Tag Archives: Lund University

Plastic nanoparticles and brain damage in fish

Researchers in Sweden suggest plastic nanoparticles may cause brain damage in fish according to a Sept. 25, 2017 news item on phys.org,

Calculations have shown that 10 per cent of all plastic produced around the world ultimately ends up in the oceans. As a result, a large majority of global marine debris is in fact plastic waste. Human production of plastics is a well-known environmental concern, but few studies have studied the effects of tiny plastic particles, known as nanoplastic particles.

“Our study is the first to show that nanosized plastic particles can accumulate in fish brains”, says Tommy Cedervall, a chemistry researcher at Lund University.

A Sept. 25, 2017 Lund University press release, which originated the news item, provides more detail about the research,

The Lund University researchers studied how nanoplastics may be transported through different organisms in the aquatic ecosystem, i.e. via algae and animal plankton to larger fish. Tiny plastic particles in the water are eaten by animal plankton, which in turn are eaten by fish.

According to Cedervall, the study includes several interesting results on how plastic of different sizes affects aquatic organisms. Most importantly, it provides evidence that nanoplastic particles can indeed cross the blood-brain barrier in fish and thus accumulate inside fish’s brain tissue.

In addition, the researchers involved in the present study have demonstrated the occurrence of behavioural disorders in fish that are affected by nanoplastics. They eat slower and explore their surroundings less. The researchers believe that these behavioural changes may be linked to brain damage caused by the presence of nanoplastics in the brain.

Another result of the study is that animal plankton die when exposed to nanosized plastic particles, while larger plastic particles do not affect them. Overall, these different effects of nanoplastics may have an impact on the ecosystem as a whole.

“It is important to study how plastics affect ecosystems and that nanoplastic particles likely have a more dangerous impact on aquatic ecosystems than larger pieces of plastics”, says Tommy Cedervall.

However, he does not dare to draw the conclusion that plastic nanoparticles could accumulate in other tissues in fish and thus potentially be transmitted to humans through consumption.

“No, we are not aware of any such studies and are therefore very cautious about commenting on it”, says Tommy Cedervall.

Here’s a link to and a citation for the paper,

Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain by Karin Mattsson, Elyse V. Johnson, Anders Malmendal, Sara Linse, Lars-Anders Hansson & Tommy Cedervall. Scientific Reports 7, Article number: 11452 (2017) doi:10.1038/s41598-017-10813-0 Published online: 13 September 2017

This paper is open access.

Implications of nanoplastic in the aquatic food chain

As plastic breaks down in the oceans into plastic nanoparticles, they enter the food chain when they are ingested by plankton. Researchers in Sweden have published a study about the process. From a May 23, 2016 news item on ScienceDaily,

Plastic accounts for nearly eighty per cent of all waste found in our oceans, gradually breaking down into smaller and smaller particles. New research from Lund University in Sweden investigates how nanosized plastic particles affect aquatic animals in different parts of the food chain.

“Not very many studies have been done on this topic before. Plastic particles of such a small size are difficult to study,” says Karin Mattsson.

A May 23, 2016 Lund University press release, which originated the news item, provides more detail,

“We tested how polystyrene plastic particles of different sizes, charge and surface affect the zooplankton Daphnia. It turned out that the size of the nanoparticles that were most toxic to the Daphnia in our study was 50 nanometers”, says Karin Mattsson.

Because zooplankton like Daphnia are also food for many other aquatic animals, the researchers wanted to study the effect of plastic particles higher up in the food chain. They found that fish that ate Daphnia containing nanoplastics experienced a change in their predatory behaviour and poor appetite. In several studies, researchers also discovered that the nanoparticles had the ability to cross biological barriers, such as the intestinal wall and brain.

“Although in our study we used much larger amounts of nanoplastic than those present in oceans today, we suspect that plastic particles may be accumulated inside the fish. This means that even low doses could ultimately have a negative effect”, says Karin Mattsson.

