Tag Archives: Lynn L. Bergeson

Celebrating the 20th Anniversary of the Authorization of the US 21st Century Nanotechnology Research and Development Act

The US National Nanotechnology Initiative (NNI) was signed into existence by then US President Bill Clinton in 2000 (one of his last official acts while still in office) but it was then US President George W. Bush who signed the 21st Century Nanotechnology Research and Development Act in 2003. My understanding is the act gave the NNI a more permanent status.

In any event it’s the 20th anniversary of the 2003 signing of the act as noted in a December 6, 2023 posting by : Lynn L. Bergeson and Carla N. Hutton on the National Law Review blog, Note: A link has been removed,

The White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) announced on December 4, 2023, a series of events to drive U.S. leadership in nanotechnology, in celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act. The announcement notes that for the past two decades, the National Nanotechnology Initiative (NNI) “has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society.” …

A December 4, 2023 White House Office of Science and Technology Policy (OSTP) news release announced the 20th anniversary and celebrations, Note: Links have been removed,

In celebration of the 20-year anniversary of the 21st Century Nanotechnology Research and Development Act, the White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) are announcing a series of events to drive U.S. leadership in nanotechnology.

For the past two decades, the National Nanotechnology Initiative (NNI) has worked with more than 20 departments and agencies to advance a vision to understand and control matter at the nanoscale, for the benefit of society. Coordination across the government has allowed Americans to safely enjoy the benefits of nanotechnology, which has led to revolutions in technology and industry, including faster microchips, powerful mRNA vaccines, and clean energy technologies. Meanwhile, carbon nanotubes have improved the power and lifecycle of batteries; quantum dots make flat screen TVs more vibrant; and nanoparticles allow for faster medical diagnostics.

“Over the years, the NNI has dynamically and responsibly responded to the needs of the country,” said Dr. Branden Brough, Director of NNCO, which coordinates the NNI. “The initiative is a model for collaborative and thoughtful technology development, while supporting the rapid development of other emerging fields by creating the infrastructure and workforce development programs that bolster these growing industries.”

The NNI community will host a symposium on March 5, 2024 [emphasis mine] at the National Academies of Sciences, Engineering, and Medicine in Washington, D.C., to recognize the impact of research and development at the nanoscale and plan the NNI’s promising future. The event is open to the public. …

This week, as we celebrate the Act’s signing, the NNCO will release a series of reports and stories that illustrate the impact of the NNI. This includes readouts from the Nano4EARTH roundtable discussions [emphasis mine] about applying nanotechnology solutions to address climate change, such as surface technologies, new batteries and energy storage solutions, and greenhouse gas capture approaches. Also, the NNCO will highlight a new independent study [emphasis mine] about how the U.S. nanotechnology community contributes tens of billions of dollars—and potentially hundreds of billions of dollars—to the economy each year. And, to highlight the importance of this growing field, NNCO will feature the stories of early-career scientists who represent the promising future of nanotechnology.

Additional events will be held during the coming months, including science cafes across the country, activities at local museums, and podcasts and articles in the media. For more information about these activities, visit the NNI website.

The report/study

The independent study (Economic Impact Analysis: 20 Years of Nanotechnology Investments, 2002 – 2022) mentioned in the OSTP news release was launched on December 5, 2023 and highlighted here in a January 2, 2024 posting.

The symposium

Here’s a poster of the March 5, 2024 symposium celebrating the 20th anniversary of the act,

There’s a registration page where you can register for the in-person symposium and find more information about the speakers. I thought introduction and agenda from the registration page might be of interest, Note: A link has been removed,

Scientists and engineers across many fields and disciplines are united by their work at the nanoscale. Their diverse efforts have helped produce everything from faster microchips to powerful mRNA vaccines. The transformative impact of this work has been spurred by the coordination and focus on U.S. nanotechnology established by the 21st Century Nanotechnology Research and Development Act in 2003. Celebrating such a broad impact and envisioning the future can be quite challenging, but this event will bring together voices from across the emerging technology landscape. There will be experts who can speak on the importance of nanotechnology in quantum engineering, optics, EHS, plastics, DEIA, microelectronics, medicine, education, manufacturing, and more. We can’t predict what will emerge from this lively discussion between researchers, policymakers, members of industry, educators, and the public, but the conversation can only benefit from including more diverse perspectives – especially yours.

AGENDA

8:30-9:00   Coffee and refreshments

9:00-9:05   Welcome and Introduction

9:05-9:30   Policy Perspectives #1

9:30-10:15  Morning Keynote

10:15-10:45  Coffee Break

10:45-11:30  Panel: Responsible Development

11:30-12:15  Panel: Fundamental Research

12:15-1:15  Lunch, Poster Session, and Networking

1:15-1:45  Policy Perspectives #2

1:45-2:30  Keynote Panel: The Future of Nanotechnology

2:30-3:15  Panel: Workforce Development

3:15-3:45  Break

3:45-4:30  Panel: Infrastructure

4:30-5:15  Panel: Commercialization

5:15-6:00  Closing Keynote

6:00-7:00  Reception Sponsored by the Kavli Foundation

No details about exactly what is being discussed but it certainly seems like it will be a busy day.

