Tag Archives: lithium-ion batteries

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (http://nanogriptech.com/), based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense(http://www.c2sense.com/) is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen (http://cytegen.com/) wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see: access.anl.gov

For more information on NDW, see: nanoworks.anl.gov

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Hydro-Québec, lithium-ion batteries, and silicate-based nanoboxes

Hydro-Québec (Canada) is making a bit of a splash these days (this is the third mention within less than a week) on my blog, if nowhere else. The latest development was announced in a Feb. 24, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers from Singapore’s Institute of Bioengineering and Nanotechnology (IBN) of A*STAR and Quebec’s IREQ (Hydro-Québec’s research institute) have synthesized silicate-based nanoboxes that could more than double the energy capacity of lithium-ion batteries as compared to conventional phosphate-based cathodes (“Synthesis of Phase-Pure Li2MnSiO4@C Porous Nanoboxes for High-Capacity Li-Ion Battery Cathodes”). This breakthrough could hold the key to longer-lasting rechargeable batteries for electric vehicles and mobile devices.

A Feb. 24, 2015 Hydro-Québec press release (also on Canadian News Wire), which originated the news item, describe the research and the relationship between the two institutions,

“IBN researchers have successfully achieved simultaneous control of the phase purity and nanostructure of Li2MnSiO4 for the first time,” said Professor Jackie Y. Ying, IBN Executive Director. “This novel synthetic approach would allow us to move closer to attaining the ultrahigh theoretical capacity of silicate-based cathodes for battery applications.”

“We are delighted to collaborate with IBN on this project. IBN’s expertise in synthetic chemistry and nanotechnology allows us to explore new synthetic approaches and nanostructure design to achieve complex materials that pave the way for breakthroughs in battery technology, especially regarding transportation electrification,” said Dr. Karim Zaghib, Director – Energy Storage and Conservation at Hydro-Québec.

Lithium-ion batteries are widely used to power many electronic devices, including smart phones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. Due to a growing demand for long-lasting, rechargeable lithium-ion batteries for various applications, significant efforts have been devoted to improving the capacity of these batteries. In particular, there is great interest in developing new compounds that may increase energy storage capacity, stability and lifespan compared to conventional lithium phosphate batteries.

The five-year research collaboration between IBN and Hydro-Québec was established in 2011. The researchers plan to further enhance their new cathode materials to create high-capacity lithium-ion batteries for commercialization.

Here’s a link to and a citation for the paper,

Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes by Xian-Feng Yang, Jin-Hua Yang, Karim Zaghib, Michel L. Trudeau, and Jackie Y. Ying. Nano Energy Volume 12, March 2015, Pages 305–313 doi:10.1016/j.nanoen.2014.12.021

This paper is behind a paywall.

Here are my two most recent mentions of Hydro-Québec and lithium-ion batteries (both Grafoid and NanoXplore have deals with Hydro-Québec),

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election (Feb. 23, 2015)

NanoXplore: graphene and graphite in Québec (Canada) (Feb. 20, 2015)

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election

The federal government of Canada is facing an election this year and many analysts believe it will be held in October 2015. Interestingly, there have been a few recent announcements about funding, also referred to as contributions, for technology companies in the provinces of Ontario and Québec. (You need to win at least one of these provinces if you want to enjoy a majority government.) My Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists post* on Feb. 19, 2015 includes my observations (scroll down past the toxicity topic) about the government’s ‘clean technology’ promotional efforts and the rebranding of environmentalism into an ‘anti-petroleum’ movement.

This latest announcement about a ‘non-repayable grant’ is to be found in a Feb. 20, 2015 news item on Azonano,

The Hon. Greg Rickford, Minister of Natural Resources and Minister Responsible for Sustainable Development Technology Canada (SDTC) announced today the award of $8.1 million to Grafoid Inc. – Canada’s leading graphene technologies and applications developer – to automate Grafoid’s production of its low-cost, high-purity MesoGraf™ graphene.

“Our government is investing in advanced clean energy technologies that create well-paying jobs and generate economic opportunities. Today’s announcement contributes to economic prosperity and a cleaner environment in Ontario and across Canada,” said Mr. Rickford, who is also the Minister Responsible for Federal Economic Development Initiative for Northern Ontario.

The contribution from SDTC is an $8.1 million non-repayable grant to design and test the automation system for the production of constant quality MesoGraf™. Further, the grant enables the testing of pre-commercial products using MesoGraf™ graphene from the automated system.

The minister announced the funding at a news conference in Toronto attended by Grafoid and five other Canadian non graphene-related technology companies.

Ottawa-based [Ottawa is in the province of Ontario] Grafoid, the developer of a diverse range of renewable energy, industrial, military and consumer applications from its MesoGraf™ materials is the first Canadian graphene technologies developer to partner with the Canadian Government.

A Feb. 20, 2015 Grafoid news release on Marketwired.com, which originated the news item, describes how this makes Canada like other constituencies and gives a bit more detail about the company and its aims,

Canada joins the European Union, the United States, China and South Korea in providing funding assistance to privately-held graphene enterprises.

Grafoid Founding Partner and CEO Gary Economo praised Canada’s decision to stake its claim in the graphene space as the world races toward the commercialization of a potentially disruptive, pan-industrial nanomaterial.