Plastic breaks down very slowly in nature, and once the microscopically small plastic particles reach lakes and oceans they are difficult to remove. Plastic particles also bind environmental toxins that can become part of the food chain when consumed accidentally.

“Our research indicates the need for more studies and increased caution in the use of nanoplastics”, she says.

Karin Mattsson is a physicist and her research project was produced in collaboration between the Centre for Environmental and Climate Research, the Division Biochemistry and Structural Biology and the Division of Aquatic Biology at Lund University. Karin Mattsson is also affiliated with NanoLund, where several studies are currently conducted to evaluate the safety of nanoparticles.

Here’s a link to and a citation for a paper published online in 2014 and in print in 2015,

Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles by Karin Mattsson, Mikael T. Ekvall, Lars-Anders Hansson, Sara Linse, Anders Malmendal, and Tommy Cedervall. Environ. Sci. Technol., 2015, 49 (1), pp 553–561 DOI: 10.1021/es5053655
Publication Date (Web): November 07, 2014

Copyright © 2014 American Chemical Society

More recently, Karin Mattson has published her PhD thesis on the topic (I believe it is written in Swedish).

Better neuroprostheses for brain diseases and mental illneses

I don’t often get news releases from Sweden but I do on occasion and, sometimes, they even come in their original Swedish versions. In this case, Lund University sent me an English language version about their latest work making brain implants (neural prostheses) safer and effective. From a Sept. 29, 2015 Lund University news release (also on EurekAlert),

Neurons thrive and grow in a new type of nanowire material developed by researchers in Nanophysics and Ophthalmology at Lund University in Sweden. In time, the results might improve both neural and retinal implants, and reduce the risk of them losing their effectiveness over time, which is currently a problem

By implanting electrodes in the brain tissue one can stimulate or capture signals from different areas of the brain. These types of brain implants, or neuro-prostheses as they are sometimes called, are used to treat Parkinson’s disease and other neurological diseases.

They are currently being tested in other areas, such as depression, severe cases of autism, obsessive-compulsive disorders and paralysis. Another research track is to determine whether retinal implants are able to replace light-sensitive cells that die in cases of Retinitis Pigmentosa and other eye diseases.

However, there are severe drawbacks associated with today’s implants. One problem is that the body interprets the implants as foreign objects, resulting in an encapsulation of the electrode, which in turn leads to loss of signal.

One of the researchers explains the approach adopted by the research team (from the news release),

“Our nanowire structure prevents the cells that usually encapsulate the electrodes – glial cells – from doing so”, says Christelle Prinz, researcher in Nanophysics at Lund University in Sweden, who developed this technique together with Maria Thereza Perez, a researcher in Ophthalmology.

“I was very pleasantly surprised by these results. In previous in-vitro experiments, the glial cells usually attach strongly to the electrodes”, she says.

To avoid this, the researchers have developed a small substrate where regions of super thin nanowires are combined with flat regions. While neurons grow and extend processes on the nanowires, the glial cells primarily occupy the flat regions in between.

“The different types of cells continue to interact. This is necessary for the neurons to survive because the glial cells provide them with important molecules.”

So far, tests have only been done with cultured cells (in vitro) but hopefully they will soon be able to continue with experiments in vivo.

The substrate is made from the semiconductor material gallium phosphide where each outgrowing nanowire has a diameter of only 80 nanometres (billionths of a metre).

Here’s a link to and a citation for the paper,

Support of Neuronal Growth Over Glial Growth and Guidance of Optic Nerve Axons by Vertical Nanowire Arrays by Gaëlle Piret, Maria-Thereza Perez, and Christelle N. Prinz. ACS Appl. Mater. Interfaces, 2015, 7 (34), pp 18944–18948 DOI: 10.1021/acsami.5b03798 Publication Date (Web): August 11, 2015

Copyright © 2015 American Chemical Society

This paper appears to be open access as I was able to link to the PDF version.