Nano4EARTH

I found the OSTP news release a little confusing with regard to the “readouts from the Nano4EARTH roundtable discussions” but here’s how the Nano4EARTH (Climate Change National Nanotechnology Challenge) webpage describes its upcoming workshop and roundtables,

Nano4EARTH Kick-off Workshop

Click here for information about the Nano4EARTH Kick-off hybrid workshop, to be held in Washington, DC and online on Jan. 24–25, 2023.

Nano4EARTH Roundtable Discussions

The Nano4EARTH roundtable discussions aim to identify fundamental knowledge gaps, needs, and opportunities to advance current energy efficiency, sustainable development, and climate change goals. By convening stakeholders from different sectors, backgrounds, and expertise, the goals of these roundtables are to identify applicable lessons across the spectrum of technologies, discuss system-specific needs, scalability and commercialization challenges, and potential paths forward.

The topics of the roundtables were identified at the Nano4EARTH Kick-off Workshop as particularly promising areas that could have an impact in a short time frame (four years or less). 

Roundtables:

Coatings, Lubricants, Membranes, and Other Interface Technologies

Roundtable Information, Discussion Summary

Batteries and Energy Storage

Roundtable Information, Discussion Summary

Capture, Storage, and Use of Greenhouse Gases

Roundtable Information, Discussion Summary

Nano4EARTH Roundtable Discussion on Catalysts (January 24, 2024)

Roundtable Information

Other celebrations around the country

There’s this December 11, 2023 notice from the “Celebrating nanotechnology around the country” webpage on the NNI website,

In celebration of the 20-year anniversary of the signing of the 21st Century Nanotechnology Research and Development Act, which codified the National Nanotechnology Initiative, the National Nanotechnology Coordination Office is showing its appreciation for the many organizations across the country that have put together engagement events with the general public to raise awareness about nanotechnology.

Such events (compiled by the National Informal STEM Education (NISE) Network) include:

Nanotechnology Day Activities in Arizona

Family Science Nights in Greensboro, NC

Celebrating 45 Years of Nanoscale Research at the Cornell Nanoscale Science and Technology Facility

Twenty Years of Nanotechnology! Opportunity to engage your community with NanoDays activities

The end

Chad Mirkin at Northwestern University (Chicago, Illinois, US) who’s a pretty big deal in the nanomedicine field wrote an October 29, 2021 introductory essay for Scientific American,

A Big Bet on Nanotechnology Has Paid Off

The National Nanotechnology Initiative promised a lot. It has delivered more

We’re now more than two decades out from the initial announcement of the National Nanotechnology Initiative (NNI), a federal program from President Bill Clinton founded in 2000 to support nanotechnology research and development in universities, government agencies and industry laboratories across the United States. It was a significant financial bet on a field that was better known among the general public for science fiction than scientific achievement. Today it’s clear that the NNI did more than influence the direction of research in the U.S. It catalyzed a worldwide effort and spurred an explosion of creativity in the scientific community. And we’re reaping the rewards not just in medicine, but also clean energy, environmental remediation and beyond.

Before the NNI, there were people who thought nanotechnology was a gimmick. I began my research career in chemistry, but it seemed to me that nanotechnology was a once-in-a-lifetime opportunity: the opening of a new field that crossed scientific disciplines. In the wake of the NNI, my university, Northwestern University, made the strategic decision to establish the International Institute for Nanotechnology, which now represents more than $1 billion in pure nanotechnology research, educational programs and supporting infrastructure. Other universities across the U.S. made similar investments, creating new institutes and interdisciplinary partnerships.

He’s a little euphoric but his perspective and the information he offers is worth knowing about.

Economic impacts (2002 – 2022) and the US National Nanotechnology Initiative (NNI)

Lynn L. Bergeron’s and Carla Hutton’s December 27, 2023 posting on The National Law Review announced a new report from the US National Nanotechnology Initiative (NNI), Note: A link has been removed,

On December 5, 2023, the National Nanotechnology Initiative (NNI) released a report analyzing the economic impact of federal investment in nanotechnology from 2002 to 2022 [emphasis mine]. The report states that NNI selected this timeframe because it was codified by the 21st Century Nanotechnology Research and Development Act in 2003, and thus the range covers its entire existence. The report examines the impact of public investment, growth and trends of the market, and the evolving understanding and application of nanotechnology in the United States. It also provides key data for evaluating NNI’s ability to fulfill its mission and illustrates NNI’s successes to date.

