — they are benefiting the development of nanotechnology,” she says. “It polarized the discussion. Do you want nanotech or the bomb?”

ETC wants to see a moratorium on all nanotechnology research, says Ribeiro, who is the lead author on many of the group’s reports criticizing nanotechnology research and commercialization. She says that there have not been enough toxicological studies on engineered nanoparticles, and that no government has developed a regulatory regime that explicitly addresses risk at the nanoscale.

However, ETC also infuriates researchers by issuing warnings of a more speculative nature. For example, it has latched on to the concept of ‘grey goo’ — self-replicating nanorobots run wild — that was raised in the book Engines of Creation (Doubleday, 1986) by nanotechnology engineer Eric Drexler. In ETC’s primer on nanoscale technologies, it says that the “likely future threat is that the merger of living and non-living matter will result in hybrid organisms and products that are not easy to control and behave in unpredictable ways”.

Ribeiro has also criticized genetic modification and vaccination against human papillomavirus in a weekly column in La Jornada. Méndez Rojas says that ETC “promotes beliefs, but they are not based on facts, and we need a public discussion of the facts”.

The impression I’ve had from reading ETC materials is that they are trying to repeat the success they enjoyed with the GMO (genetically modified organisms) and frankenfood campaign and they’d dearly love to whip up some strong feelings about nanotechnology in aid of more regulation.

I’m not a big ETC fan but I do have to note that their research is solid, once you get past the annoying ‘smart ass’ or juvenile attitude in the literature. Yes, they have an agenda but that’s standard. Everyone has an agenda so you always have to check more than one source.  When you analyze it, Phillips’ article is just as emotionally manipulative as the ETC Group’s communications. Including the ETC Group with the eco-anarchists in an article about terrorism and nanotechnology is equivalent to including the journal Nature with North Korea in an article about right-wing, repressive institutions framed from beginning to end to prove a somewhat elusive point.

Scientists in general seem to recognize that there are some legitimate concerns being expressed by the ETC Group and others,

Most nanotechnology researchers acknowledge that some areas of their work raise legitimate environmental, health and safety concerns. The most important response, says Gerardo Herrera Corral, is for scientists to engage with the public to address and dispel concerns. Herrera is head of Mexico’s only experiment at CERN, Europe’s particle-physics laboratory near Geneva, Switzerland, and he points to how CERN dealt with public fears that its Large Hadron Collider could create a black hole that would swallow Earth. “We set up a committee to deal with this. We looked into the real dangers. There were journal articles and we answered all the e-mails we got from people. I mean top-level physicists answering thousands of e-mails.”

“But this is work we should all be doing,” says Herrera. “Even if it’s extra work on top of all the other things we have to do. It’s just part of our job now.”

I like the idea of high level scientists taking the time to answer my questions and I imagine others feel the same way, which may go a long way in explaining why CERN (European Particle Physics Laboratory) has acquired such good will internationally.

Overall, I suspect Phillips is a little over-invested in Mexico’s nanotechnology terrorism. Three incidents in one year suggests something deeply disturbing (and devastating if you are the target) but in an international context, there were only three incidents. If you add up all of the nanotechnology incidents cited in Phillips’ article, there are three bombings (Mexico), one attempted bombing (Switzerland), a successful arson attempt (Mexico), and a few cancelled public debates (France) from 2009 – Fall 2012.

I am inclined to Coghlan’s argument that there is a disturbing trend toward anti-science violence and, it seems to me, it is largely unfocused, nanotechnology here, nuclear science there, biotechnology everywhere, and who knows what else or where else next?

ETA Feb. 21, 2013: Leigh Phillips contacted me to mention that there was a May 28, 2012 article for Nature, Anarchists attack science, which preceded Coghlan’s article for New Scientist and to which Coghlan provides a link. Phillips’ preceding article was subtitled, Armed extremists are targeting nuclear and nanotechnology workers. Phillips opens with the then recent attack on a nuclear engineering executive and subsequently focuses on attacks in the nanotechnology sector.

