Tag Archives: Loughborough University

Tractor beams for artificial cells

This particular piece has videos of cells moving around. I won’t be including all of them but they are weirdly fascinating. First, a May 14, 2018 news item on Nanowerk announces the latest in tractor beam news from the Imperial College London (ICL; UK),

Researchers have used lasers to connect, arrange and merge artificial cells, paving the way for networks of artificial cells that act like tissues.

The team say that by altering artificial cell membranes they can now get the cells to stick together like ‘stickle bricks’ – allowing them to be arranged into whole new structures.

Biological cells can perform complex functions, but are difficult to controllably engineer.

Artificial cells, however, can in principle be made to order. Now, researchers from Imperial College London and Loughborough University have demonstrated a new level of complexity with artificial cells by arranging them into basic tissue structures with different types of connectivity.

These structures could be used to perform functions like initiating chemical reactions or moving chemicals around networks of artificial and biological cells. This could be useful in carrying out chemical reactions in ultra-small volumes, in studying the mechanisms through which cells communicate with one another, and in the development of a new generation of smart biomaterials.

A May 14, 2018 ICL press release by Hayley Dunning , which originated the news item, provides more detail,

Cells are the basic units of biology, which are capable of working together as a collective when arranged into tissues. In order to do this, cells must be connected and be capable of exchanging materials with one another.

The team were able to link up artificial cells into a range of new architectures, the results of which are published today in Nature Communications.

The artificial cells have a membrane-like layer as their shell, which the researchers engineered to ‘stick’ to each other. In order to get the cells to come close enough, the team first had to manipulate the cells with ‘optical tweezers’ that act like mini ‘tractor beams’ dragging and dropping cells into any position. Once connected in this way the cells can be moved as one unit.

Lead researcher Dr Yuval Elani, an EPSRC Research Fellow from the Department of Chemistry at Imperial, said: “Artificial cell membranes usually bounce off each other like rubber balls. By altering the biophysics of the membranes in our cells, we got them instead to stick to each other like stickle bricks.

“With this, we were able to form networks of cells connected by ‘biojunctions’. By reinserting biological components such as proteins in the membrane, we could get the cells to communicate and exchange material with one another. This mimics what is seen in nature, so it’s a great step forward in creating biological-like artificial cell tissues.”

Building up complexity

The team were also able to engineer a ‘tether’ between two cells. Here the membranes are not stuck together, but a tendril of membrane material links them so that they can be moved together.

Once they had perfected the cell-sticking process, the team were able to build up more complex arrangements. These include lines of cells, 2D shapes like squares, and 3D shapes like pyramids. Once the cells are stuck together, they can be rearranged, and also pulled by the laser beam as an ensemble

Finally, the team were also able to connect two cells, and then make them merge into one larger cell. This was achieved by coating the membranes with gold nanoparticles.

When the laser beam at the heart of the ‘optical tweezer’ technology was concentrated at the junction between the two cells, the nanoparticles resonated, breaking the membranes at that point. The membrane then reforms as a whole.

Merging cells in this way allowed whatever chemicals they were carrying to mix within the new, larger cell, kicking off chemical reactions. This could be useful, for example, for delivering materials such as drugs into cells, and in changing the composition of cells in real time, getting them to adopt new functions.

Professor Oscar Ces, also from the Department of Chemistry at Imperial, said: “Connecting artificial cells together is a valuable technology in the wider toolkit we are assembling for creating these biological systems using bottom-up approaches.

“We can now start to scale up basic cell technologies into larger tissue-scale networks, with precise control over the kind of architecture we create.”

Here’s one of the videos that has been embedded with ICL press release,

You can see the whole series if you go to the May 14, 2018 ICL press release.

Here’s a link to and a citation for the paper,

Sculpting and fusing biomimetic vesicle networks using optical tweezers by Guido Bolognesi, Mark S. Friddin, Ali Salehi-Reyhani, Nathan E. Barlow, Nicholas J. Brooks, Oscar Ces, & Yuval Elani. Nature Communicationsvolume 9, Article number: 1882 (2018) doi:10.1038/s41467-018-04282-w Published: 14 May 2018

This paper is open access.

3D printed clothing

A seamless garment or article of footwear would minimize skin irritation for those of us not able to afford custom couture and an April 19, 2016 news item on ScienceDaily offers hope in an announcement of efforts by a team of UK scientists to change the textile industry’s approach to garment and footwear construction,

Loughborough University has teamed up with global textile and garment manufacturer the Yeh Group, to embark on landmark work in 3D textile printing that could revolutionise how clothes and footwear are made.

Personalised 3D printed fashion — manufactured within 24 hours — is the end goal of a new project led by Loughborough University that’s set to change the way we shop for clothes.

An April 18, 2016 Loughborough University press release, which originated the news item, describes the project (Note: Links have been removed),

Dr Guy Bingham, Senior Lecturer in Product and Industrial Design, has teamed up with global textile and garment manufacturer the Yeh Group, to embark on landmark work in 3D textile printing that could revolutionise how clothes and footwear are made.

The 18-month project[1], known as 3D Fashion, will see Dr Bingham – a world leader in his field – produce 3D wearable, full size, Additive Manufacturing (AM) textile garments and footwear – with design input from a major fashion house.

Advancements in AM textiles have made it possible to produce 3D printed garments directly from raw material, such as polymer, in a single manufacturing operation. This technology not only has the potential to reduce waste, labour costs and CO2e, but can modernise clothing production by encouraging localised manufacturing and production.

Currently, garment manufacture generates 1.8 million tonnes of waste material – equivalent to 70kg or 100 pairs of jeans per UK household, with 6.3 billion m³ of water used in the process – equivalent to 200,000 litres per year per household or 1,000 filled bathtubs[2].

Dr Bingham said: “With 3D printing there is no limit to what you can build and it is this design freedom which makes the technology so exciting by bringing to life what was previously considered to be impossible.

“This landmark technology allows us as designers to innovate faster and create personalised, ready-to-wear fashion in a digital world with no geometrical constraints and almost zero waste material. We envisage that with further development of the technology, we could 3D print a garment within 24 hours.

David Yeh, Managing Director, Tong Siang (Yeh Group), said: “3D Fashion supports the Yeh Group vision of direct polymer to garment manufacture. The Yeh Group is always striving to cut out unnecessary waste and resource use, and support the industries goals of faster to market, creating a manufacturing technology that brands and retailers can install closer to their customers. This is all with no compromise to performance.”

Loughborough University has produced a video about this project,

You can find out more about the Yeh Group on their website or on their Facebook page. I believe the company is headquartered in Thailand but I can’t tell if Tong Siang (the Yeh Group? on LinkedIn) is the corporate parent, the subsidiary, or an alternate company name.