NNI notes that in 2022, the U.S. Census Bureau released data from its 2017 Economic Census, and data in the classification code of Nanotechnology Research and Development (R&D) revealed that more than 3,700 companies, employing more than 171,000 people, reported $42 billion in annual revenue and $20 billion in employee salaries. According to NNI, these numbers “suffered from a limited scope, as the Bureau only included companies that self-identified as primarily being in the business of nanotechnology R&D.” To understand better the complete picture, NNI commissioned the Parnin Group to conduct a more complete economic impact analysis. [all emphases mine]

You can find the more conservative claim of a $42 billion impact on the US economy in this November 28, 2022 NNI post by Mike Kiley. This year’s December 5, 2023 NNI post by Mike Kiley updates the numbers based on a new report,

An independent study focusing on the aggregated revenues of a select list of nanotechnology companies has estimated that the 2022 economic impact of nanotechnology on the U.S. economy was between $67 billion and $83 billion and close to a trillion dollars over the past two decades . This dwarfs the U.S. Government’s investment of around $40 billion over that same timeframe, which corresponds to the nation’s prioritization of the field through the National Nanotechnology Initiative (NNI).

The NNI investment has been used to explore the potential of nanoscale science, to capture societal benefits of nanotechnology, and to establish and sustain U.S. leadership in this critical field, both scientifically and economically. While it is difficult to fully capture the economic impact of the NNI’s sustained focus, these numbers hint at the tremendous multiplier effect that nanotechnology investments have had on the economy and the Nation.

As impressive as these numbers are, they only represent a relatively small number of companies that are clearly classified as nanotechnology. This limited approach ignores the field’s critical supporting role in several large commercial sectors. Therefore, the study also explored the impact of one closely related industry – microelectronics and semiconductors – to provide anecdotal evidence of the full magnitude of nanotechnology on the nation’s economy.

Examining the impact of the addition of the microelectronics and semiconductor industry to the study resulted in an estimate of $268297 billion in 2022 alone. While significantly higher than the initial analysis, the authors recognized that this estimate still does not capture the full scope of the nano-economy, since microelectronics and semiconductors are only one of many commercial areas that substantially benefited from the nation’s leadership in the field.

Zooming in on the Not-So-Nano Numbers

In late 2022, the U.S. Census Bureau released data from its 2017 Economic Census. In the classification code of Nanotechnology Research and Development (R&D), the data revealed that over 3,700 companies, employing more than 171,000 people, reported $42 billion in annual revenue and $20 billion in employee salaries. As noted in a previous NNCO blog post , released on Nov. 28, 2022, these numbers also suffered from a limited scope, as the Bureau only included companies that self-identified as primarily being in the business of nanotechnology R&D. This limited scope led to a desire to better understand the full picture.

In early 2023, the NNI commissioned the Parnin Group (Alexandria, VA) to conduct a more complete economic impact analysis of nanotechnology to the U.S. economy . To conduct this analysis, the report identified a variety of nanotechnology products, including nanomaterials, intermediate nanotechnology products, and finished products in the marketplace. These products were organized into four categories: (1) core nano (e.g., carbon nanotubes), (2) nano tools (e.g., nanoscale etching tools), (3) integrated nano (e.g., mRNA vaccines), and (4) nano-enabled (e.g., pharmaceuticals). Once products and their parent companies were identified, Parnin examined Bureau of Labor Statistics data, value-chain analysis, product categories, public companies’ Securities and Exchange Commission filings, and patent filings to establish the collective economic value produced by these companies.

Clearly, capturing the economic impact of nanotechnology is not trivial. Products used every day are enabled by nanotechnology, but “nanotechnology” is not seen in the packaging of some of the most ubiquitous items in our lives, like a smartphone, e-reader, or television. Companies and products seldom draw attention to nanomaterials used to make them, for various reasons, including protecting proprietary formulations and practices. As a result, many large companies and related commercial areas – including microelectronics and semiconductors, healthcare, pharmaceutical production, oil and gas refining, and cosmetic products – that have operations and products in the nanotechnology space, but not exclusively so, were excluded from this economic analysis, leading to conservative estimates of the economic impact of nanotechnology.

The report explored the omission of these major areas through an analysis of nanotechnology’s contribution in one of these sectors: microelectronics and semiconductors. While it represents one of the clearest examples of how nanotechnology is used to drive the U.S. economy, the microelectronics industry was mostly excluded in the initial analysis since, historically, it has been unclear what percentage of companies’ portfolios were related to nanotechnology. However, by 2022 every competitive product in the sector features nanoscale dimensions created through nanotechnology tools, creating confidence that this area can defensibly be included in an analysis of the nano-economy.

As indicated earlier, when the microelectronics and semiconductor segments were included, the estimated impact jumped to between $268 billion and $297 billion annually. While other sectors are not as clearly connected to the field of nanotechnology, they are a part of the story and this exploration provides a glimpse into how sizeable the field’s impact might be.

Caveats and nuances abound, because seeing the impact of nanotechnology to the U.S. economy would be like seeing a 10-nanometer object in the palm of your hand; it is there, but you need special tools to see it! And regardless of the exact number, the message is clear: The United States’ leadership in the field has certainly paid off.