* ‘While there have been other attacks ‘ changed to ‘While there have been attacks elsewhere’, on Aug. 9, 2015.

Playing and singing the Higgs Boson

The Higgs Boson has lead to an explosion of creativity. First, the Guerilla Science team has produced a Secret Garden Party (July 19 – 22, 2012) featuring the Higgs Boson. Here’s a video clip from the 2012 event,

Zoe Cormier (writer and Guerilla Science co-founder) notes in her July 27, 2012 posting on the Guardian science blogs,

The Particle Zoo Safari, hosted by Guerilla Science at the Secret Garden Party arts and music festival last weekend, observed the formation of another proton and hydrogen atom, the sparring of two combative electrons, polyamorous covalent bond formation, sunlight manufacture through fusion (and a ping pong ball), and the creation of deuterium – complete with dubstep to mirror the atomic weight of the heavy form of hydrogen.

With polystyrene magnets our audience-cum-collider recreated the Large Hadron Collider (LHC) to produce the star of the show: the Higgs boson, sumo-suited and angry, the weightiest particle of all. “I’m hungry,” it grumpily announced, before we threw a net over it and dragged it into the tent. Too much had been spent on the particle’s discovery to let it escape now.

“The idea of the safari came from a colloquialism in physics, which refers to the set of standard particles that make up the entire universe as the ‘particle zoo’,” explains Patrick Stevenson-Keating, the designer we enlisted to help us devise a new way to explore particle physics. “This scale of subatomic particles is so different to our everyday world that there are few comparisons you can really make, so it was challenging to visualise some of the concepts.”

Here’s what the science consultant had to say about it (from Cormier’s posting),

“When I was first approached to take part, I did think it sounded a bit nuts actually, but in the end it worked out reasonably well in terms of the science – I think most people would at least remember that quarks come in threes, and they are difficult to pull apart,” says Dr James Monk of the University College London, a particle physicist who works on the Atlas experiment on the LHC, whom we enlisted as a scientific consultant. “These particles and forces are important to understand how the world works, and it wouldn’t be fitting if physicists said that we do all this fantastic research – but the rest of you can’t possibly understand it.”

It’s well worth reading Cormier’s whole post and you might even feel like taking another look at the video (I found it embedded in Cormier’s posting)  after reading.

(Last year, I featured Guerilla Science and Cormier in my July 12, 2011 posting.)

Meanwhile, the Higgs is producing music. According to David Bruggeman’s July 28, 2012 posting on his Pasco Phronesis blog,

While it seems unlikely that papers will soon come as .mp3 files with audio infographics, some are still working on hearing things we usually expect to see.

The idea is to match energy levels found in the data with particular notes.  That way shifts in energy can be more immediately expressed as shifts in tone.  The Higgs boson peaks out of the background noise – noise that isn’t really noise from a musical perspective.

David is hoping turning data into music could be used in the future for educational purposes,

… for those who have an easier time detecting patterns in audio rather than printed data, this could be a very productive development.

I thought it would be interesting to hear some Higgs Boson music. While this piece is based on Higgs data, the composer has taken liberties after letting you hear what the untreated melody sounds like,

The composer, Ben McCormack, had this to say about the piece titled, Higgs Boson (ATLAS preliminary data),

The data was already converted to notes by Domenico Vicinanza. I then consolidated the melody to remove a lot of the large leaps, giving it a slightly better flow.

Before you say anything, I know that this (at least somewhat) defeats the purpose of the data. I’m a composer; my goal was primarily to make a fun piece of music. I inverted the melody and wrote countermelodies that aren’t mathematically-related to the original melody, so consider this more a creative work than an exercise in data analysis.

You can find out more about the Higgs Boson in my July 4, 2012 posting where I wrote about the then latest announcement from CERN (European Particle Physics Laboratory).

Trickster researchers at the University of Maryland and graphene photodetectors

Trickster figures are a feature in mythologies around the world. They’re always mischievous, tricking humans and other beings into doing things they shouldn’t.

Tricksters can be good and/or villainous. For example, Raven in the Pacific Northwest gave us the sun, moon, and stars but stole them in the first place from someone else.

