Tag Archives: lithium

Boron nitride nanotubes

Most of the talk about nanotubes is focused on carbon nanotubes but there are other kinds as a May 21, 2018 Rice University news release (also received via email and on EurekAlert and in a May 21, 2018 news item on ScienceDaily), notes,

Boron nitride nanotubes are primed to become effective building blocks for next-generation composite and polymer materials based on a new discovery at Rice University – and a previous one.

Scientists at known-for-nano Rice have found a way to enhance a unique class of nanotubes using a chemical process pioneered at the university. The Rice lab of chemist Angel Martí took advantage of the Billups-Birch reaction process to enhance boron nitride nanotubes.

The work is described in the American Chemical Society journal ACS Applied Nano Materials.

Boron nitride nanotubes, like their carbon cousins, are rolled sheets of hexagonal arrays. Unlike carbon nanotubes, they’re electrically insulating hybrids made of alternating boron and nitrogen atoms.

Insulating nanotubes that can be functionalized will be a valuable building block for nanoengineering projects, Martí said. “Carbon nanotubes have outstanding properties, but you can only get them in semiconducting or metallic conducting types,” he said. “Boron nitride nanotubes are complementary materials that can fill that gap.”

Until now, these nanotubes have steadfastly resisted functionalization, the “decorating” of structures with chemical additives that allows them to be customized for applications. The very properties that give boron nitride nanotubes strength and stability, especially at high temperatures, also make them hard to modify for their use in the production of advanced materials.

But the Billups-Birch reaction developed by Rice Professor Emeritus of Chemistry Edward Billups, which frees electrons to bind with other atoms, allowed Martí and lead author Carlos de los Reyes to give the electrically inert boron nitride nanotubes a negative charge.

That, in turn, opened them up to functionalization with other small molecules, including aliphatic carbon chains.

“Functionalizing the nanotubes modifies or tunes their properties,” Martí said. “When they’re pristine they are dispersible in water, but once we attach these alkyl chains, they are extremely hydrophobic (water-avoiding). Then, if you put them in very hydrophobic solvents like those with long-chain hydrocarbons, they are more dispersible than their pristine form.

“This allows us to tune the properties of the nanotubes and will make it easier to take the next step toward composites,” he said. “For that, the materials need to be compatible.”

After he discovered the phenomenon, de los Reyes spent months trying to reproduce it reliably. “There was a period where I had to do a reaction every day to achieve reproducibility,” he said. But that turned out to be an advantage, as the process only required about a day from start to finish. “That’s the advantage over other processes to functionalize carbon nanotubes. There are some that are very effective, but they may take a few days.”

The process begins with adding pure ammonia gas to the nanotubes and cooling it to -70 degrees Celsius (-94 degrees Fahrenheit). “When it combines with sodium, lithium or potassium — we use lithium — it creates a sea of electrons,” Martí said. “When the lithium dissolves in the ammonia, it expels the electrons.”

The freed electrons quickly bind with the nanotubes and provide hooks for other molecules. De los Reyes enhanced Billups-Birch when he found that adding the alkyl chains slowly, rather than all at once, improved their ability to bind.

The researchers also discovered the process is reversible. Unlike carbon nanotubes that burn away, boron nitride nanotubes can stand the heat. Placing functionalized boron nitride tubes into a furnace at 600 degrees Celsius (1,112 degrees Fahrenheit) stripped them of the added molecules and returned them to their nearly pristine state.

“We call it defunctionalization,” Martí said. “You can functionalize them for an application and then remove the chemical groups to regain the pristine material. That’s something else the material brings that is a little different.”