“This is a great day for the Canadian graphene industry and for Grafoid, in particular, because it leads us out of the laboratory and into the automated manufacturing of the world’s new wonder material,” he told the news conference.

“Effectively, today’s $8.1million Federal government funding grant enables us to take a giant leap towards graphene’s broader commercialization,” Mr. Economo said. “It will permit us to increase MesoGraf™ production output from kilograms to tonnes within our global technology centre in Kingston, Ontario.

“For this we are truly appreciative of Canada’s actions in recognizing our science and commercial objectives. In the past three years Grafoid has travelled the globe staking our unique position in the graphene revolution. Today we are gratified to do this going forward with the Government of Canada,” Mr. Economo said.

Grafoid produces MesoGraf™ directly from high-grade graphite ore on a safe, economically scalable, environmentally sustainable basis. Its patent pending one-step process is unique in the industry, producing single layer, bi-layer and tri-layer graphene.

It is then adapted – or functionalized – by Grafoid for use in biomedical, renewable energy storage and production, military, aerospace and automotive, additive materials for 3D printing, water purification, construction, lubricants, solar solutions, coatings, sporting equipment and other sectoral applications.

At one atom thin, graphene is a two-dimensional pure carbon derived from graphite.

It is the strongest material known to science, is barely visible to the naked eye, yet it holds the potential to become a disruptive technology across all industrial sectors and ultimately, for the benefit of humanity.

Grafoid’s Game-Changing Process

Grafoid’s unique graphite ore-to-graphene process produces a material that eliminates cost barriers to graphene’s broad commercialization in a number of industries, some of which include building materials, automotive, aerospace, military, biomedical, renewable energy and sporting equipment.

In order to bring those application developments to market Grafoid’s partners require a scaling up of MesoGraf™ production to supply their needs for pre-production development testing and commercial production, and; the expansion of Grafoid’s research and development.

The automation of bulk MesoGraf™ graphene production is a global first. Uniformity and consistency are critical to the development of mass produced commercial applications.

One of the company’s first-to-market MesoGraf™ developments is in the renewable energy storage and power generation sectors. The market for quick charge long-life batteries is vast, and growing.

Hydro-Quebec – one of the world’s premier patent holders and suppliers of renewable energy technologies – is one of Grafoid’s first long-term sustainable technology development partners. [emphasis mine]

Within six months of development, multiple patents were filed and initial tests of the joint venture’s MesoGraf™ lithium-iron phosphate materials resulted in extreme gains in power performance over conventional batteries.

Grafoid’s corporate goal is not to simply be a graphene supplier but a global partner in commercial application development. With the ability to ramp up graphene output the company’s long-term financial prospects are secured from royalties and licensing fees from jointly developed technologies.

Competitive cost advantages built into an automated MesoGraf™ graphene production regime results in anticipated cost advantages to customers and licensees.

The Hydro-Québec deal with Grafoid was mentioned here in a Nov. 27, 2012 posting which includes this nugget,

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Given the company information included in the news release, there seems to have been a change in the corporate relationship between Grafoid and Focus Graphite. At the very least, Grafoid announcements are now generated by Grafoid itself,

About Grafoid Inc.

Incorporated in late 2011, Grafoid invested in a novel process that transforms raw, unprocessed, high grade graphite ore from its sister company, Focus Graphite to produce single layer, bi-layer and tri-layer MesoGraf™ graphene.

Today, Grafoid, a private company, sits as Canada’s innovation leader and standard-bearer in the global graphene technology space.

The company’s diverse commercial application developments include more than 15 global corporate partnerships – including Fortune 500 companies.

With 17 active projects under development with 11 universities and laboratories, and; some 64 patent applications filed or in development, Grafoid’s business goes beyond scientific R&D.

Grafoid’s Canadian-developed technologies are exported globally.

During the last three years Grafoid has experienced exponential growth as a global enterprise through joint-venture partnerships with Hydro-Quebec, Japan’s Mitsui & Company and other multinational corporations in the United States and Europe.

Grafoid’s wholly-owned subsidiaries Alcereco of Kingston, Ontario and Braille Battery, of Sarasota, Florida extend the company’s capabilities into graphene related material science and nano-engineering.

Braille is a world leader in ultra lightweight Lithium-ion high performance battery production and is a supplier to Formula 1, NASCAR and IndyCar racing vehicles.

The sister company, Focus Graphite also based in Ottawa, which provides Grafoid’s graphite flakes, owns a deposit in the northeastern part of Québec. (You can read more about graphite deposits and mines in my Feb. 20, 2015 post, NanoXplore: graphene and graphite in Québec (Canada).

Of course, this flurry of announcements may point to a Spring 2015 election.

*’posted’ changed to ‘post’ on Oct. 26, 2015.

NanoXplore: graphene and graphite in Québec (Canada)

For the second time this week I’m going to be mentioning the province of Québec (Canada) in relation to its ‘nanotechnology’ businesses (see: Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015). A Feb. 20, 2015 news item on Azonano announces a graphene production facility in the Montréal area,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that its graphene production facility is in full operation with a capacity of 3 metric tonnes per year. This is the largest graphene production capacity in Canada and, outside of China, one of the 5 largest in the world.