I don’t think the researchers at the University of Maryland have done anything comparable (i.e., stealing) with their graphene discovery but the analogy does amuse me. From the June 3, 2012 news release by Lee Tune,

Researchers at the Center for Nanophysics and Advanced Materials of the University of Maryland have developed a new type of hot electron bolometer a sensitive detector of infrared light, that can be used in a huge range of applications from detection of chemical and biochemical weapons from a distance and use in security imaging technologies such as airport body scanners, to chemical analysis in the laboratory and studying the structure of the universe through new telescopes. [emphasis mine]

Before launching into why I highlighted the part about the universe and the telescopes, here’s the problem the researchers were solving (from the news release),

Most photon detectors are based on semiconductors. Semiconductors are materials which have a range of energies that their electrons are forbidden to occupy, called a “band gap”. The electrons in a semiconductor can absorb photons of light having energies greater than the band gap energy, and this property forms the basis of devices such as photovoltaic cells.

Graphene, a single atom-thick plane of graphite, is unique in that is has a bandgap of exactly zero energy; graphene can therefore absorb photons of any energy. This property makes graphene particularly attractive for absorbing very low energy photons (terahertz and infrared) which pass through most semiconductors. Graphene has another attractive property as a photon absorber: the electrons which absorb the energy are able to retain it efficiently, rather than losing energy to vibrations of the atoms of the material. This same property also leads to extremely low electrical resistance in graphene.

University of Maryland researchers exploited these two properties to devise the hot electron bolometer. It works by measuring the change in the resistance that results from the heating of the electrons as they absorb light.

Normally, graphene’s resistance is almost independent of temperature, unsuitable for a bolometer.

Here’s how the researchers solved the problem (from the news release),

So the Maryland researchers used a special trick: when bilayer graphene is exposed to an electric field it has a small band gap, large enough that its resistance becomes strongly temperature dependent, but small enough to maintain its ability to absorb low energy infrared photons.

The researchers found that their bilayer graphene hot electron bolometer operating at a temperature of 5 Kelvin had comparable sensitivity to existing bolometers operating at similar temperatures, but was more than a thousand times faster.  They extrapolated the performance of the graphene bolometer to lower temperature and found that it may beat all existing technologies.

As usual, there is more work to be done (from the news release),

Some challenges remain. The bilayer graphene bolometer has a higher electrical resistance than similar devices using other materials which may make it difficult to use at high frequencies. Additionally, bilayer graphene absorbs only a few percent of incident light.  But the Maryland researchers are working on ways to get around these difficulties with new device designs, and are confident that a graphene has a bright future as a photo-detecting material.

As for why I highlighted the passage about telescopes and the structure of the universe, our local particle physics laboratory (TRIUMF located in Vancouver, Canada) is hosting the Physics at the Large Hadron Collider (PLHC) conference this week. This is a big deal, from the 7th annual PLHC conference home page (Note: I have removed some links),

PLHC2012 is the seventh conference in the series. The previous conferences in this series were held in Prague (2003), Vienna (2004), Cracow (2006), Split (2008), Hamburg (2010) and Perugia (2011). The conference consists of invited and contributed talks, as well as posters, covering experiment and theory.

Topics at the conference

  • Beauty Physics
  • Heavy Ion Physics
  • Standard Model & Beyond
  • Supersymmetry
  • Higgs Boson

There was a June 3, 2012 public event (mentioned in my May 15, 2012 posting) featuring Rolf Heuer, Director General of CERN (European Particle Physics Laboratory) which houses the Large Hadron Collider and experiments where they are attempting to discern the structure of the universe. (I did attend Heuer’s talk and I think one needs to be more of a physics aficionado than I am.  Thankfully I had watched the Perimeter Institute’s webcast  (What the Higgs is going on?) when the big Higgs Boson announcement was made in December 2012 (mentioned in my Dec. 14, 2012 posting) and that helped.

