Tag Archives: Lynn Frewer

Singaporeans’ perceptions of nanotechnology and consumer attitudes towards nanotechnologies in food production

This is the first time I’ve seen a study about nanotechnology perception and awareness from Asia. (As I’m sure this is not the first or the only such study, I lament my language skills once more. Since my primary search is for English language materials with my second language, French, as a very distant second, I am limited to translated materials.)

This piece of research comes from Singapore. From a Dec. 11, 2014 news item on the Asian Scientist magazine website,

A survey published in the Journal of Nanoparticle Research shows that while the Singaporean population is more familiar with nanotechnology than their Western counterparts in the US and Europe, they are also more wary of the risks involved.

Asia is expected to dominate the use and release of nanomaterials into the environment, largely due to the size of the population. Furthermore, the region in general—and Singapore in particular—has invested heavily in nanotechnology research, rapidly translating their findings into industrial and consumer products. However, there has been a lack of studies documenting public attitudes and acceptance of new technologies such as nanotechnology.

To address this gap of information, a team of researchers led by first author Dr. Saji George from the Nanyang Polytechnic (NYP) Center for Sustainable Nanotechnology conducted a survey of 1,080 Singaporeans above the age of 15. Their results revealed that approximately 80 percent had some understanding of nanotechnology.

A June 20, 2014 Nanyang Polytechnic media release provides additional details about the research,

In a recent public perception study conducted in Singapore with 1,000 respondents, researchers from Nanyang Polytechnic’s (NYP) Centre for Sustainable Nanotechnology (CSN) found that 80% of respondents were aware of nanotechnology, while only 40% of them were positive about its benefits. This was shared at the official launch of the CSN today. The event was graced by Mr Derek Ho, Director-General, Environmental Public Health Division, National Environment Agency (NEA).

The Centre is the first-of-its-kind among institutes of higher learning (IHLs) in Singapore. It is dedicated to studying the potential impact of novel engineered nanomaterials, and developing ways to ensure that nanotechnology applications are adopted in a sustainable manner for individuals and the environment. This makes the $1 million facility a key training facility for NYP’s students from the Schools of Chemical & Life Sciences, Engineering, and Health Sciences.

Perceptions influenced by exposure to prior information

The perception study conducted in collaboration with the United Kingdom’s Newcastle University, is part of a worldwide study. [emphasis mine] About 1,000 respondents were surveyed in Singapore. Among them, 80% had some level of familiarity with nanotechnology,  while only 40% of them were positive about its benefits. One of the strong determinants that influenced the perception of the public was their prior exposure to news on adverse effects of nanotechnology. This could be due to negative information on nanotechnology carried in the media. Often these are over interpretations of laboratory studies that tend to dampen public confidence in nanotechnology.

“Nanotechnology may be a double-edged sword in some applications. A large proportion of the population is already aware of it, and interestingly, 60% have actually come across negative information on nanotechnology. This points to the need for the Centre for Sustainable Nanotechnology to conduct its work robustly and effectively, to sharpen the benefits, and blunt the risks associated with nanotechnology. This will enable industries to better apply the relevant solutions, and for people to use products containing nanotechnology more confidently. Another impetus for the Centre is that through such studies, companies will learn what consumers are concerned about in specific types of products and how these concerns can be addressed during product design and manufacturing stages,” said Dr Joel Lee, Director of NYP’s School of Chemical & Life Sciences where the Centre is located.

The study also found variations in perception among different socio-demographic groups, and among applications of nanotechnology across different product ranges, for example food, baby products, medicine, clothing, cosmetics, water filters and electronics.

While this is a segue, there’s a very interesting tidbit about silver nanoparticles in this media release,

Smarter Antibacterial Nanotechnology

Since the CSN started operations in 2013, senior lecturers, Dr Saji George and Dr Hannah Gardner, from NYP’s Schools of Chemical & Life Sciences and Engineering, respectively, have studied the effectiveness of nano-silver in eliminating bacteria – which accounts for 30% of commercial nanotechnology – in applications currently available in the market. Nano-silver is largely used as an alternate anti-microbial solution in a range of industries, including clothing, baby products, personal care products and medicine.

Their research findings, now filed as a patent, uncovered that some drug resistant bacterial strains could also develop resistance to silver, contrary to the general notion that all bacterial strains will succumb to it. The duo then designed and developed a cost-effective method to generate cationic polymer coated silver nanoparticles. They observed that these nanoparticles could eliminate pathogenic bacteria regardless of their ability to resist antibiotics and silver.

Dr Lee added, “Nano-silver has captured the attention of industry and researchers. What we hope to achieve with the CSN is two-fold. We aim to be a resource for industries and even government regulatory agencies to tap on to better understand nanotechnology, its effects, and improve on its applications. These would also translate into real-world industry projects for our students and equip them to better serve the industry when they embark on their careers.”