A Feb. 19, 2015 NanoXplore news release on MarketWire, which originated the news item, provides a bit more detail in amidst the promotional hype,

NanoXplore’s production process is unique and the core of the company’s competitive advantage. The proprietary process gently and efficiently creates pristine graphene from natural flake graphite without creating the crystalline defects that can limit performance. The process also functionalises the graphene material during production making subsequent mixing with a broad range of industrial materials simple and efficient. NanoXplore’s facility is routinely producing several standard grades of graphene as well as derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries. [emphasis mine]

Another graphite connection in Québec

Interestingly, back in 2012 Hydro-Québec signed a deal with another Québec-based company, Focus Graphite (which owns a graphite deposit in the northeastern part of the province) to explore ways to produce more efficient lithium-ion batteries (my Nov 27, 2012 posting).

Getting back to the news release, it also provides a summary description of NanoXplore,

NanoXplore is a privately held advanced materials company focused on the large-scale production of high quality graphene and the integration of graphene into real world industrial products. NanoXplore achieves significant improvements in performance for its customers with very low levels of graphene because its material is of high quality (few defects, highly dispersible), because the production process can easily tune the dimensions of the graphene platelets, and because NanoXplore has specific expertise in dispersing graphene in a broad range of industrial materials. NanoXplore partners with its customers to integrate graphene into their products and processes, providing them with innovative products and a strong competitive advantage.

Graphite mines

NanoXplore, too, has some sort of relationship with a graphite mine or, in this case mining company, Mason Graphite (from the NanoXplore website’s Investors’ page),


Partnered with Canadian mining company Mason Graphite, NanoXplore has access to lower quartile graphite/graphene production costs as well as a stable, long term, large flake source of raw material. Local government bodies have embraced the graphite-graphene cluster. With production and R&D centrally located in Montreal, NanoXplore offers world class innovation and true intellectual property safety for its formulation partners.

By the way, Benoit Gascon, NanoXplore’s board chair (scroll down to the bottom  of the team list) is also Mason Graphite’s Chief Executive Officer (CEO). The company has recently announced a detailed study on large-scale production of value-added graphite products (from a Feb. 11, 2015 Mason Graphite news release),

Mason Graphite Inc. (“Mason Graphite” or the “Company”) (TSX VENTURE:LLG)(OTCQX:MGPHF) announces that it has initiated a detailed study for large scale processing of value-added graphite products.

Value-added processing includes micronization, additional purification, spheronization and coating, resulting in graphite products that are suitable for a wide range of electrochemical applications (including alkaline batteries, lithium-ion batteries and fuel cells), technical applications (including carbon brushes, brake linings, plastics and lubricants), and other specialized uses.

The development and validation of the fabrication processes for these graphite products will be carried out by the National Research Council of Canada (“NRC”) along with Hatch, and is expected to conclude by the end of 2015. Following initial scoping work, equipment trials and product testing, the Company intends to provide preliminary results and an updated work program by mid-2015.

The NRC is the Government of Canada’s premier research and technology organization. Hatch is an engineering firm located in Montreal which is already working closely with Mason Graphite on the development of the Lac Gueret Graphite Project.

Other parts of Canada and the graphite/graphene enterprise

NanoXplore and Focus Graphite are not the only companies with connections to a graphite mine in Québec. There’s also Vancouver (Canada)-based Lomiko Metals (mentioned here in an April 17, 2013 posting [for the first time]. A. Paul Gill, Lomiko’s CEO, seems to be pursuing a similar business strategy in that Lomiko, too, has a number of business alliances, e.g., the mine, a research and development laboratory, etc. Moving out of Québec, there is also a graphite mine in Ontario owned by Northern Graphite (my Feb. 6, 2012 posting). It seems Canadians in eastern Canada have a valuable resource in graphite flakes.

Kevlar-wrapped batteries on an airplane

Researchers at the University of Michigan are not trying to bulletproof lithium-ion batteries with kevlar. Rather, they’re trying prevent fires. From a Jan. 27, 2015 University of Michigan news release (also on EurekAlert),

New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013.

The innovation is an advanced barrier between the electrodes in a lithium-ion battery.

Made with nanofibers extracted from Kevlar, the tough material in bulletproof vests, the barrier stifles the growth of metal tendrils that can become unwanted pathways for electrical current.

A U-M team of researchers also founded Ann Arbor-based Elegus Technologies to bring this research from the lab to market. Mass production is expected to begin in the fourth quarter 2016.

“Unlike other ultra strong materials such as carbon nanotubes, Kevlar is an insulator,” said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. “This property is perfect for separators that need to prevent shorting between two electrodes.”

Lithium-ion batteries work by shuttling lithium ions from one electrode to the other. This creates a charge imbalance, and since electrons can’t go through the membrane between the electrodes, they go through a circuit instead and do something useful on the way.

But if the holes in the membrane are too big, the lithium atoms can build themselves into fern-like structures, called dendrites, which eventually poke through the membrane. If they reach the other electrode, the electrons have a path within the battery, shorting out the circuit. This is how the battery fires on the Boeing 787 are thought to have started.

“The fern shape is particularly difficult to stop because of its nanoscale tip,” said Siu On Tung, a graduate student in Kotov’s lab, as well as chief technology officer at Elegus. “It was very important that the fibers formed smaller pores than the tip size.”

While the widths of pores in other membranes are a few hundred nanometers, or a few hundred-thousandths of a centimeter, the pores in the membrane developed at U-M are 15-to-20 nanometers across. They are large enough to let individual lithium ions pass, but small enough to block the 20-to-50-nanometer tips of the fern-structures.