There is of course an alternate view of the universe and its structure as presented by the story of Raven (from the Wikipedia essay [Note: I have removed a link]),

Raven steals the sun

This is an ancient story told on the Queen Charlotte Islands and includes how Raven helped to bring the Sun, Moon, Stars, Fresh Water, and Fire to the world.

Long ago, near the beginning of the world, Gray Eagle was the guardian of the Sun, Moon and Stars, of fresh water, and of fire. Gray Eagle hated people so much that he kept these things hidden. People lived in darkness, without fire and without fresh water.

Gray Eagle had a beautiful daughter, and Raven fell in love with her. In the beginning, Raven was a snow-white bird, and as a such, he pleased Gray Eagle’s daughter. She invited him to her father’s longhouse.

When Raven saw the Sun, Moon and stars, and fresh water hanging on the sides of Eagle’s lodge, he knew what he should do. He watched for his chance to seize them when no one was looking. He stole all of them, and a brand of fire also, and flew out of the longhouse through the smoke hole. As soon as Raven got outside he hung the Sun up in the sky. It made so much light that he was able to fly far out to an island in the middle of the ocean. When the Sun set, he fastened the Moon up in the sky and hung the stars around in different places. By this new light he kept on flying, carrying with him the fresh water and the brand of fire he had stolen.

He flew back over the land. When he had reached the right place, he dropped all the water he had stolen. It fell to the ground and there became the source of all the fresh-water streams and lakes in the world. Then Raven flew on, holding the brand of fire in his bill. The smoke from the fire blew back over his white feathers and made them black. When his bill began to burn, he had to drop the firebrand. It struck rocks and hid itself within them. That is why, if you strike two stones together, sparks of fire will drop out.

Raven’s feathers never became white again after they were blackened by the smoke from the firebrand. That is why Raven is now a black bird.

While it’s less poetic in tone, there is an image from the University of Maryland illustrating their graphene photodetector,

Electrons in bilayer graphene are heated by a beam of light. Illustration by Loretta Kuo and Michelle Groce, University of Maryland .

Shifting winds in the world of particle accelerators: the Fermilab

I’ve been spending more time with physicists (in my own mind, anyway) than is usual for me.  I’m sure this will pass but while I’m hot (so to speak) on the topic, here’s an item about the Fermilab in the US. From the Feb. 1, 2012 news release on EurekAlert,

In this month’s Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the Tevatron accelerator has finally surrendered to the mighty Large Hadron Collider (LHC) at CERN [European Laboratory for Particle Physics], placing Fermilab, in some people’s mind, on the brink of disappearing into obscurity.

(I did cover some of the excitement over the Higgs Boson search at the the LHC at CERN in my Dec. 14, 2011 posting.) As for the folks at the Fermilab, they  do have plans (from the news release),

Fermilab can no longer compete with the LHC when it comes to smashing particles together at high energies, but it can look for rare interactions between particles at lower energies. In this type of experiment, the key is not a beam’s energy but its intensity: the number of particles produced per second.

Their plans include two experiments – one already being built and another in the pipeline – that will send beams of neutrinos underground to distant detectors to see how these particles change between one form and another.

More ambitious still is Project X – expected to cost between $1-2bn – which will provide intense beams of protons for experiments on neutrinos, rare decays and heavy nuclei. Outside of high-energy physics, the lab currently participates in experiments into cosmic rays, dark matter and dark energy.

One aspect,  I find particularly interesting about this news release and article is that it makes some of the positioning and jockeying for funds visible to a larger audience than is common in Canadian circles. From the news release,

One obstacle that stands in the way of Fermilab’s progression is money. With the US Congress’s budgetary process – which allocates funds one year at a time – threatening to delay projects, combined with the current economic downturn, there is cause for concern, especially for a lab currently in transition.

The other aspect I find interesting is that while the Fermilab is based in Illinois (US), the article is being published by the UK-based Institute of Physics in their Physics World journal. Is this article part of a larger public relations initiative on behalf of physicists in the UK concerned about their funding? Nassif Ghoussoub at his Piece of Mind blog notes some of the discussion currently taking place in the UK about one of its funding agencies in his Jan. 31, 2012 posting and what is sometimes called ‘basic research’.