Swedish nano plans in Lund

It was a bit a surprise to learn a few years ago that Chalmers University of Technology (Sweden) was the lead in the European Union’s Graphene Flagship project. I was expecting the lead to be one of the British universities, specifically, the University of Manchester seeing that graphene was first isolated there by Nobel Laureates Andre Geim and Konstantan (Kostya) Novoselov, Since then, I’ve kept an eye on the Swedish nanotechnology enterprise and am pleased to have received a Feb. 13, 2014 announcement about hopes for establishing a new nano centre in Lund, Sweden,

A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source.

“With this new facility, we want to create the conditions to enable new companies to develop from the R&D phase to full production, without needing to leave Sweden,” says Lars Samuelson, Professor of Nanophysics at Lund University.

The project originates from the successful research into nanowires at Lund University, which has resulted in nanotechnology companies like Glo AB and Sol Voltaics AB. Glo was forced to move to Silicon Valley, however, to launch large-scale mass production.

The infrastructure would be intended for companies and researchers in the whole of Sweden who want to develop products with industry standards without needing to invest in expensive equipment themselves.

Samuelson sees more business opportunities for nanowires. In addition to Glo’s light-emitting diodes and Sol Voltaics’ solar cells, Lars Samuelson believes there is potential for new companies focused on applications within electronics, UV light-emitting diodes and biomedicine.

Alongside this project, Lund University is working to extend the Lund Nano Lab which is a pure research laboratory for research on nanowires. This is run by Lund University, whereas the industrial facility is a project outside the University. Together, these two initiatives constitute a way of generating the whole value chain from research to market.

The preliminary study into the facility, funded by Vinnova [Sweden’s innovation agency] and Region Skåne and initiated by the Nanometer Structure Consortium at Lund University, is to result in an estimate of investment requirements and market potential, as well as a proposal for a business model. The aim is to become internationally competitive and financially self-sufficient.

A cluster of companies and services, close to the University’s research, is expected to develop around the common equipment for nanoproduction.

About the Nanometer Structure Consortium at Lund University nmC@LU

The Nanometer Structure Consortium at Lund University was founded in 1989. Today, it is one of Sweden’s Strategic Research Areas, engaging more than 250 researchers at the Faculties of Engineering, Science and Medicine. The research focuses on the materials science of nanostructures and its applications within fundamental science, electronics, optoelectronics, energy conversion and life sciences. Former start-ups from the Nanometer Structure Consortium currently employ around 150 people and have attracted private investments of over one billion Swedish crowns.

I suspect this announcement is intended to both raise awareness and, more importantly, attract potential investors as it goes on to provide a number of contacts,

Initiator: Lars Samuelson, Professor, Nanometer Structure Consortium, Lund University, tel. +46 46 222 76 79, lars.samuelson@ftf.lth.se

Chair of the project’s steering group: Heiner Linke, Professor, Coordinator of the Nanometer Structure Consortium, Lund University, tel. +46 46 222 42 45, heiner.linke@ftf.lth.se

Project manager: Yvonne Mårtensson, Nanova, tel. +46 708 337782, yvonne.martensson@nanova.se

Daniel Kronmann, Innovation Systems Unit, Region Skåne, 040-675 34 36, 0706-15 28 10, Daniel.Kronmann@skane.se

International Media Officer
+46 72 7074546

I wish them good luck with their plans.

US Air Force wants to merge classical and quantum physics

The US Air Force wants to merge classical and quantum physics for practical purposes according to a May 5, 2014 news item on Azonano,

The Air Force Office of Scientific Research has selected the Harvard School of Engineering and Applied Sciences (SEAS) to lead a multidisciplinary effort that will merge research in classical and quantum physics and accelerate the development of advanced optical technologies.

Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, will lead this Multidisciplinary University Research Initiative [MURI] with a world-class team of collaborators from Harvard, Columbia University, Purdue University, Stanford University, the University of Pennsylvania, Lund University, and the University of Southampton.

The grant is expected to advance physics and materials science in directions that could lead to very sophisticated lenses, communication technologies, quantum information devices, and imaging technologies.