The researchers have provided this pretty illustration of boron nitride nanotube,

Caption: Rice University researchers have discovered a way to ‘decorate’ electrically insulating boron nitride nanotubes with functional groups, making them more suitable for use with polymers and composite materials. Credit: Martí Research Group/Rice University

Here’s a link to and a citation for the paper,

Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites by Carlos A. de los Reyes, Kendahl L. Walz Mitra, Ashleigh D. Smith, Sadegh Yazdi, Axel Loredo, Frank J. Frankovsky, Emilie Ringe, Matteo Pasquali, and Angel A. Martí. ACS Appl. Nano Mater., Article ASAP DOI: 10.1021/acsanm.8b00633 Publication Date (Web): May 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Seawater batteries to replace lithium-ion batteries?

Replacing lithium-ion batteries with seawater batteries is a little more complicated than going out to scoop a little seawater and returning home to cook up a battery according to a Dec. 7, 2016 American Chemical Society news release (also on EurkeAlert),

With the ubiquity of lithium-ion batteries in smartphones and other rechargeable devices, it’s hard to imagine replacing them. But the rising price of lithium has spurred a search for alternatives. One up-and-coming battery technology uses abundant, readily available seawater. Now, making this option viable is one step closer with a new report on a sodium-air, seawater battery. The study appears in the journal ACS Applied Materials & Interfaces.

Sodium-air — or sodium-oxygen — batteries are considered one of the most promising, and cost-effective alternatives to today’s lithium-ion standby. But some challenges remain before they can become a commercial reality. Soo Min Hwang, Youngsik Kim and colleagues have been tackling these challenges, using seawater as the catholyte — an electrolyte and cathode combined. In batteries, the electrolyte is the component that allows an electrical charge to flow between the cathode and anode. A constant flow of seawater into and out of the battery provides the sodium ions and water responsible for producing a charge. The reactions have been sluggish, however, so the researchers wanted to find a way to speed them up.

For their new battery, the team prepared a catalyst using porous cobalt manganese oxide nanoparticles. The pores create a large surface area for encouraging the electrochemical reactions needed to produce a charge. A hard carbon electrode served as the anode. The resulting battery performed efficiently over 100 cycles with an average discharge voltage of about 2.7 volts. This doesn’t yet measure up to a lithium-ion cell, which can reach 3.6 to 4.0 volts, but the advance is getting close to bridging the gap, the researchers say.

Here’s a link to and a citation for the paper,

A Metal–Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na–Air/Seawater Batteries by Mari Abirami, Soo Min Hwang, Juchan Yang, Sirugaloor Thangavel Senthilkumar, Junsoo Kim, Woo-Seok Go, Baskar Senthilkumar, Hyun-Kon Song, and Youngsik Kim. ACS Appl. Mater. Interfaces, 2016, 8 (48), pp 32778–32787
DOI: 10.1021/acsami.6b10082 Publication Date (Web): November 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

‘Beleafing’ in magic; a new type of battery

A Jan. 28, 2016 news item on ScienceDaily announces the ‘beleaf’,

Scientists have a new recipe for batteries: Bake a leaf, and add sodium. They used a carbonized oak leaf, pumped full of sodium, as a demonstration battery’s negative terminal, or anode, according to a paper published yesterday in the journal ACS Applied Materials Interfaces.

Scientists baked a leaf to demonstrate a battery. Credit: Image courtesy of Maryland NanoCenter

Scientists baked a leaf to demonstrate a battery.
Credit: Image courtesy of Maryland NanoCenter

A Jan. ??, 2016 Maryland NanoCenter (University of Maryland) news release, which originated the news item, provides more information about the nature (pun intended) of the research,

“Leaves are so abundant. All we had to do was pick one up off the ground here on campus,” said Hongbian Li, a visiting professor at the University of Maryland’s department of materials science and engineering and one of the main authors of the paper. Li is a member of the faculty at the National Center for Nanoscience and Technology in Beijing, China.

Other studies have shown that melon skin, banana peels and peat moss can be used in this way, but a leaf needs less preparation.

The scientists are trying to make a battery using sodium where most rechargeable batteries sold today use lithium. Sodium would hold more charge, but can’t handle as many charge-and-discharge cycles as lithium can.