The smallness of the Higgs mass (finding the Higgs boson)

As I noted last week (in my Dec. 6, 2011 posting), there was a big Dec. 13, 2011 announcement from CERN (European Laboratory for Particle Physics) about the Higgs boson. No, they haven’t found it but researchers believe they’ve discovered a hint of where it might be—this ‘hint’ has made international news.

For anyone who may have some questions about what exactly a Higgs boson is, here’s a video of “Fermilab scientist Don Lincoln [describing] the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass” (from the YouTube description),

Here’s a little more about why there’s so much excitement, from the Dec. 13, 2011 news item on Science Daily,

The Standard Model is the theory that physicists use to describe the behaviour of fundamental particles [the smallest discrete entities that make up matter and are not made up of smaller constituent bits of matter themselves] and the forces that act between them. It describes the ordinary matter from which we, and everything visible in the Universe, are made extremely well. Nevertheless, the Standard Model does not describe the 96% of the Universe that is invisible. One of the main goals of the LHC [Large Hadron Collider] research programme is to go beyond the Standard Model, and the Higgs boson could be the key.

A Standard Model Higgs boson would confirm a theory first put forward in the 1960s, but there are other possible forms the Higgs boson could take, linked to theories that go beyond the Standard Model. A Standard Model Higgs could still point the way to new physics, through subtleties in its behaviour that would only emerge after studying a large number of Higgs particle decays. A non-Standard Model Higgs, currently beyond the reach of the LHC experiments with data so far recorded, would immediately open the door to new physics, whereas the absence of a Standard Model Higgs would point strongly to new physics at the LHC’s full design energy, set to be achieved after 2014. Whether ATLAS [research group at CERN] and CMS [research group at CERN] show over the coming months that the Standard Model Higgs boson exists or not, the LHC programme is opening the way to new physics.

The search for the Higgs boson has been ongoing for some 40 or 50 years and this announcement points to a definitive answer as to its existence by late 2012.

Two groups at CERN have reported on the results of their search for the Higgs boson. From the Dec. 13, 2011 news item on physorg.com,

Two experiments at the Large Hadron Collider have nearly eliminated the space in which the Higgs boson could dwell, scientists announced in a seminar held at CERN today. However, the ATLAS and CMS experiments see modest excesses in their data that could soon uncover the famous missing piece of the physics puzzle.

The experiments revealed the latest results as part of their regular report to the CERN Council, which provides oversight for the laboratory near Geneva, Switzerland.

Theorists have predicted that some subatomic particles gain mass by interacting with other particles called Higgs bosons. The Higgs boson is the only undiscovered part of the Standard Model of physics, which describes the basic building blocks of matter and their interactions.

The experiments’ main conclusion is that the Standard Model Higgs boson, if it exists, is most likely to have a mass constrained to the range 116-130 GeV by the ATLAS experiment, and 115-127 GeV by CMS. Tantalising hints have been seen by both experiments in this mass region, but these are not yet strong enough to claim a discovery.

Scientists (Philip Schuster, Natalia Toro, and Andy Haas) at the Dec. 13, 2011 (9:30 am PST) Perimeter Institute webcast (What the Higgs is going on?), which took place a few hours after the CERN announcement, exhibited a lot of excitement liberally spiced with caution in regard to the announcement.  The webcast is available for viewing and if you’re wondering whether it’s suitable for you, here’s a description from the event webpage,

What is everything in the universe made of? What was the universe like billions of years ago?

These are eternal questions that humans have pondered throughout the ages. Today, we are on the verge of potentially making revolutionary breakthroughs in answering them.

The Large Hadron Collider (LHC) at CERN is a 27-kilometre long underground experiment located on the Swiss-French border near Geneva. It smashes subatomic particles together at vast speeds in an effort to learn more about the fundamental building blocks that make up everything around you. It is the biggest, most ambitious scientific experiment in human history.

On December 13, the LHC will announce its latest findings in its search for the last undiscovered particle in our current model of subatomic particles. This particle is the near-mythical ‘Higgs Boson’ — the particle thought to be involved in giving other particles their mass.