“This is one of the world’s strongest possible teams,” said Capasso. “I am proud to lead this group of people, who are internationally renowned experts in their fields, and I believe we can really break new ground.”

A May 1, 2014 Harvard University School of Engineering and Applied Sciences news release, which originated the news item, provides a description of project focus: nanophotonics and metamaterials along with some details of Capasso’s work in these areas (Note: Links have been removed),

The premise of nanophotonics is that light can interact with matter in unusual ways when the material incorporates tiny metallic or dielectric features that are separated by a distance shorter than the wavelength of the light. Metamaterials are engineered materials that exploit these phenomena, producing strange effects, enabling light to bend unnaturally, twist into a vortex, or disappear entirely. Yet the fabrication of thick, or bulk, metamaterials—that manipulate light as it passes through the material—has proven very challenging.

Recent research by Capasso and others in the field has demonstrated that with the right device structure, the critical manipulations can actually be confined to the very surface of the material—what they have dubbed a “metasurface.” These metasurfaces can impart an instantaneous shift in the phase, amplitude, and polarization of light, effectively controlling optical properties on demand. Importantly, they can be created in the lab using fairly common fabrication techniques.

At Harvard, the research has produced devices like an extremely thin, flat lens, and a material that absorbs 99.75% of infrared light. But, so far, such devices have been built to order—brilliantly suited to a single task, but not tunable.

This project, however,is focused on the future (Note: Links have been removed),

“Can we make a rapidly configurable metasurface so that we can change it in real time and quickly? That’s really a visionary frontier,” said Capasso. “We want to go all the way from the fundamental physics to the material building blocks and then the actual devices, to arrive at some sort of system demonstration.”

The proposed research also goes further. A key thrust of the project involves combining nanophotonics with research in quantum photonics. By exploiting the quantum effects of luminescent atomic impurities in diamond, for example, physicists and engineers have shown that light can be captured, stored, manipulated, and emitted as a controlled stream of single photons. These types of devices are essential building blocks for the realization of secure quantum communication systems and quantum computers. By coupling these quantum systems with metasurfaces—creating so-called quantum metasurfaces—the team believes it is possible to achieve an unprecedented level of control over the emission of photons.

“Just 20 years ago, the notion that photons could be manipulated at the subwavelength scale was thought to be some exotic thing, far fetched and of very limited use,” said Capasso. “But basic research opens up new avenues. In hindsight we know that new discoveries tend to lead to other technology developments in unexpected ways.”

The research team includes experts in theoretical physics, metamaterials, nanophotonic circuitry, quantum devices, plasmonics, nanofabrication, and computational modeling. Co-principal investigator Marko Lončar is the Tiantsai Lin Professor of Electrical Engineering at Harvard SEAS. Co-PI Nanfang Yu, Ph.D. ’09, developed expertise in metasurfaces as a student in Capasso’s Harvard laboratory; he is now an assistant professor of applied physics at Columbia. Additional co-PIs include Alexandra Boltasseva and Vladimir Shalaev at Purdue, Mark Brongersma at Stanford, and Nader Engheta at the University of Pennsylvania. Lars Samuelson (Lund University) and Nikolay Zheludev (University of Southampton) will also participate.

The bulk of the funding will support talented graduate students at the lead institutions.

The project, titled “Active Metasurfaces for Advanced Wavefront Engineering and Waveguiding,” is among 24 planned MURI awards selected from 361 white papers and 88 detailed proposals evaluated by a panel of experts; each award is subject to successful negotiation. The anticipated amount of the Harvard-led grant is up to $6.5 million for three to five years.

For anyone who’s not familiar (that includes me, anyway) with MURI awards, there’s this from Wikipedia (Note: links have been removed),

Multidisciplinary University Research Initiative (MURI) is a basic research program sponsored by the US Department of Defense (DoD). Currently each MURI award is about $1.5 million a year for five years.

I gather that in addition to the Air Force, the Army and the Navy also award MURI funds.

