Tag Archives: lithium iron phosphate

Canadian research into nanomaterial workplace exposure in the air and on surfaces

An August 30, 2018 news item on Nanowerk announces the report,

The monitoring of air contamination by engineered nanomaterials (ENM) is a complex process with many uncertainties and limitations owing to the presence of particles of nanometric size that are not ENMs, the lack of validated instruments for breathing zone measurements and the many indicators to be considered.

In addition, some organizations, France’s Institut national de recherche et de sécurité (INRS) and Québec’s Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) among them, stress the need to also sample surfaces for ENM deposits.

In other words, to get a better picture of the risks of worker exposure, we need to fine-tune the existing methods of sampling and characterizing ENMs and develop new one. Accordingly, the main goal of this project was to develop innovative methodological approaches for detailed qualitative as well as quantitative characterization of workplace exposure to ENMs.

A PDF of the 88-page report is available in English or in French.

An August 30, 2018 (?) abstract of the IRSST report titled An Assessment of Methods of Sampling and Characterizing Engineered Nanomaterials in the Air and on Surfaces in the Workplace (2nd edition) by Maximilien Debia, Gilles L’Espérance, Cyril Catto, Philippe Plamondon, André Dufresne, Claude Ostiguy, which originated the news item, outlines what you can expect from the report,

This research project has two complementary parts: a laboratory investigation and a fieldwork component. The laboratory investigation involved generating titanium dioxide (TiO2) nanoparticles under controlled laboratory conditions and studying different sampling and analysis devices. The fieldwork comprised a series of nine interventions adapted to different workplaces and designed to test a variety of sampling devices and analytical procedures and to measure ENM exposure levels among Québec workers.

The methods for characterizing aerosols and surface deposits that were investigated include: i) measurement by direct-reading instruments (DRI), such as condensation particle counters (CPC), optical particle counters (OPC), laser photometers, aerodynamic diameter spectrometers and electric mobility spectrometer; ii) transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM) with a variety of sampling devices, including the Mini Particle Sampler® (MPS); iii) measurement of elemental carbon (EC); iv) inductively coupled plasma mass spectrometry (ICP-MS) and (v) Raman spectroscopy.

The workplace investigations covered a variety of industries (e.g., electronics, manufacturing, printing, construction, energy, research and development) and included producers as well as users or integrators of ENMs. In the workplaces investigated, we found nanometals or metal oxides (TiO2, SiO2, zinc oxides, lithium iron phosphate, titanate, copper oxides), nanoclays, nanocellulose and carbonaceous materials, including carbon nanofibers (CNF) and carbon nanotubes (CNT)—single-walled (SWCNT) as well as multiwalled (MWCNT).

The project helped to advance our knowledge of workplace assessments of ENMs by documenting specific tasks and industrial processes (e.g., printing and varnishing) as well as certain as yet little investigated ENMs (nanocellulose, for example).

Based on our investigations, we propose a strategy for more accurate assessment of ENM exposure using methods that require a minimum of preanalytical handling. The recommended strategy is a systematic two-step assessment of workplaces that produce and use ENMs. The first step involves testing with different DRIs (such as a CPC and a laser photometer) as well as sample collection and subsequent microscopic analysis (MPS + TEM/STEM) to clearly identify the work tasks that generate ENMs. The second step, once work exposure is confirmed, is specific quantification of the ENMs detected. The following findings are particularly helpful for detailed characterization of ENM exposure:

  1. The first conclusive tests of a technique using ICP-MS to quantify the metal oxide content of samples collected in the workplace
  2. The possibility of combining different sampling methods recommended by the National Institute for Occupational Safety and Health (NIOSH) to measure elemental carbon as an indicator of NTC/NFC, as well as demonstration of the limitation of this method stemming from observed interference with the black carbon particles required to synthesis carbon materials (for example, Raman spectroscopy showed that less than 6% of the particles deposited on the electron microscopy grid at one site were SWCNTs)
  3. The clear advantages of using an MPS (instead of the standard 37-mm cassettes used as sampling media for electron microscopy), which allows quantification of materials
  4. The major impact of sampling time: a long sampling time overloads electron microscopy grids and can lead to overestimation of average particle agglomerate size and underestimation of particle concentrations
  5. The feasibility and utility of surface sampling, either with sampling pumps or passively by diffusion onto the electron microscopy grids, to assess ENM dispersion in the workplace

These original findings suggest promising avenues for assessing ENM exposure, while also showing their limitations. Improvements to our sampling and analysis methods give us a better understanding of ENM exposure and help in adapting and implementing control measures that can minimize occupational exposure.

You can download the full report in either or both English and French from the ‘Nanomaterials – A Guide to Good Practices Facilitating Risk Management in the Workplace, 2nd Edition‘ webpage.