This educational event, geared towards high school students, teachers and the general public, will follow CERN’s announcement and discuss its findings and their background and implications in clear, accessible language.

You can view the webcast from here. The description of how scientists choose which events to measure and the process they use to define whether or not an event is significant adds to one’s appreciation of the work being done in these projects.

Jon Butterworth, a physicist who works at CERN and whose blog is one of the Guardian science blogs, wrote a limerick about it all in his Dec. 13, 2011 posting,

A physicist saw an enigma
And called to his mum “Flying pig, ma!”
She said “Flying pigs?
Next thing you’ll see the Higgs!”
He said “Nah, not until it’s five sigma!”

Five sigma is a measure of certainty. The current results have a 2.3 sigma, which is promising but the gold standard is five.

Here’s the live blog that Alok Jha, science correspondent for the Guardain, kept during the Dec. 13, 2011 announcement (excerpted from the live blog),

1.01pm: Cern’s live webcast has begun, but the seminar has yet to start. The expressions on some of the faces in the audience suggests Christmas is about to come early for the physics community.

1.02pm: Ok the seminar has started, but traffic to the webcast is obviously heavy, breaking up the transmission.

TRIUMF, Canada’s national laboratory for particle and nuclear physics, held a public seminar at 2:30 pm PST (Dec. 13, 2011) on their site at the University of British Columbia. They also have some information on their website about Canadian scientists who are involved in the CERN experiments ( from the Research Highlights page,  Physicists Smell but Don’t Yet Taste Higgs),

In a seminar held at CERN this morning and then repeated across Canada at multiple partnering institutions, the ATLAS and CMS experiments presented the status of their searches for the Standard Model Higgs boson. Finding this particle would snap in the last missing puzzle piece of the Standard Model that describes the universe at its most basic level. Tantalizing hints have been seen by both experiments in the same mass region, but these are not yet strong enough to claim a discovery. The main conclusion is that the Standard Model Higgs boson, if it exists, is most likely to have a mass in the range 115-130 GeV, excluding essentially all other hiding places.

“We are at a crossroads in our understanding of how energy gained mass and became matter in the early universe,” said Rob McPherson, spokesperson of the Canadian team working on the ATLAS project and a professor at the University of Victoria and a research scientist with the Institute of Particle Physics. “If these hints lead to a firm discovery over the coming year, we will be at the start of our investigation of the interactions that lie behind our current theories. If they are not confirmed, we will have to reject our present understanding, throw out our current theories, and start over. It is an extremely interesting time in particle physics.”

So there you have it. They think they observed something but they’re not sure, which makes for a very exciting time (they hope). While I’m not a scientist and cannot fully appreciate this moment, I can remember similar moments in my own work when something seems to be coming into focus. It isn’t my final result but it does hint at what is to come and gives me the resolve (giddy excitement for a few hours or days) I need to continue because a lot of what I do is slogging (I recognize the word play).

On a final note, it seems there was a minor crisis during the presentations in CERN. Lily Asquith, at the Argonne National Laboratory [Chicago, US] writes about it on Jon Butterworth’s blog (Guardian science blogs) in her Dec. 14, 2011 posting,

We have a large windowless meeting room at Argonne with an old-fashioned pull-down projector screen. When I walked in there yesterday morning for the CERN videolink I was greeted by 30-odd ashen-faced physicists. Oh lord, I thought, there has been a terrible accident. …

There stands Fabiola Gianotti [particle physicist in charge of the ATLAS experiment in CERN], our queen, looking fabulous and doing a typically faultless job of presenting a complicated and not-yet-conclusive measurement; taking the work of hundreds of nutty, stressed-out physicists and breathing sense into it.

But I hear only one thing as I walk the corridors of my lab and of the internet:

comic sans [the font Gianotti used for the text in her presentation]

– why‽

Do we need to add an additional systematic uncertainty to all our measurements based on this unwise choice of font? Are any of our results still valid? What does this mean for the speed of light?

Please do read the rest of Asquith’s very amusing piece. Who knew physicists are so concerned with fonts?