INFERNOS: realizing Maxwell’s Demon

Before getting to the INFERNOS project and its relationship to Maxwell’s demon, I want to share a pretty good example of this ‘demon’ thought experiment which, as recently as Feb. 4, 2013, I featured in a piece about quantum dots,

James Clerk Maxwell, physicist,  has entered the history books for any number reasons but my personal favourite is Maxwell’s demon, a thought experiment he proposed in the 1800s to violate the 2nd law of thermodynamics. Lisa Zyga in her Feb. 1, 2013 article for phys.org provides an explanation,

When you open your door on a cold winter day, the warm air from your home and the cold air from outside begin to mix and evolve toward thermal equilibrium, a state of complete entropy where the temperatures outside and inside are the same. This situation is a rough example of the second law of thermodynamics, which says that entropy in a closed system never decreases. If you could control the air flow in a way that uses a sufficiently small amount of energy, so that the entropy of the system actually decreases overall, you would have a hypothetical mechanism called Maxwell’s demon.

An Oct. 9, 2013 news item on Nanowerk ties together INFERNOS and the ‘demon’,

Maxwell’s Demon is an imaginary creature that the mathematician James Clerk Maxwell created in 1897. The creature could turn heat into work without causing any other change, which violates the second law of thermodynamics. The primary goal of the European project INFERNOS (Information, fluctuations, and energy control in small systems) is to realize experimentally Maxwell’s Demon; in other words, to develop the electronic and biomolecular nanodevices that support this principle.

The Universitat de Barcelona (University of Barcelona) Oct. 7, 2013 news release, which originated the news item, provides more details about the project,

Although Maxwell’s Demon is one of the cornerstones of theoretical statistical mechanisms, little has been done about its definite experimental realization. Marco Ribezzi, researcher from the Department of Fundamental Physics, explains that “the principal novelty of INFERNOS is to bring a robust and rigorous experimental base for this field of knowledge. We aim at creating a device that can use information to supply/extract energy to/from a system”. In this sense, the UB group, in which researcher Fèlix Ritort from the former department also participates, focuses their activity on understanding how information and temperature changes are used in individual molecules manipulation.

From the theory side, researchers will work in order to develop a theory of the fluctuation processes in small systems, which would then facilitate efficient algorithms for the Maxwell’s Demon operation.

INFERNOS is a three-year European project of the programme Future and Emerging Technologies (FET). Besides the University of Barcelona, INFERNOS partners are: Aalto University (Finland), project coordinator, Lund University (Sweden), the University of Oslo (Norway), Delf University of Technology (Netherlands), the National Center for Scientific Research (France) and the Research Foundation of State University of New York.

I like the INFERNOS logo, demon and all,

Logo of the European project INFERNOS (Information, fluctuations, and energy control in small systems).

Logo of the European project INFERNOS (Information, fluctuations, and energy control in small systems).

The INFERNOS project website can be found here.

And for anyone who finds that music is the best way to learn, here are Flanders & Swann* performing ‘First and Second Law’ from a 1964 show,


* ‘Swan’ corrected to ‘Swann’ on April 1, 2014.

Norwegians weigh in with research into wood nanocellulose healing application

It’s not just the Norwegians but they certainly seem to be leading the way on the NanoHeal project. Here’s a little more about the intricacies of healing wounds and why wood nanocellulose is being considered for wound healing, from the Aug. 23, 2012 news item on Nanowerk,

Wound healing is a complicated process consisting of several different phases and a delicate interaction between different kinds of cells, signal factors and connective tissue substance. If the wound healing does not function optimally, this can result in chronic wounds, cicatrisation or contractures. By having an optimal wound dressing such negative effects can be reduced. A modern wound dressing should be able to provide a barrier against infection, control fluid loss, reduce the pain during the treatment, create and maintain a moist environment in the wound, enable introduction of medicines into the wound, be able to absorb exudates during the inflammatory phase, have high mechanical strength, elasticity and conformability and allow for easy and painless release from the wound after use.