The researchers made the membrane by layering the fibers on top of each other in thin sheets. This method keeps the chain-like molecules in the plastic stretched out, which is important for good lithium-ion conductivity between the electrodes, Tung said.

“The special feature of this material is we can make it very thin, so we can get more energy into the same battery cell size, or we can shrink the cell size,” said Dan VanderLey, an engineer who helped found Elegus through U-M’s Master of Entrepreneurship program. “We’ve seen a lot of interest from people looking to make thinner products.”

Thirty companies have requested samples of the material.

Kevlar’s heat resistance could also lead to safer batteries as the membrane stands a better chance of surviving a fire than most membranes currently in use.

While the team is satisfied with the membrane’s ability to block the lithium dendrites, they are currently looking for ways to improve the flow of loose lithium ions so that batteries can charge and release their energy more quickly.

For anyone unfamiliar with the Boeing 787 Dreamliner fires, caused by lithium-ion batteries, these Boeing fires and others are mentioned in my May 29, 2013 post (Life-cycle assessment for electric vehicle lithium-ion batteries and nanotechnology is a risk analysis) scroll down about 50% of the way.

As for the research paper, here’s a link and a citation,

A dendrite-suppressing composite ion conductor from aramid nanofibres by Siu-On Tung, Szushen Ho, Ming Yang, Ruilin Zhang, & Nicholas A. Kotov. Nature Communications 6, Article number: 6152 doi:10.1038/ncomms7152 Published 27 January 2015

This paper is behind a paywall.

You can find out more about Elegus Technologies here.

Supercapacitors* on automobiles

Queensland University of Technology* (QUT; Australia) researchers are hopeful they can adapt supercapacitors in the form of a fine film tor use in electric vehicles making them more energy-efficient. From a Nov. 6, 2014 news item on ScienceDaily,

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a QUT team.

Researchers have developed lightweight “supercapacitors” that can be combined with regular batteries to dramatically boost the power of an electric car.

The discovery was made by Postdoctoral Research Fellow Dr Jinzhang Liu, Professor Nunzio Motta and PhD researcher Marco Notarianni, from QUT’s Science and Engineering Faculty — Institute for Future Environments, and PhD researcher Francesca Mirri and Professor Matteo Pasquali, from Rice University in Houston, in the United States.

A Nov. 6, 2014 QUT news release, which originated the news item, describes supercapacitors, the research, and the need for this research in more detail,

The supercapacitors – a “sandwich” of electrolyte between two all-carbon electrodes – were made into a thin and extremely strong film with a high power density.

The film could be embedded in a car’s body panels, roof, doors, bonnet and floor – storing enough energy to turbocharge an electric car’s battery in just a few minutes.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but they are able to deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

“Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared to several hours for a standard electric car battery.”

Dr Liu said currently the “energy density” of a supercapacitor is lower than a standard lithium ion (Li-Ion) battery, but its “high power density”, or ability to release power in a short time, is “far beyond” a conventional battery.

“Supercapacitors are presently combined with standard Li-Ion batteries to power electric cars, with a substantial weight reduction and increase in performance,” he said.

“In the future, it is hoped the supercapacitor will be developed to store more energy than a Li-Ion battery while retaining the ability to release its energy up to 10 times faster – meaning the car could be entirely powered by the supercapacitors in its body panels.

“After one full charge this car should be able to run up to 500km – similar to a petrol-powered car and more than double the current limit of an electric car.”

Dr Liu said the technology would also potentially be used for rapid charges of other battery-powered devices.

“For example, by putting the film on the back of a smart phone to charge it extremely quickly,” he said.

The discovery may be a game-changer for the automotive industry, with significant impacts on financial, as well as environmental, factors.

“We are using cheap carbon materials to make supercapacitors and the price of industry scale production will be low,” Professor Motta said.

“The price of Li-Ion batteries cannot decrease a lot because the price of Lithium remains high. This technique does not rely on metals and other toxic materials either, so it is environmentally friendly if it needs to be disposed of.”

A Nov. 10, 2014 news item on Azonano describes the Rice University (Texas, US) contribution to this work,

Rice University scientist Matteo Pasquali and his team contributed to two new papers that suggest the nano-infused body of a car may someday power the car itself.

Rice supplied high-performance carbon nanotube films and input on the device design to scientists at the Queensland University of Technology in Australia for the creation of lightweight films containing supercapacitors that charge quickly and store energy. The inventors hope to use the films as part of composite car doors, fenders, roofs and other body panels to significantly boost the power of electric vehicles.

A Nov. 7, 2014 Rice University news release, which originated the news item, offers a few technical details about the film being proposed for use as a supercapacitor on car panels,

Researchers in the Queensland lab of scientist Nunzio Motta combined exfoliated graphene and entangled multiwalled carbon nanotubes combined with plastic, paper and a gelled electrolyte to produce the flexible, solid-state supercapacitors.

“Nunzio’s team is making important advances in the energy-storage area, and we were glad to see that our carbon nanotube film technology was able to provide breakthrough current collection capability to further improve their devices,” said Pasquali, a Rice professor of chemical and biomolecular engineering and chemistry. “This nice collaboration is definitely bottom-up, as one of Nunzio’s Ph.D. students, Marco Notarianni, spent a year in our lab during his Master of Science research period a few years ago.”