Report: Assessing the Economic Impact of Nanotechnology in the United States

The report (title page: Economic Impact Analysis: 20 Years of Nanotechnology Investments) covering 2002-2022 is relatively short, 56 pp. in the print version or 57 pp. in the PDF.

Eye-opening to me, was that the NNI never included semi-conductors and micro-elecronics in its previous economic analyses. Pretty significant omission.

I have no background in economics and so, much of the report flew over my head. However, I am a long time (and experienced skeptic) and can’t help suspecting that everyone (especially the client, in this case, the US government) is much happier with these new numbers. Lest we forget, the NNI was signed into existence by a Democratic president, Bill Clinton and the administration is now led by another Democratic president, Joe Biden. As well, this report was released just in time for 2024, an election year.

While I think there might have been a little over enthusiasm in the estimates, the report seems to bear out the notion that nanotechnology is increasingly a foundational element of modern technology and products.

Happy (belated) US National Nanotechnology Day (October 9, 2022)

H/t to Lynn L. Bergeson’s and Carla N. Hutton’s October 8, 2022 posting on The National Law Review website for the news about the US National Nanotechnology Day on October 9, 2022.

Here’s more from the US National Institute of Occupational Safety and Health (NIOSH) October 6, 2022 posting by Adrienne Eastlake, Gary Roth, and Nicole Neu-Baker on the NIOSH Science blog (Note: Links and footnotes have been removed),

Every year on October 9th we celebrate National Nanotechnology Day. The date 10-9 pays homage to the nanometer scale: 10–9 (one billionth of a meter). Anything that can be measured in nanometers is extremely small! For instance, the width of a strand of human hair is about 90,000 nanometers, bacteria are between 300–5,000 nanometers, viruses are 5–300 nanometers, the diameter of deoxyribonucleic acid (DNA) is 2.5 nanometers, and a single atom is 0.1–0.5 nanometers. A healthy young adult’s fingernail grows an average of just over 1 nanometer per second (3.47 millimeters per month on average)!1 National Nanotechnology Day was created to help raise awareness of nanotechnology, to show how it is currently used in products that enrich our daily lives and to consider future challenges and opportunities.

Engineered nanomaterials (ENMs) are materials intentionally produced to have particle sizes between 1 and 100 nanometers in at least one dimension. These materials can be nanoparticles, nanotubes, or nanoplates, depending on their shape. ENMs typically have new or unique properties different from those of larger forms of the same material, making them desirable for specific product applications. These properties can contribute to increased elasticity, tensile strength, electrical conduction, and reactivity. Increasingly, they are added into existing materials to give these properties to bulk materials (such as plastics or metals). Consumer products using ENMs include cosmetics, sunscreen, food storage products, appliances, clothing, electronics, computers, sporting goods, and coatings. ENMs are also used in state-of-the-art sensors and biomedical technologies. COVID-19 research and the development of vaccines depend heavily on nanotechnology, and many vaccines use nanotechnology to improve their effectiveness. You probably are interacting with nanotechnology-enabled products every day!

Since the early 2000s, NIOSH has been at the forefront of efforts to characterize potential workplace hazards for those working with ENMs and to ensure safe and healthy workplaces, including the creation of the NIOSH Nanotechnology Research Center in 2004. Since then, NIOSH has published a quantitative risk assessment and an elemental mass-based recommended exposure limit (REL) for each of the following: carbon nanotubes/nanofibers,4 nanoscale titanium dioxide, 5 and silver nanomaterials.6 In addition, the poster Controlling Health Hazards When Working With Nanomaterials: Questions to Ask Before You Start is a helpful and easy-to-use visual resource for the workplace.

In collaboration with RTI International, NIOSH administered a survey developed by the RAND Corporation to North American companies working with nanomaterials to assess health and safety practices and the impact of efforts made by NIOSH to protect worker health and safety.9 Forty-five companies in the United States and Canada that fabricate, manufacture, handle, dispose, or otherwise use nanomaterials completed the online survey in 2019. The survey included research questions about nanomaterials in use and the overall occupational health and safety culture at the companies. Additionally, other questions asked about whether the companies interacted with NIOSH or used NIOSH resources to inform their health and safety practices and policies. More than a third (37.8%) of the 45 respondents reported using at least one NIOSH resource for information about safe handling of nanomaterials. Larger companies were more likely to report using NIOSH resources than companies employing fewer than 50 employees. While the survey was limited by the small sample size, it provided valuable insight, including that future NIOSH outreach should specifically target small businesses that use or handle nanomaterials.

We hope you find a way to celebrate National Nanotechnology Day! The National Nanotechnology Initiative (nano.gov) suggests running a 100 Billion Nanometer Dash. Sounds like quite a distance, but it is just 100 meters (328 feet) or 6.2% of a mile. As we continue to provide guidance and recommendations to keep workers safe when working with ENMs, we will be right there with you until you cross the finish line… one nanometer at a time. Good luck!