One of the roadblocks has been finding an anode material that is compatible with sodium, which is slightly larger than lithium. Some scientists have explored graphene, dotted with various materials to attract and retain the sodium, but these are time consuming and expensive to produce.  In this case, they simply heated the leaf for an hour at 1,000 degrees C (don’t try this at home) to burn off all but the underlying carbon structure.

The lower side of the maple [?] leaf is studded with pores for the leaf to absorb water. In this new design, the pores absorb the sodium electrolyte. At the top, the layers of carbon that made the leaf tough become sheets of nanostructured carbon to absorb the sodium that carries the charge.

“The natural shape of a leaf already matches a battery’s needs: a low surface area, which decreases defects; a lot of small structures packed closely together, which maximizes space; and internal structures of the right size and shape to be used with sodium electrolyte,” said Fei Shen, a visiting student in the department of materials science and engineering and the other main author of the paper.

“We have tried other natural materials, such as wood fiber, to make a battery,” said Liangbing Hu, an assistant professor of materials science and engineering. “A leaf is designed by nature to store energy for later use, and using leaves in this way could make large-scale storage environmentally friendly.”

The next step, Hu said, is “to investigate different types of leaves to find the best thickness, structure and flexibility” for electrical energy storage.  The researchers have no plans to commercialize at this time.

Here’s a link to and a citation for the paper,

Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery by Hongbian Li, Fei Shen, Wei Luo, Jiaqi Dai, Xiaogang Han, Yanan Chen, Yonggang Yao, Hongli Zhu, Kun Fu, Emily Hitz, and Liangbing Hu. ACS Appl. Mater. Interfaces, 2016, 8 (3), pp 2204–2210 DOI: 10.1021/acsami.5b10875 Publication Date (Web): January 4, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Norway and degradable electronics

It’s a bit higgledy-piggledy but a Nov. 20, 2014 news item on Nanowerk highlights some work with degradable electronics taking place in Norway,

When the FM frequencies are removed in Norway in 2017, all old-fashioned radios will become obsolete, leaving the biggest collection of redundant electronics ever seen – a mountain of waste weighing something between 25,000 and 30,000 tonnes.

The same thing is happening with today’s mobile telephones, PCs and tablets, all of which are constantly being updated and replaced faster than the blink of an eye. The old devices end up on waste tips, and even though we in the west recover some materials for recycling, this is only a small proportion of the whole.

And nor does the future bode well with waste in mind. Technologists’ vision of the future is the “Internet of Things”. Electronics are currently printed onto plastics. All products are fitted with sensors designed to measure something, and to make it possible to talk to other devices around them. Davor Sutija is General Manager at the electronics firm Thin Film, and he predicts that in the course of a few years each of us will progress from having a single sensor to having between a hundred and a thousand. This in turn will mean that billions of devices with electronic bar codes will be released onto the market.

Researchers are now getting to grips with this problem. Their aim is to develop processes in which electronics are manufactured in such a way that their entire life cycle is controlled, including their ultimate disappearance.

A Nov. 20, 2014 article by Åse Dragland for the Gemini newsletter (also found as a Nov. 20, 2014 news release on SINTEF [Norwegian: Stiftelsen for industriell og teknisk forskning]), describes the inspiration for the work in Norway while pointing out some signficant differences from US researchers in the approach to creating a commercial application,

In New Orleans in the USA, researchers have made electronic circuits which they implant into surgical wounds following operations on rats. Each wound is sewn up and the electricity in the circuits then accelerates the healing process. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually.

In Norway, researchers at SINTEF have now succeeded in making components containing magnesium circuits designed to transfer energy. These are soluble in water and disappear after a few hours.

“We make no secret of the fact that we are putting our faith in the research results coming out of the USA”, says Karsten Husby at SINTEF ICT. “The Americans have made amazing contributions both in relation to medical applications, and towards resolving the issue of waste. We want to try to find alternative approaches to the same problem”, he says.