“We built on our earlier work on CNT films published in ACS Nano, where we developed a solution-based technique to produce carbon nanotube films for transparent electrodes in displays,” said Francesca Mirri, a graduate student in Pasquali’s research group and co-author of the papers. “Now we see that carbon nanotube films produced by the solution-processing method can be applied in several areas.”

As currently designed, the supercapacitors can be charged through regenerative braking and are intended to work alongside the lithium-ion batteries in electric vehicles, said co-author Notarianni, a Queensland graduate student.

“Vehicles need an extra energy spurt for acceleration, and this is where supercapacitors come in. They hold a limited amount of charge, but with their high power density, deliver it very quickly, making them the perfect complement to mass-storage batteries,” he said.

Because hundreds of film supercapacitors are used in the panel, the electric energy required to power the car’s battery can be stored in the car body. “Supercapacitors offer a high power output in a short time, meaning a faster acceleration rate of the car and a charging time of just a few minutes, compared with several hours for a standard electric car battery,” Notarianni said.

The researchers foresee such panels will eventually replace standard lithium-ion batteries. “In the future, it is hoped the supercapacitor will be developed to store more energy than an ionic battery while retaining the ability to release its energy up to 10 times faster – meaning the car would be powered by the supercapacitors in its body panels,” said Queensland postdoctoral researcher Jinzhang Liu.

Here’s an image of graphene infused with carbon nantoubes used in the supercapacitor film,

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology - See more at: http://news.rice.edu/2014/11/07/supercharged-panels-may-power-cars/#sthash.0RPsIbMY.dpuf

A scanning electron microscope image shows freestanding graphene film with carbon nanotubes attached. The material is part of a project to create lightweight films containing super capacitors that charge quickly and store energy. Courtesy of Nunzio Motta/Queensland University of Technology

Here are links to and citations for the two papers published by the researchers,

Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector by Marco Notarianni, Jinzhang Liu, Francesca Mirri, Matteo Pasquali, and Nunzio Motta. Nanotechnology Volume 25 Number 43 doi:10.1088/0957-4484/25/43/435405

High performance all-carbon thin film supercapacitors by Jinzhang Liu, Francesca Mirri, Marco Notarianni, Matteo Pasquali, and Nunzio Motta. Journal of Power Sources Volume 274, 15 January 2015, Pages 823–830 DOI: 10.1016/j.jpowsour.2014.10.104

Both articles are behind paywalls.

One final note, Dexter Johnson provides some insight into issues with graphene-based supercapacitors and what makes this proposed application attractive in his Nov. 7, 2014 post on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

The hope has been that someone could make graphene electrodes for supercapacitors that would boost their energy density into the range of chemical-based batteries. The supercapacitors currently on the market have on average an energy density around 28 Wh/kg, whereas a Li-ion battery holds about 200Wh/kg. That’s a big gap to fill.

The research in the field thus far has indicated that graphene’s achievable surface area in real devices—the factor that determines how many ions a supercapacitor electrode can store, and therefore its energy density—is not any better than traditional activated carbon. In fact, it may not be much better than a used cigarette butt.

Though graphene may not help increase supercapacitors’ energy density, its usefulness in this application may lie in the fact that its natural high conductivity will allow superconductors to operate at higher frequencies than those that are currently on the market. Another likely benefit that graphene will yield comes from the fact that it can be structured and scaled down, unlike other supercapacitor materials.

I recommend reading Dexter’s commentary in its entirety.

*’University of Queensland’ corrected to “Queensland University of Technology’ on Nov. 10, 2014 at 1335 PST.

* ‘super-capacitor’ changed to ‘supercapacitor’ on April 29, 2015.

Friendlier (halogen-free) lithium-ion batteries

An Oct. 24, 2014 news item on ScienceDaily mentions a greener type of lithium-ion battery from a theoretical (keep reading till you reach the first paragraph of the university news release) perspective,

Physics researchers at Virginia Commonwealth University have discovered that most of the electrolytes used in lithium-ion batteries — commonly found in consumer electronic devices — are superhalogens, and that the vast majority of these electrolytes contain toxic halogens.

At the same time, the researchers also found that the electrolytes in lithium-ion batteries (also known as Li-ion batteries) could be replaced with halogen-free electrolytes that are both nontoxic and environmentally friendly.

“The significance [of our findings] is that one can have a safer battery without compromising its performance,” said lead author Puru Jena, Ph.D., distinguished professor in the Department of Physics of the College of Humanities and Sciences. “The implication of our research is that similar strategies can also be used to design cathode materials in Li-ion batteries.”

An Oct. 24, 2014 Virginia Commonwealth University news release by Brian McNeill (also on EurekAlert), which originated the news item, describes the researchers’ hopes and the inspiration for this work,

“We hope that our theoretical prediction will stimulate experimentalists to synthesize halogen-free salts which will then lead manufacturers to use such salts in commercial applications,” he said.

The researchers also found that the procedure outlined for Li-ion batteries is equally valid for other metal-ion batteries, such as sodium-ion or magnesium-ion batteries.

Jena became interested in the topic several months ago when he saw a flyer on Li-ion batteries that mentioned the need for halogen-free electrolytes.