You can find other activities to celebrate the day (even belatedly) at nano.gov here on their National Nanotechnology Day webpage.

A final SNUR (from the US Environmental Protection Agency) for MWCNTs (multiwalled carbon nanotubes)

SNUR means ‘significant new use rules’ and it’s been a long while since I’ve stumbled across any rulings from the US Environmental Protection Agency (EPA), which concern nanomaterials. From a September 30, 2022 news item on Nanotechnology News by Lynn L. Bergeson,

On September 29, 2022, the U.S. Environmental Protection Agency (EPA) issued final significant new use rules (SNUR) under the Toxic Substances Control Act (TSCA) for certain chemical substances that were the subject of premanufacture notices (PMN), including multi-walled carbon nanotubes (MWCNT) (generic). 87 Fed. Reg. 58999. See https://www.federalregister.gov/documents/2022/09/29/2022-21042/significant-new-use-rules-on-certain-chemical-substances-21-25e The SNUR requires persons who intend to manufacture (defined by statute to include import) or process the chemical substance identified generically as MWCNTs (PMN P-20-72) for an activity that is designated as a significant new use to notify EPA at least 90 days before commencing that activity. Persons may not commence manufacture or processing for the significant new use until EPA has conducted a review of the notice, made an appropriate determination on the notice, and taken such actions as are required by that determination. The SNUR will be effective on November 28, 2022.

Hazard communication: Requirements as specified in 40 C.F.R. Section 721.72(a) through (d), (f), (g)(1), (g)(3), and (g)(5). For purposes of Section 721.72(g)(1), this substance may cause: eye irritation; respiratory sensitization; skin sensitization; carcinogenicity; and specific target organ toxicity. For purposes of Section 721.72(g)(3), this substance may cause unknown aquatic toxicity. Alternative hazard and warning statements that meet the criteria of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) and Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (HCS) may be used.

The September 30, 2022 news item lists more significant new uses.

US National Nanotechnology Initiative publishes 2018 US President’s 2018 budget request

The US National Nanotechnology Initiative has made its budget request for 2018 according to a Dec. 5, 2017 anouncement by Lynn L. Bergeson and Carla Hutton at the Nano and Other Emerging Chemical Technologies blog on the JD Supra website (Note: A link has been removed),

On November 30, 2017, the National Nanotechnology Initiative (NNI) published a supplement to the President’s 2018 budget.  The supplement also serves as NNI’s annual report and summarizes the progress made in achieving NNI’s goals, the research and development (R&D) activities and plans of the participating agencies, and the agency investments in each program component area.  The President’s 2018 Budget requests $1.2 billion for the NNI, “a continued investment in support of innovation promoting America’s competitiveness, economic growth, and national security.”  The NNI investments proposed for 2018 reflect an emphasis on broad, fundamental research in nanoscience to provide a continuing pipeline of new discoveries that will enable future transformative commercial products and services.  …

The November 30, 2017 NNI Supplement to the President’s 2018 Budget can be found here. Click on the download button (or go here) for the full supplement which includes explanations for the initialisms, e.g., PCA, STIR, etc. and sections such as this about key points,

Key Points about the 2016–2018 NNI Investments

• Reductions in overall NNI investments for 2018 relative to 2016–2017 and previous years are consistent with the goal of the President’s 2018 Budget to prioritize Federal resources on areas that industry is not likely to support, over later-stage applied research and development that the private sector is better equipped to pursue.

• The actual NNI investments reported by the participating agencies for 2016 ($1.56 billion) are significantly larger than 2016 estimated investments published in the 2017 Budget ($1.43 billion) and 2016 requested investments published in the 2016 Budget ($1.50 billion). This change is due largely to the fact that an increasing proportion of agencies’ nanotechnology investments are coming from “core” R&D programs, where the high success rate of nanotechnology-related proposals cannot be anticipated in advance.

• Total funding for PCA 1, Nanotechnology Signature Initiatives and Grand Challenges, for 2018 (nearly $200 million, representing over 16% of the NNI total) reflects the emphasis on focused investments in R&D that advances interagency cooperation and public/private partnerships in support of national priorities, as a key part of the overall NNI funding strategy.

• The NNI’s Nanotechnology-Inspired Grand Challenge for Future Computing is a new investment category in the President’s 2018 Budget, included for the first time under PCA 1. This challenge helps to address renewed international competition for U.S. leadership in semiconductor manufacturing and downstream information technology industries. For 2016, agencies are reporting over $140 million in investments under the NNI budget crosscut (including related research under the Nanoelectronics NSI) in this sector, which is critical for both national security and economic competitiveness.

• The increase in the percentage of total NNI investments in PCA 2, Foundational Research (from 36% in 2016 to nearly 40% in the 2018 Budget) reflects the Budget’s focus on supporting early-stage R&D, and is consistent with calls by NNI advisory bodies to maintain a pipeline of basic research that will lead to the innovations of the future.