The circuit containing the small components is printed on a silicon wafer. At only a few nanometres thick, the circuits are extremely thin, and this enables them to dissolve more effectively. Some of the circuit components are made of magnesium, others of silicon, and others of silicon with a magnesium additive.

But the journey to the researchers’ goal from their current position leaves them with more than enough work to do. Making the ultra-thin circuits is a challenge enough in itself, but they also have to find a “coating” or “film” which will act as a protective packaging around the circuits.

The Americans use silk as their coating material, but the Norwegians are not in favour of this. The silk used is made as part of a process which involves the substance lithium, which is banned at MiNaLab – the laboratory where the SINTEF researchers work.

“Lithium generates a technical problem for our lab”, says Geir Uri Jensen, “so we’re considering alternatives, including a variety of plastics”, he says. “In order to achieve this, we’ve brought in some materials scientists here at SINTEF who are very skilled in this field”, he says.

The nature of the coating must be tailored to the time at which the electronics are required to degrade. In some cases this is just one week – in others, four. For example, if the circuit package is designed to be used in seawater, and fitted with sensors for taking measurements from oil spills, the film must be made so that it remains in place for the weeks in which the measurements are being taken.

“When the external fluids penetrate to the “guts” inside the packaging, the circuits begin to degrade. The job must be completed before this happens”, says Karsten Husby.

Geir Uri Jensen makes a sketch and explains how the nano researchers use horizontal and vertical etching processes in the lab to deposit all the layers onto the silicon circuits. And then – how they have to etch and lift the circuit loose from the silicon wafer in order later to transfer it across to the film.

“This works well enough using sensors at full scale”, he says, “but when the wafers are as thin as this, things become more tricky”. Jensen shrugs. “Even if the angle is just a little off, the whole assembly will snap”, he says.

There’s no doubt that as the use of consumer electronics increases, so too does the need to remove obsolete electronic products. Just think of all the cheap electronics built into children’s toys which are thrown away every year.

The removal of “outdated electronics” can also be a very labour-intensive process. Every day, surgeons place implants fitted with sensors into our bodies in order to measure everything from blood pressure and pressure on the brain, to how our hip implants are working. Some weeks later they have to operate again in order to remove the electronics.

But not everyone is interested in the new technologies developing in this field. Electronics companies which manufacture circuits are more interested in selling their products than in investing in research that results in their products disappearing. And companies which rely on recycling for their revenues may regard these new ideas as a threat to their existence.
Eco-friendly electronics are on the way

“It’s important to make it clear that we’re not manufacturing a final product, but a demo that can show that an electronic component can be made with properties that make it degradable”, says Husby. “Our project is now in its second year, but we’ll need a partner active in the industry and more funding in the years ahead if we’re to meet our objectives. There’s no doubt that eco-friendly electronics is a field which will come into its own, also here in Norway. And we’ve made it our mission to reach our goals”, he says.

Here’s an image of dissolving electronic circuits made available by the researchers,

Electronic circuits can be implanted into surgical wounds and assist the healing process by accelerating wound closure. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually. Photos: Werner Juvik/SINTEF - See more at: http://gemini.no/en/2014/11/tomorrows-degradable-electronics/#sthash.Erh1sZp2.dpuf

Electronic circuits can be implanted into surgical wounds and assist the healing process by accelerating wound closure. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually. Photos: Werner Juvik/SINTEF – See more at: http://gemini.no/en/2014/11/tomorrows-degradable-electronics/#sthash.Erh1sZp2.dpuf

The researcher most associated with this kind of work is John Rogers at the University of Illinois at Urbana-Champaign and you can read more about biodegradable/dissolving electronics in a Sept. 27, 2012 article (open access) by Katherine Bourzac for Nature magazine. You can find more information about Thin Film Electronics or Thinfilm Electronics (mentioned in the third paragraph of the news item on Nanowerk) website here.