“I had not done any work on Li-ion batteries at the time, but I was curious to see what the current electrolytes are,” he said. “I found that the negative ions that make up the electrolytes are large and complex in nature and they contain one less electron than what is needed for electronic shell closure.”

Jena had already been working for more than five years on superhalogens, a class of molecules that mimic the chemistry of halogens but have electron affinities that are much larger than that of the halogen atoms.

“I knew of many superhalogen molecules that do not contain a single halogen atom,” he said. “My immediate thought was first to see if the anionic components of the current electrolytes are indeed superhalogens. And, if so, do the halogen-free superhalogens that we knew serve the purpose as halogen-free electrolytes? Our research proved that to be the case.”

Here’s a link to and a citation for the paper,

Superhalogens as Building Blocks of Halogen-Free Electrolytes in Lithium-Ion Batteries by Dr. Santanab Giri, Swayamprabha Behera and Prof. Puru Jena. Angewandte Chemie, DOI: 10.1002/ange.201408648 Article first published online: 14 OCT 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Sand and nanotechnology

There’s some good news coming out of the University of California, Riverside regarding sand and lithium-ion (li-ion) batteries, which I will temper with some additional information later in this posting.

First, the good news is that researchers have a new non-toxic, low cost way to produce a component in lithium-ion (li-ion) batteries according to a July 8, 2014 news item on ScienceDaily,

Researchers at the University of California, Riverside’s Bourns College of Engineering have created a lithium ion battery that outperforms the current industry standard by three times. The key material: sand. Yes, sand.

“This is the holy grail — a low cost, non-toxic, environmentally friendly way to produce high performance lithium ion battery anodes,” said Zachary Favors, a graduate student working with Cengiz and Mihri Ozkan, both engineering professors at UC Riverside.

The idea came to Favors six months ago. He was relaxing on the beach after surfing in San Clemente, Calif. when he picked up some sand, took a close look at it and saw it was made up primarily of quartz, or silicon dioxide.

His research is centered on building better lithium ion batteries, primarily for personal electronics and electric vehicles. He is focused on the anode, or negative side of the battery. Graphite is the current standard material for the anode, but as electronics have become more powerful graphite’s ability to be improved has been virtually tapped out.

A July 8, 2014 University of California at Riverside news release by Sean Nealon, which originated the news item, describes some of the problems with silicon as a replacement for graphite and how the researchers approached those problems,

Researchers are now focused on using silicon at the nanoscale, or billionths of a meter, level as a replacement for graphite. The problem with nanoscale silicon is that it degrades quickly and is hard to produce in large quantities.

Favors set out to solve both these problems. He researched sand to find a spot in the United States where it is found with a high percentage of quartz. That took him to the Cedar Creek Reservoir, east of Dallas, where he grew up.

Sand in hand, he came back to the lab at UC Riverside and milled it down to the nanometer scale, followed by a series of purification steps changing its color from brown to bright white, similar in color and texture to powdered sugar.

After that, he ground salt and magnesium, both very common elements found dissolved in sea water into the purified quartz. The resulting powder was then heated. With the salt acting as a heat absorber, the magnesium worked to remove the oxygen from the quartz, resulting in pure silicon.

The Ozkan team was pleased with how the process went. And they also encountered an added positive surprise. The pure nano-silicon formed in a very porous 3-D silicon sponge like consistency. That porosity has proved to be the key to improving the performance of the batteries built with the nano-silicon.

Now, the Ozkan team is trying to produce larger quantities of the nano-silicon beach sand and is planning to move from coin-size batteries to pouch-size batteries that are used in cell phones.

The research is supported by Temiz Energy Technologies. The UCR Office of Technology Commercialization has filed patents for inventions reported in the research paper.

Here’s a link to and a citation for the research paper,

Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries by Zachary Favors, Wei Wang, Hamed Hosseini Bay, Zafer Mutlu, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, & Cengiz S. Ozkan. Scientific Reports 4, Article number: 5623 doi:10.1038/srep05623 Published 08 July 2014

While this is good news, it does pose a conundrum of sorts. It seems that supplies of sand are currently under siege. A documentary, Sand Wars (2013) lays out the issues (from the Sand Wars website’s Synopsis page),

Most of us think of it as a complimentary ingredient of any beach vacation. Yet those seemingly insignificant grains of silica surround our daily lives. Every house, skyscraper and glass building, every bridge, airport and sidewalk in our modern society depends on sand. We use it to manufacture optical fiber, cell phone components and computer chips. We find it in our toothpaste, powdered foods and even in our glass of wine (both the glass and the wine, as a fining agent)!

Is sand an infinite resource? Can the existing supply satisfy a gigantic demand fueled by construction booms?  What are the consequences of intensive beach sand mining for the environment and the neighboring populations?

Based on encounters with sand smugglers, barefoot millionaires, corrupt politicians, unscrupulous real estate developers and environmentalists, this investigation takes us around the globe to unveil a new gold rush and a disturbing fact: the “SAND WARS” have begun.