• Proportional NNI investments in PCA 3 (Nanotechnology-Enabled Applications, Devices, and Systems) hold steady at about 24% of the total NNI investments for 2016–2018, down slightly from 25% in 2015.

• NNI agencies continue to provide consistent, proportional funding for PCA 4 (Research Infrastructure and Instrumentation) for 2016–2018, at 15–16% of the NNI total. The 2018 request ($179 million, representing about 15% of the NNI total investment) includes sustained support for NSF’s National Nanotechnology Coordinated Infrastructure network of university-based nanotechnology user facilities. The President’s 2018 Budget for DOE requests continued support for three of the original five Nanoscale Science Research Centers. PCA 4 also includes research to develop novel or improvedinstrumentation, which is critical to continued progress in nanotechnology and to maintain U.S. competitiveness internationally.

• PCA 5 (Environment, Health, and Safety—EHS) investments are a key element of the NNI’s strategy to ensure responsible development of nanotechnology. For 2016–2018, the proportional research investments reported under PCA 5 (see Appendix A for definitions) are approximately 6% of the NNI total for 2016 and 2017, and 5.5% in the 2018 Budget. In addition to the PCA 5 investments, some research reported under other PCAs (e.g., PCA 1 and PCA 4) also contributes to the overall EHS research portfolio.

• The return of the Department of Justice’s National Institute of Justice (NIJ) to the NNI budget crosscut in the 2018 President’s Budget is another example of where nanotechnology innovations initially funded by basic research agencies are now coming to fruition in R&D programs focused on applications, devices, and systems that directly contribute to national priorities.

• Investments in SBIR and STTR funding by the participating agencies, reported outside of the formal NNI funding crosscut tabulated in the budget tables shown above, play a critical role in transitioning nanotechnology innovations into products for commercial and public benefit (NNI Goal 2), as discussed below. [pp. 14-17 (print) pp. 22-25 [PDF)]

Happy reading!

OECD (Organization for Economic Cooperation and Development) Dossiers on Nanomaterials Are of “Little to No Value for assessing risk?”

The announcement that a significant portion of the OECD’s (Organization for Economic Cooperation and Development) dossiers on 11 nanomaterials have next to no value for assessing risk seems a harsh judgment from the Center for International Environmental Law (CIEL). From a March 1, 2017 posting by Lynn L. Bergeson on the Nanotechnology Now,

On February 23, 2017, the Center for International Environmental Law (CIEL) issued a press release announcing a new report, commissioned by CIEL, the European Environmental Citizens’ Organization for Standardization (ECOS), and the Oeko-Institute, that “shows that most of the information made available by the Sponsorship Testing Programme of the Organisation for Economic Co-operation and Development (OECD) is of little to no value for the regulatory risk assessment of nanomaterials.”

Here’s more from the Feb. 23, 3017 CIEL press release, which originated the posting,

The study published today [Feb. 23, 2017] was delivered by the Institute of Occupational Medicine (IOM) based in Singapore. IOM screened the 11,500 pages of raw data of the OECD dossiers on 11 nanomaterials, and analysed all characterisation and toxicity data on three specific nanomaterials – fullerenes, single-walled carbon nanotubes, and zinc oxide.

“EU policy makers and industry are using the existence of the data to dispel concerns about the potential health and environmental risks of manufactured nanomaterials,” said David Azoulay, Senior Attorney for CIEL. “When you analyse the data, in most cases, it is impossible to assess what material was actually tested. The fact that data exists about a nanomaterial does not mean that the information is reliable to assess the hazards or risks of the material.”

The dossiers were published in 2015 by the OECD’s Working Party on Manufactured Nanomaterials (WPMN), which has yet to draw conclusions on the data quality. Despite this missing analysis, some stakeholders participating in EU policy-making – notably the European Chemicals Agency (ECHA) and the European Commission’s Joint Research Centre – have presented the dossiers as containing information on nano-specific human health and environmental impacts. Industry federations and individual companies have taken this a step further emphasizing that there is enough information available to discard most concerns about potential health or environmental risks of manufactured nanomaterials.

“Our study shows these claims that there is sufficient data available on nanomaterials are not only false, but dangerously so,” said Doreen Fedrigo, Senior Policy Officer of ECOS. ”The lack of nano-specific information in the dossiers means that the results of the tests cannot be used as evidence of no ‘nano-effect’ of the tested material. This information is crucial for regulators and producers who need to know the hazard profile of these materials. Analysing the dossiers has shown that legislation detailing nano-specific information requirements is crucial for the regulatory risk assessment of nanomaterials.”

The report provides important recommendations on future steps in the governance of nanomaterials. “Based on our analysis, serious gaps in current dossiers must be filled in with characterisation information, preparation protocols, and exposure data,” said Andreas Hermann of the Oeko-Institute. “Using these dossiers as they are and ignoring these recommendations would mean making decisions on the safety of nanomaterials based on faulty and incomplete data. Our health and environment requires more from producers and regulators.”