Nanocellulose is a highly fibrillated material, composed of nanofibrils with diameters in the nanometer scale (< 100 nm), with high aspect ratio and high specific surface area (“Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view” [open access article in Nanoscale Research Letters]). Cellulose nanofibrils have many advantageous properties, such as high strength and ability to self-assembly.

Recently, the suitability of cellulose nanofibrils from wood for forming elastic cryo-gels has been demonstrated by scientists from Paper and Fibre Research Institute (PFI) and Lund University (“Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels”  [open access in Nanoscale Research Letters). Cryogelation is a technique that makes it possible to engineer 3-D structures with controlled porosity. A porous structure with interconnected pores is essential for use in modern wound healing in which absorption of exudates, release of medicines into the wound or exchange of cells are essential properties.

The Research Council of Norway recently awarded a grant to the NanoHeal project, from the project page on the PFI (Pulp and Fibre Research Institute) website,

This multi-disciplinary research programme will develop novel material solutions for use in advanced wound healing based on nanofibrillated cellulose structures. This proposal requires knowledge on the effective production and application of sustainable and innovative micro- and nanofibres based on cellulose. The project will assess the ability of these nanofibres to interact with complementary polymers to form novel material structures with optimised adhesion and moulding properties, absorbance, porosity and mechanical performance.  The NanoHeal proposal brings together leading scientists in the fields of nanocellulose technology, polymer chemistry, printing and nanomedicine, to produce biocompatible and biodegradable natural polymers that can be functionalized for clinical applications. As a prototype model, the project will develop materials for use in wound healing. However, the envisaged technologies of synthesis and functionalization will have a diversity of commercial and industrial applications.

The project is funded by the Research Council of Norway/NANO2021, and is a cooperation between several leading R&D partners.

  • PFI
  • NTNU [Norwegian University of Science and Technology], Faculty of medicine
  • Cardiff University
  • Swansea University
  • Lund University
  • AlgiPharma

Project period: 2012-2016

I wonder when I’m going to start hearing about Canadian research into wood nanocellulose  (nanocrystalline cellulose or otherwise) applications.

Nanotechnology and biocompatibility; carbon nanotubes in agriculture; venture capital for nanotechnology

One of the big nanotechnology toxicity issues centers around the question of its biocompatibility i.e. what effect do the particles have on cells in human bodies, plants, and other biological organisms? Right now, the results are mixed. Two studies have recently been published which suggest that there are neutral or even positive responses to nanoparticles.

Researchers at Lund University (Sweden) have conducted tests of nanowires, which they are hoping could be used as electrodes in the future, showing that microglial cells break down the nanowires and almost completely clean them away over a period of weeks. You can read more about the work here on Nanowerk. I would expect they’ll need to do more studies confirming these results as well more tests establishing what happens to the nanowire debris over longer periods of time and what problems, if any, emerge when electrodes are introduced in succession (i.e. how many times can you implant nanowires and have them ‘mostly’ cleaned away?).

The other biocompatibility story centers on food stuffs. Apparently carbon nanotubes can have a positive effect on crops. According to researchers in Arkansas*, Mariya Khodakovskaya, Alexandru Biris, and their colleagues, the treated seeds (tomato) sprouted twice as fast and grew more than twice as much as their untreated neighbours. The news item is here on Nanowerk and there is a more in-depth article about agriculture and nanotechnology here in Nanowerk Spotlight. (Note: I have checked and both of the papers have been published although I believe they’re both behind paywalls.)

It seems be to a Nanowerk day as I’m featuring the site again for this item. They have made a guide to finding venture capital for startup nanotechnology companies available on their site. From the item,

To help potential nanotechnology start-up founders with shaping their plans, Nanowerk, the leading nanotechnology information service, and Nanostart, the world’s leading nanotechnology venture capital company, have teamed up to provide this useful guide which particularly addresses the funding aspects of nanotechnology start-ups, along with answers to some of the most commonly asked questions.

You can read more here.

*’Arkansaa’ corrected to ‘Arkansas’ on Dec. 7, 2017.