Dr. Muditha D Senarath Yapa of John Keells Research at John Keells Holdings comments on the situation in Sri Lanka in his June 22, 2014 article (Nanotechnology – Depleting the most precious minerals for a few dollars) for The Nation,

Many have written for many years about the mineral sands of Pulmoddai. It is a national tragedy that for more than 50 years, we have been depleting the most precious minerals of our land for a few dollars. There are articles that appeared in various newspapers on how the mineral sands industry has boomed over the years. I hope the readers understand that it only means that we are depleting our resources faster than ever. According to the Lanka Mineral Sands Limited website, 90,000 tonnes of ilmenite, 9,000 tonnes of rutile, 5,500 tonnes of zircon, 100 tonnes of monazite and 4,000 tonnes of high titanium ilmenite are produced annually and shipped away to other countries.

… It is time for Sri Lanka to look at our own resources with this new light and capture the future nano materials market to create value added materials.

It’s interesting that he starts with the depletion of the sands as a national tragedy and ends with a plea to shift from a resource-based economy to a manufacturing-based economy. (This plea resonates strongly here in Canada where we too are a resource-based economy.)

Sidebar: John Keells Holdings is a most unusual company, from the About Us page,

In terms of market capitalisation, John Keells Holdings PLC is one of the largest listed conglomerate on the Colombo Stock Exchange. Other measures tell a similar tale; our group companies manage the largest number of hotel rooms in Sri Lanka, own the country’s largest privately-owned transportation business and hold leading positions in Sri Lanka’s key industries: tea, food and beverage manufacture and distribution, logistics, real estate, banking and information technology. Our investment in Sri Lanka is so deep and widely diversified that our stock price is sometimes used by international financial analysts as a benchmark of the country’s economy.

Yapa heads the companies research effort, which recently celebrated a synthetic biology agreement (from a May 2014 John Keells news release by Nuwan),

John Keells Research Signs an Historic Agreement with the Human Genetics Unit, Faculty of Medicine, University of Colombo to establish Sri Lanka’s first Synthetic Biology Research Programme.

Getting back to sand, these three pieces, ‘sand is good for li-ion batteries’, ‘sand is a diminishing resource’, and ‘let’s stop being a source of sand for other countries’ lay bare some difficult questions about our collective future on this planet.

Charging portable electronics in 10 minutes (hopefully) with a 3D (silicon-decorated) carbon nanotube cluster

I sometimes think there’s a worldwide obsession with lithium-ion batteries as hardly a day passes without at least one story about them. To honour that obsession, here’s a June 11, 2014 news item on Azonano describing a new technique which could lead to a faster charging time for mobile electronics,

Researchers at the University of California, Riverside [UCR] Bourns College of Engineering have developed a three-dimensional, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes, instead of hours.

A June 10, 2014 UCR news release by Sean Nealon, which originated the news item, notes the ubiquity of lithium-ion batteries in modern electronics and explains why silicon was used in this research,

Lithium ion batteries are the rechargeable battery of choice for portable electronic devices and electric vehicles. But, they present problems. Batteries in electric vehicles are responsible for a significant portion of the vehicle mass. And the size of batteries in portable electronics limits the trend of down-sizing.

Silicon is a type of anode material that is receiving a lot of attention because its total charge capacity is 10 times higher than commercial graphite based lithium ion battery anodes. Consider a packaged battery full-cell. Replacing the commonly used graphite anode with silicon anodes will potentially result in a 63 percent increase of total cell capacity and a battery that is 40 percent lighter and smaller.

The news release then provides a very brief description of the technology,

…, UC Riverside researchers developed a novel structure of three-dimensional silicon decorated cone-shaped carbon nanotube clusters architecture via chemical vapor deposition and inductively coupled plasma treatment.

Lithium ion batteries based on this novel architecture demonstrate a high reversible capacity and excellent cycling stability. The architecture demonstrates excellent electrochemical stability and irreversibility even at high charge and discharge rates, nearly 16 times faster than conventionally used graphite based anodes.

The researchers believe the ultrafast rate of charge and discharge can be attributed to two reasons, said Wei Wang, lead author of the paper.

One, the seamless connection between graphene covered copper foil and carbon nanotubes enhances the active material-current collector contact integrity which facilitates charge and thermal transfer in the electrode system.

Two, the cone-shaped architecture offers small interpenetrating channels for faster electrolyte access into the electrode which may enhance the rate performance.

Here’s a link to and a citation for the paper,

Silicon Decorated Cone Shaped Carbon Nanotube Clusters for Lithium Ion Battery Anodes by Wei Wang, Isaac Ruiz, Kazi Ahmed, Hamed Hosseini Bay, Aaron S. George, Johnny Wang, John Butler, Mihrimah Ozkan, and Cengiz S. Ozkan. Small DOI: 10.1002/smll.201400088 Article first published online: 19 APR 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Not ageing gracefully; the lithium-ion battery story

There’s an alphabet soup’s worth of agencies involved in research on lithium-ion battery ageing which has resulted in two papers as noted in a May 30, 2014 news item Azonano,

Batteries do not age gracefully. The lithium ions that power portable electronics cause lingering structural damage with each cycle of charge and discharge, making devices from smartphones to tablets tick toward zero faster and faster over time. To stop or slow this steady degradation, scientists must track and tweak the imperfect chemistry of lithium-ion batteries with nanoscale precision.

In two recent Nature Communications papers, scientists from several U.S. Department of Energy national laboratories—Lawrence Berkeley, Brookhaven, SLAC, and the National Renewable Energy Laboratory—collaborated to map these crucial billionths-of-a-meter dynamics and lay the foundation for better batteries.