For the curious, here’s a sample of Comic Sans along with a history excerpt from its Wikipedia essay,

Microsoft designer Vincent Connare says that he began work on Comic Sans in October of 1994. Connare had already created a number of child-oriented fonts for various applications, so when he saw a beta version of Microsoft Bob that used Times New Roman in the word balloons of cartoon characters, he decided to create a new face based on the lettering style of comic books he had in his office, specifically The Dark Knight Returns (lettered by John Costanza) and Watchmen (lettered by Dave Gibbons).

So the font was originally designed for children and comic books, eh?

Arts residency collides with CERN and Ars Electronica

Prix Ars Electronica Collide@CERN Artists Residency Prize is inviting submissions.  CERN, for anyone unfamiliar with the institution,  is the European Laboratory for Particle Physics which is home to the Large Hadron Collider (LHC). From the Arts@CERN page describing the residency in Geneva (Switzerland),

CERN’s latest experiment colliding the minds of scientists with the imagination of artists opens with the Prix Ars Electronica Collide@CERN prize in digital arts. This is the first prize to be announced as part of the new Collide@CERN Artists Residency 3 year programme initiated by the laboratory.

This new prize marks a 3 year science/arts cultural partnership and creative collaboration between CERN and Ars Electronica – which originated with CERN’s cooperation with Origin – the Ars Electronica Festival in 2011.

We are looking for digital artists who will be truly inspired by CERN, showing their wish to engage with the ideas and/or technology of particle physics or with CERN as a place of scientific collaboration, using them as springboards of the imagination which dare to go beyond the paradigm. You might be a choreographer, performer, visual artist, film maker or a composer – what you all have in common is that you use the digital as the means of making your work and/or the way of presenting it.

You need to register (here) to make a submission. Multiple submissions can be made by either the artist(s) or other interested party.

Full details can be found at the Ars Electronica ‘CERN artists residency’ page,

The aim of the Prix Ars Electronica Collide@CERN prize is to take digital creativity to new dimensions by colliding the minds of scientists with the imaginations of artists. In this way, we seek to accelerate innovation across culture in the 21st century – creating new dimensions in digital arts, inspired by the ideas, engineering and science generated at CERN, and produced by the winning artist in collaboration with the transdisciplinary expertise of the FutureLab team at Ars Electronica.

The residency is in two parts – with an initial two months at CERN, where the winning artist will have a specially dedicated science mentor from the world famous science lab to inspire him/her and his/her work. The second part will be a month with the Futurelab team and mentor at Ars Electronica Linz with whom the winner will develop and make new work inspired by the CERN residency. From the first meeting between the artists, their CERN and Futurelab mentors, they will all participate in a dialogue which will be a public blog of their creative process until the final work is produced and maybe beyond. In this way, the public will be able to join in the conversation.

This final work will be showcased both at the Globe of Science and Innovation at CERN, in Geneva and at the Ars Electronica Festival in Linz. It will also be presented in the Prix Ars Electronica’s “CyberArts” catalogue.

It’s a pretty exciting opportunity that includes a prize of 10,000 Euros plus accommodation and travel.

We are looking for digital artists who will be truly inspired by CERN, showing their wish to engage with the ideas and/or technology of particle physics and with CERN as a place of scientific collaboration, using them as springboards of the imagination which dare to go beyond the paradigm. You might be a choreographer, performer, visual artist, film maker or a composer – what you all have in common is that you use the digital as the means of making your work and/or the way of presenting it.

Here’s a checklist for the submission(s),

  • A personal testimony video which introduces the artist who describes why and how this residency will inspire new work (Up to 5 min.)
  • An outline of a possible concept/idea which the artist wishes to pursue at CERN and Futurelab
  • A draft production plan with costings and timeline
  • A selected portfolio of work which showcases work the artist is proud of

The submission platform was opened Sept. 15, 2011 and will close on October 31, 2011. For anyone working up till the last second to make a submission, you may want to keep in mind the timezones. I assume the submission platform is being operated out of Switzerland. Good luck!