CIEL has an Analysis of OECD WPMN Dossiers Regarding the Availability of Data to Evaluate and Regulate Risk (Dec 2016) webpage which provides more information about the dossiers and about the research into the dossiers and includes links to the report, the executive summer, and the dataset,

The Sponsorship Testing Programme of the Working Party on Manufactured Nanomaterials (WPMN) of the Organisation for Economic Co-operation and Development (OECD) started in 2007 with the aim to test a selection of 13 representative nanomaterials for many endpoints. The main objectives of the programme were to better understand what information on intrinsic properties of the nanomaterials might be relevant for exposure and hazards assessment and assess the validity of OECD chemicals Test Guidelines for nanomaterials. The testing programme concluded in 2015 with the publication of dossiers on 11 nanomaterials: 11,500 pages of raw data to be analysed and interpreted.

The WPMN has not drawn conclusions on the data quality, but some stakeholders participating in EU policy-making – notably the European Chemicals Agency and the European Commission’s Joint Research Centre – presented the dossiers as containing much scientific information that provided a better understanding of their nano-specific human health and environmental impacts. Industry federations and individual companies echoed the views, highlighting that there was enough information available to discard most concerns about potential health or environmental risks of manufactured nanomaterials.

As for the OECD, it concluded, even before the publication of the dossiers, that “many of the existing guidelines are also suitable for the safety assessment of nanomaterials” and “the outcomes (of the sponsorship programme) will provide useful information on the ‘intrinsic properties’ of nanomaterials.”

The Center for International Environmental Law (CIEL), the European Citizens’ Organisation for Standardisation (ECOS) and the Öko-Institut commissioned scientific analysis of these dossiers to assess the relevance of the data for regulatory risk assessment.

The resulting report: Analysis of OECD WPMN dossiers regarding the availability of data to evaluate and regulate risk, provides insights illustratating how most of the information made available by the sponsorship programme is of little to no value in identifying hazards or in assessing risks due to nanomaterials.

The analysis shows that:

  • Most studies and documents in the dossiers contain insufficient characterisation data about the specific nanomaterial addressed (size, particle distribution, surface shape, etc.), making it impossible to assess what material was actually tested.
  • This makes it impossible to make any firm statements regarding the nano-specificity of the hazard data published, or the relationship between observed effects and specific nano-scale properties.
  • Less than 2% of the study records provide detail on the size of the nanomaterial tested. Most studies use mass rather than number or size distribution (so not following scientifically recommended reporting practice).
  • The absence of details on the method used to prepare the nanomaterial makes it virtually impossible to correlate an identified hazard with specific nanomaterial characteristic. Since the studies do not indicate dispersion protocols used, it is impossible to assess whether the final dispersion contained the intended mass concentration (or even the actual presence of nanomaterials in the test system), how much agglomeration may have occurred, and how the preparation protocols may have influenced the size distribution.
  • There is not enough nano-specific information in the dossiers to inform about nano-characteristics of the raw material that influence their toxicology. This information is important for regulators and its absence makes information in the dossier irrelevant to develop read-across guidelines.
  • Only about half of the endpoint study records using OECD Test Guideliness (TGs) were delivered using unaltered OECD TGs, thereby respecting the Guidelines’ requirements. The reasons for modifications of the TGs used in the tests are not clear from the documentation. This includes whether the study record was modified to account for challenges related to specific nanomaterial properties or for other, non-nano-specific reasons.
  • The studies do not contain systematic testing of the influence of nano-specific characteristics on the study outcome, and they do not provide the data needed to assess the effect of nano-scale features on the Test Guidelines. Given the absence of fundamental information on nanomaterial characteristics, the dossiers do not provide evidence of the applicability of existing OECD Test Guidelines to nanomaterials.

The analysis therefore dispels several myths created by some stakeholders following publication of the dossiers and provides important perspective for the governance of nanomaterials. In particular, the analysis makes recommendations to:

  • Systematically assess the validity of existing Test Guidelines for relevance to nanomaterials
  • Develop Test Guidelines for dispersion and other test preparations
  • Define the minimum characteristics of nanomaterials that need to be reported
  • Support the build-up of exposure database
  • Fill the gaps in current dossiers with characterisation information, preparation protocols and exposure data

Read full report.
Read executive summary.
Download full dataset.

This is not my area of expertise and while I find the language a bit inflammatory, it’s my understanding that there are great gaps in our understanding of nanomaterials and testing for risk assessment has been criticized for many of the reasons pointed out by CIEL, ECOS, and the Oeko-Institute.

You can find out more about CIEL here; ECOS here; and the Oeko-Institute (also known as Öko-Institute) here.