Here’s a link to and citation for the paper,

Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore by Saji George, Gulbanu Kaptan, Joel Lee, Lynn Frewer. Journal of Nanoparticle Research November 2014, 16:2751 Date: 22 Nov 2014

This paper is behind a paywall.

I did search for the “… worldwide study” regarding nanotechnology awareness and perceptions but found instead a recently published study on the topic of consumer attitudes towards nanotechnologies used in food production practices which features George and Frewer,

Consumer attitudes towards nanotechnologies applied to food production by L.J. Frewer, N. Gupta, S. George, A.R.H. Fischer, E.L. Giles, and D. Coles. Trends in Food Science & Technology, Volume 40, Issue 2, December 2014, Pages 211–225 (Special Issue: Nanotechnology in Foods: Science behind and future perspectives)

This article is behind a paywall.

Agriculture and nano in Ireland and at Stanford University (California)

I have two news items one of which concerns the countries of  Ireland and Northern Ireland and a recent workshop on agriculture and nanotechnology held in Belfast, Northern Ireland . The papers presented at the workshop have now been made available for downloading according to a Jan. 25, 2014 news item on Nanowerk,

On January 9, 2014, safefood, the Institute for Global Food Security, Queen’s University Belfast, and Teagasc Food Research Centre organized a workshop Nanotechnology in the agri-food industry: Applications, opportunities and challenges. The presentations from this event are now availabled as downloadable pdf files …

According to its hompage, Teagasc “is the agriculture and food development authority in Ireland. Its mission is to support science-based innovation in the agri-food sector and the broader bioeconomy that will underpin profitability, competitiveness and sustainability.”

The full list of presentations and access to them can be found on Nanowerk or on this Teagasc publications page,

Presentations

My next item is also focused on agriculture although not wholly. From a Jan. 26, 2014 news item on Nanowerk,

University researchers from two continents have engineered an efficient and environmentally friendly catalyst for the production of molecular hydrogen (H2), a compound used extensively in modern industry to manufacture fertilizer and refine crude oil into gasoline.

The Stanford University School of Engineering news release (dated Jan. 27, 2014) by Tom Abate, which originated the news item, (Note: Links have been removed) describes the work,

Although hydrogen is an abundant element, it is generally not found as the pure gas H2 but is generally bound to oxygen in water (H2O) or to carbon in methane (CH4), the primary component in natural gas. At present, industrial hydrogen is produced from natural gas using a process that consumes a great deal of energy while also releasing carbon into the atmosphere, thus contributing to global carbon emissions.

In an article published today in Nature Chemistry, nanotechnology experts from Stanford Engineering and from Denmark’s Aarhus University explain how to liberate hydrogen from water on an industrial scale by using electrolysis.

In electrolysis, electrical current flows through a metallic electrode immersed in water. This electron flow induces a chemical reaction that breaks the bonds between hydrogen and oxygen atoms. The electrode serves as a catalyst, a material that can spur one reaction after another without ever being used up. Platinum is the best catalyst for electrolysis. If cost were no object, platinum might be used to produce hydrogen from water today.

But money matters. The world consumes about 55 billion kilograms of hydrogen a year. It now costs about $1 to $2 per kilogram to produce hydrogen from methane. So any competing process, even if it’s greener, must hit that production cost, which rules out electrolysis based on platinum.

In their Nature Chemistry paper, the researchers describe how they re-engineered the atomic structure of a cheap and common industrial material to make it nearly as efficient at electrolysis as platinum – a finding that has the potential to revolutionize industrial hydrogen production.

The project was conceived by Jakob Kibsgaard, a post-doctoral researcher with Thomas Jaramillo, an assistant professor of chemical engineering at Stanford. Kibsgaard started this project while working with Flemming Besenbacher, a professor at the Interdisciplinary Nanoscience Center (iNANO) at Aarhus.

There’s more about about the history of electrolysis and hydrogen production and about how the scientists developed their technique in the news release but this time I want to focus on the issue of scalability,. From the news release,

But in chemical engineering, success in a beaker is only the beginning.

The larger questions were: could this technology scale to the 55 billion kilograms per year global demand for hydrogen, and at what finished cost per kilogram?

Last year, Jaramillo and a dozen co-authors studied four factory-scale production schemes in an article for The Royal Society of Chemistry’s journal of Energy and Environmental Science.

They concluded that it could be feasible to produce hydrogen in factory-scale electrolysis facilities at costs ranging from $1.60 to $10.40 per kilogram – competitive at the low end with current practices based on methane – though some of their assumptions were based on new plant designs and materials.

“There are many pieces of the puzzle still needed to make this work and much effort ahead to realize them,” Jaramillo said. “However, we can get huge returns by moving from carbon-intensive resources to renewable, sustainable technologies to produce the chemicals we need for food and energy.”

Here’s a link to and a citation for the researchers’ paper,

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters by Jakob Kibsgaard, Thomas F. Jaramillo, & Flemming Besenbacher. Nature Chemistry (2014) doi:10.1038/nchem.1853 Published online 26 January 2014

This article is behind a paywall.