Hydro-Québec, graphite, and lithium-ion batteries

While Dexter Johnson at Nanoclast blog writes about an investigation into why the storage capacity of lithium-ion (Li-ion) batteries degrades in his Nov. 26, 2012 posting (Newly Developed Live Nanoscale Imaging Technique Promises Improvement in Li-ion Batteries), Hydro-Québec and Grafoid Inc. have signed a development deal for the next generation of lithium iron phosphate materials to be combined with graphene for next generation rechargeable batteries. From the Nov. 27, 2012 news item on Nanowerk,

The 50-50 collaborative agreement sets out terms with the objective of creating patentable inventions by combining graphene, supplied by Grafoid, with Hydro-Québec’s patented lithium iron phosphate technologies.

Two key, specific commercial target markets – the rechargeable automobile battery sectors and batteries for mobile electronic devices used in smartphones, computing tablets and laptop computers – were identified in the agreement.

Hydro-Québec will study Grafoid’s graphene conductivity, electrochemical performance and its effects in electrode formulations, electrolyte and separator optimizations. Detailed characterizations of Grafoid’s supplied materials will be undertaken at IREQ’s cutting edge facilities using its advanced electron microscopy, spectrographic and other in-house technologies.

Hydro-Québec will also supply lithium iron phosphate materials and its electrochemistry know how which it acquired under license from famed American inventor Dr. John Goodenough.

The Nov. 26, 2012 news release from Focus Graphite, which originated the news item, provides additional detail about the various principles in the deal,

About Focus Graphite

Focus Graphite Inc. is an emerging mid-tier junior mining development company, a technology solutions supplier and a business innovator. Focus is the owner of the Lac Knife graphite deposit located in the Côte-Nord region of northeastern Québec. The Lac Knife project hosts a NI 43-101 compliant Measured and Indicated mineral resource of 4.972 Mt grading 15.7% carbon as crystalline graphite with an additional Inferred mineral resource of 3.000 Mt grading 15.6% crystalline graphite  Focus’ goal is to assume an industry leadership position by becoming a low-cost producer of technology-grade graphite. On October 29th, 2012 the Company released the results of a Preliminary Economic Analysis (“PEA”) of the Lac Knife project which demonstrates that the project has robust economics and excellent potential to become a profitable producer of graphite.  As a technology-oriented enterprise with a view to building long-term, sustainable shareholder value, Focus Graphite is also investing in the development of graphene applications and patents through Grafoid Inc.

About Grafoid Inc.

Grafoid, Inc. is a privately held Canadian corporation investing in graphene applications and economically scalable production processes for graphene and graphene derivatives from raw, unprocessed, graphite ore. Focus Graphite Inc., (TSX-V: FMS; OTCQX: FCSMF; FSE: FKC) holds a 40% interest in Grafoid Inc. [emphasis mine]

About IREQ

Hydro-Québec’s research institute, IREQ, is a global leader in the development of advanced materials for battery manufacturing and creates leading edge processes from its state of the art facilities. IREQ holds more than 100 patent rights and has issued over 40 licenses for battery materials to some of the world’s most successful battery manufacturers and materials suppliers. Its areas of expertise include energy storage and IREQ is a lead partner with private sector companies in Québec to build EV and HEV charging stations in support of its technology developments. Its material development contributions are helping to develop safe, high-performance lithium ion batteries that can be charged more quickly and a greater number of times. IREQ promotes open innovation and partners with private firms, universities, government agencies and research centers in Québec and abroad. Its partnerships allow IREQ to develop, industrialize and market technologies resulting from those innovation projects.

About Hydro-Québec

Hydro-Québec is Canada’s largest electricity producer among the world’s largest hydroelectric power producers and a public utility that generates, transmits and distributes electricity. Its sole shareholder is the Québec government. It primarily exploits renewable generating options, in particular hydropower, and supports the development of wind energy through purchases from independent power producers. Its research institute, IREQ, conducts R&D in energy efficiency, energy storage and other energy-related fields. Hydro-Québec invests more than $100 million per year in research.

Here’s one last bit I want to highlight from the Focus Graphite news release,

“Commercially, and ultimately, our technology development partnership with Hydro-Québec aims to produce high capacity, LFP-graphene batteries with ultra short charging times and longer recyclable lifetimes,” Mr. Economo said [Gary Economo, President and Chief Executive Officer of both Grafoid Inc. and Focus Graphite].

He said the parties chose to focus their collaboration on LFP-graphene batteries and materials because of their short-term-to-market potential.

In light of Dexter’s very informative posting about Li-ion batteries and the investigation into why the storage capatcity degrades, I find this Hydro-Québec/Grafoid Inc. development provides insight into the relationship between scientific research and business and insight into the risks as the various groups compete to bring products to market or to improve those products such that they come to dominate the market.

One last comment, graphite flakes are also mined in Ontario as per both my July 25, 2011 posting and my Feb. 6, 2012 posting about Northern Graphite Corporation and its Bissett Creek mine.