A May 29, 2014 Brookhaven National Laboratory news release by Justin Eure, which originated the news item, describes the research techniques in more detail,

“We discovered surprising and never-before-seen evolution and degradation patterns in two key battery materials,” said Huolin Xin, a materials scientist at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and coauthor on both studies. “Contrary to large-scale observation, the lithium-ion reactions actually erode the materials non-uniformly, seizing upon intrinsic vulnerabilities in atomic structure in the same way that rust creeps unevenly across stainless steel.”

Xin used world-leading electron microscopy techniques in both studies to directly visualize the nanoscale chemical transformations of battery components during each step of the charge-discharge process. In an elegant and ingenious setup, the collaborations separately explored a nickel-oxide anode and a lithium-nickel-manganese-cobalt-oxide cathode—both notable for high capacity and cyclability—by placing samples inside common coin-cell batteries running under different voltages.

“Armed with a precise map of the materials’ erosion, we can plan new ways to break the patterns and improve performance,” Xin said.

In these experiments, lithium ions traveled through an electrolyte solution, moving into an anode when charging and a cathode when discharging. The processes were regulated by electrons in the electrical circuit, but the ions’ journeys—and the battery structures—subtly changed each time.

The news release first describes the research involving the nickel-oxide anode, one of the two areas of interest,

For the nickel-oxide anode, researchers submerged the batteries in a liquid organic electrolyte and closely controlled the charging rates. They stopped at predetermined intervals to extract and analyze the anode. Xin and his collaborators rotated 20-nanometer-thick sheets of the post-reaction material inside a carefully calibrated transmission electron microscope (TEM) grid at CFN to catch the contours from every angle—a process called electron tomography.

To see the way the lithium-ions reacted with the nickel oxide, the scientists used a suite of custom-written software to digitally reconstruct the three-dimensional nanostructures with single-nanometer resolution. Surprisingly, the reactions sprang up at isolated spatial points rather than sweeping evenly across the surface.

“Consider the way snowflakes only form around tiny particles or bits of dirt in the air,” Xin said. “Without an irregularity to glom onto, the crystals cannot take shape. Our nickel oxide anode only transforms into metallic nickel through nanoscale inhomogeneities or defects in the surface structure, a bit like chinks in the anode’s armor.”

The electron microscopy provided a crucial piece of the larger puzzle assembled in concert with Berkeley Lab materials scientists and soft x-ray spectroscopy experiments conducted at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL). The combined data covered the reactions on the nano-, meso-, and microscales.

Next, there’s this about the second area of interest, a lithium-nickel-manganese-cobalt-oxide (NMC) cathode (from the news release),

In the other study, scientists sought the voltage sweet-spot for the high-performing lithium-nickel-manganese-cobalt-oxide (NMC) cathode: How much power can be stored, at what intensity, and across how many cycles?

The answers hinged on intrinsic material qualities and the structural degradation caused by cycles at 4.7 volts and 4.3 volts, as measured against a lithium metal standard.

As revealed through another series of coin-cell battery tests, 4.7 volts caused rapid decomposition of the electrolytes and poor cycling—the higher power comes at a price. A 4.3-volt battery, however, offered a much longer cycling lifetime at the cost of lower storage and more frequent recharges.

In both cases, the chemical evolution exhibited sprawling surface asymmetries, though not without profound patterns.

“As the lithium ions race through the reaction layers, they cause clumping crystallization—a kind of rock-salt matrix builds up over time and begins limiting performance,” Xin said. “We found that these structures tended to form along the lithium-ion reaction channels, which we directly visualized under the TEM. The effect was even more pronounced at higher voltages, explaining the more rapid deterioration.”

Identifying this crystal-laden reaction pathways hints at a way forward in battery design.

“It may be possible to use atomic deposition to coat the NMC cathodes with elements that resist crystallization, creating nanoscale boundaries within the micron-sized powders needed at the cutting-edge of industry,” Xin said. “In fact, Berkeley Lab battery experts Marca Doeff and Feng Lin are working on that now.”

Shirley Meng, a professor at UC San Diego’s Department of NanoEngineering, added, “This beautiful study combines several complementary tools that probe both the bulk and surface of the NMC layered oxide—one of the most promising cathode materials for high-voltage operation that enables higher energy density in lithium-ion batteries. The meaningful insights provided by this study will significantly impact the optimization strategies for this type of cathode material.”

The TEM measurements revealed the atomic structures while electron energy loss spectroscopy helped pinpoint the chemical evolution—both carried out at the CFN….

The scientists next want to observe these changes in real-time which will necessitate the custom design of some new equipment (“electrochemical contacts and liquid flow holders”).

Here are links to and citations for the papers,

Phase evolution for conversion reaction electrodes in lithium-ion batteries by Feng Lin, Dennis Nordlund, Tsu-Chien Weng, Ye Zhu, Chunmei Ban, Ryan M. Richards, & Huolin L. Xin. Nature Communications 5, Article number: 3358 doi:10.1038/ncomms4358 Published 24 February 2014

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries by Feng Lin, Isaac M. Markus, Dennis Nordlund, Tsu-Chien Weng, Mark D. Asta, Huolin L. Xin & Marca M. Doeff. Nature Communications 5, Article number: 3529 doi:10.1038/ncomms4529 Published 27 March 2014

Both of these articles are behind a paywall and they both offer previews via ReadCube Access.