Tag Archives: locusts

Locusts inspire new aerosol-based nanoparticle drug delivery system

Getting medication directly to the brain is a worldwide medical research goal and it seems that a team of scientists at the Washington University at St. Louis (WUSTL) has taken a step forward to accomplishing the goal. From an April 12, 2017 news item on ScienceDaily,

Delivering life-saving drugs directly to the brain in a safe and effective way is a challenge for medical providers. One key reason: the blood-brain barrier, which protects the brain from tissue-specific drug delivery. Methods such as an injection or a pill aren’t as precise or immediate as doctors might prefer, and ensuring delivery right to the brain often requires invasive, risky techniques.

A team of engineers from Washington University in St. Louis has developed a new nanoparticle generation-delivery method that could someday vastly improve drug delivery to the brain, making it as simple as a sniff.

“This would be a nanoparticle nasal spray, and the delivery system could allow a therapeutic dose of medicine to reach the brain within 30 minutes to one hour,” said Ramesh Raliya, research scientist at the School of Engineering & Applied Science.

Caption: Engineers at Washington University have discovered a new technique that could change drug delivery to the brain. They were able to apply a nanoparticle aerosol spray to the antenna of locusts, then track the nanoparticles as they traveled through the olfactory nerves, crossed the blood-brain barrier and accumulated in the brain. This new, non-invasive approach could someday make drug delivery as simple as a sniff for patients with brain injuries or tumors.

Credit: Washington University in St. Louis

An April 12, 2017 WUSTL news release by Erika Ebsworth-Goold (also on EurekAlert), which originated the news item, describes the work in more detail,

“The blood-brain barrier protects the brain from foreign substances in the blood that may injure the brain,” Raliya said. “But when we need to deliver something there, getting through that barrier is difficult and invasive. Our non-invasive technique can deliver drugs via nanoparticles, so there’s less risk and better response times.”

The novel approach is based on aerosol science and engineering principles that allow the generation of monodisperse nanoparticles, which can deposit on upper regions of the nasal cavity via diffusion. Working with Assistant Vice Chancellor Pratim Biswas, chair of the Department of Energy, Environmental & Chemical Engineering and the Lucy & Stanley Lopata Professor, Raliya developed an aerosol consisting of gold nanoparticles of controlled size, shape and surface charge. The nanoparticles were tagged with fluorescent markers, allowing the researchers to track their movement.

Next, Raliya and biomedical engineering postdoctoral fellow Debajit Saha exposed locusts’ antennae to the aerosol, and observed the nanoparticles travel from the antennas up through the olfactory nerves. Due to their tiny size, the nanoparticles passed through the brain-blood barrier, reaching the brain and suffusing it in a matter of minutes.

The team tested the concept in locusts because the blood-brain barriers in the insects and humans have anatomical similarities, and the researchers consider going through the nasal regions to neural pathways as the optimal way to access the brain.

“The shortest and possibly the easiest path to the brain is through your nose,” said Barani Raman, associate professor of biomedical engineering. “Your nose, the olfactory bulb and then olfactory cortex: two relays and you’ve reached the cortex. The same is true for invertebrate olfactory circuitry, although the latter is a relatively simpler system, with supraesophageal ganglion instead of an olfactory bulb and cortex.”

To determine whether or not the foreign nanoparticles disrupted normal brain function, Saha examined the physiological response of olfactory neurons in the locusts before and after the nanoparticle delivery. Several hours after the nanoparticle uptake, no noticeable change in the electrophysiological responses was detected.

“This is only a beginning of a cool set of studies that can be performed to make nanoparticle-based drug delivery approaches more principled,” Raman said.

The next phase of research involves fusing the gold nanoparticles with various medicines, and using ultrasound to target a more precise dose to specific areas of the brain, which would be especially beneficial in brain-tumor cases.

“We want to drug target delivery within the brain using this non-invasive approach,” Raliya said.  “In the case of a brain tumor, we hope to use focused ultrasound so we can guide the particles to collect at that particular point.”

Here’s a link to and a citation for the paper,

Non-invasive aerosol delivery and transport of gold nanoparticles to the brain by Ramesh Raliya, Debajit Saha, Tandeep S. Chadha, Baranidharan Raman, & Pratim Biswas. Scientific Reports 7, Article number: 44718 (2017) doi:10.1038/srep44718 Published online: 16 March 2017

This paper is open access.

I featured another team working on delivering drugs directly to the brain via the olfactory system, except their nanoparticles were gelatin and they were testing stroke medication on rats, in my Sept. 24, 2014 posting.

Dragonfly and locust rubber

There’s a protein in some insects such as dragonflies, mosquitoes (!) and locusts which is superior to synthetic rubber according to a July 30, 2013 news release from the American Chemical Society (ACS) [also on EurekAlert],

Kristi Kiick and colleagues explain that scientists discovered resilin a half-century ago in the wing hinges of locusts and elastic tendons of dragonflies. The extraordinary natural protein tops the best synthetic rubbers. Resilin can stretch to three times its original length, for instance, and then spring back to its initial shape without losing its elasticity, despite repeated stretching and relaxing cycles. That’s a crucial trait for insects that must flap or jump millions of times over their lifetimes. Scientists first synthesized resilin in 2005 and have been striving to harness its properties in medicine.

Kiick’s team describes how their own research and experiments by other scientists are making major strides toward practical applications of resilin. Scientists have modified resilin with gold nanoparticles for possible use in diagnostics, engineered mosquito-based resin to act like human cartilage and developed a hybrid material for cardiovascular applications. “This increasing amount of knowledge gained from studies on natural resilin and resilin-like polypeptides continues to inspire new designs and applications of recombinant resilin-based biopolymers in biomedical and biotechnological applications,” the scientists state.

Illustrating 'insect rubber' [downloaded from http://pubs.acs.org/doi/full/10.1021/mz4002194]

Illustrating ‘insect rubber’ [downloaded from http://pubs.acs.org/doi/full/10.1021/mz4002194]

Here’s a link to and a citation for the researchers’ biomimicry paper published by ACS Macro Letters,

Resilin-Based Materials for Biomedical Applications by Linqing Li and Kristi L. Kiick. ACS Macro Lett., 2013, 2, pp 635–640 DOI: 10.1021/mz4002194 Publication Date (Web): July 11, 2013
Copyright © 2013 American Chemical Society

This paper is open access.