Changes to the US 21st Century Nanotechnology Research and Development Act

This is one of Barack Obama’s last acts as President of the US according to a Jan. 5, 2017 posting by Lynn L. Bergeson on the Nanotechnology Now website,

The American Innovation and Competitiveness Act (S. 3084) would amend the 21st Century Nanotechnology Research and Development Act (15 U.S.C. § 7501 et seq.) to change the frequency of National Nanotechnology Initiative (NNI) reports. The strategic plan would be released every five instead of every three years, and the triennial review would be renamed the quadrennial review and be prepared every four years instead of every three. The evaluation of the NNI, which is submitted to Congress, would be due every four instead of every three years. … On December 28, 2016, the bill was presented to President Obama. President Obama is expected to sign the bill.

Congress.gov is hosting the S.3084 – American Innovation and Competitiveness Act webpage listing all of the actions, to date, taken on behalf of this bill; Obama signed the act on Jan. 6, 2017.

One final note, Obama’s last day as US President is Friday, Jan. 20, 2016 but his last ‘full’ day is Thursday, Jan. 19, 2016 (according to a Nov. 4, 2016 posting by Tom Muse for About.com).

International news bits: Israel and Germany and Cuba and Iran

I have three news bits today.

Germany

From a Nov. 14, 2016 posting by Lynn L. Bergeson and Carla N. Hutton for The National Law Review (Note: A link has been removed),

The German Federal Ministry of Education and Research (BMBF) recently published an English version of its Action Plan Nanotechnology 2020. Based on the success of the Action Plan Nanotechnology over the previous ten years, the federal government will continue the Action Plan Nanotechnology for the next five years.  Action Plan Nanotechnology 2020 is geared towards the priorities of the federal government’s new “High-Tech Strategy” (HTS), which has as its objective the solution of societal challenges by promoting research.  According to Action Plan Nanotechnology 2020, the results of a number of research projects “have shown that nanomaterials are not per se linked with a risk for people and the environment due to their nanoscale properties.”  Instead, this is influenced more by structure, chemical composition, and other factors, and is thus dependent on the respective material and its application.

A Nov. 16, 2016 posting on Out-Law.com provides mores detail about the plan (Note: A link has been removed),

Eight ministries have been responsible for producing a joint plan on nanotechnology every five years since 2006, the Ministry said. The ministries develop a common approach that pools strategies for action and fields of application for nanotechnology, it [Germany’s Federal Ministry of Education and Research] said.

The German public sector currently spends more than €600 million a year on nanotechnology related developments, and 2,200 organisations from industry, services, research and associations are registered in the Ministry’s nanotechnology competence map, the report said.

“There are currently also some 1,100 companies in Germany engaged [in] the use of nanotechnology in the fields of research and development as well as the marketing of commercial products and services. The proportion of SMEs [small to medium enterprises?] is around 75%,” it said.

Nanotechnology-based product innovations play “an increasingly important role in many areas of life, such as health and nutrition, the workplace, mobility and energy production”, and the plan “thus pursues the objective of continuing to exploit the opportunities and potential of nanotechnology in Germany, without disregarding any potential risks to humans and the environment.”, the Ministry said.

Technology law expert Florian von Baum of Pinsent Masons, the law firm behind Out-Law.com said: “The action plan aims to achieve and secure Germany’s critical lead in the still new nanotechnology field and to recognise and use the full potential of nanotechnology while taking into account possible risks and dangers of this new technology.”

..

“With the rapid pace of development and the new applications that emerge every day, the government needs to ensure that the dangers and risks are sufficiently recognised and considered. Nanotechnology will provide great and long-awaited breakthroughs in health and ecological areas, but ethical, legal and socio-economic issues must be assessed and evaluated at all stages of the innovation chain,” von Baum said.

You can find Germany’s Action Plan Nanotechnology 2020 here, all 64 pp.of it.

Israel and Germany

A Nov. 16, 2016 article by Shoshanna Solomon for The Times of Israel announces a new joint (Israel-Germany) nanotechnology fund,

Tsrael and Germany have set up a new three-year, €30 million plan to promote joint nanotechnology initiatives and are calling on companies and entities in both countries to submit proposals for funding for projects in this field.

“Nanotech is the industry of the future in global hi-tech and Israel has set a goal of becoming a leader of this field, while cooperating with leading European countries,” Ilan Peled, manager of Technological Infrastructure Arena at the Israel Innovation Authority, said in a statement announcing the plan.

In the past decade nanotechnology, seen by many as the tech field of the future, has focused mainly on research. Now, however, Israel’s Innovation Authority, which has set up the joint program with Germany, believes the next decade will focus on the application of this research into products — and countries are keen to set up the right ecosystem that will draw companies operating in this field to them.

Over the last decade, the country has focused on creating a “robust research foundation that can support a large industry,” the authority said, with six academic research institutes that are among the world’s most advanced.

In addition, the authority said, there are about 200 new startups that were established over the last decade in the field, many in the development stage.

I know it’s been over 70 years since the events of World War II but this does seem like an unexpected coupling. It is heartening to see that people can resolve the unimaginable within the space of a few generations.

Iran and Cuba

A Nov. 16, 2016 Mehr News Agency press release announces a new laboratory in Cuba,

Iran is ready to build a laboratory center equipped with nanotechnology in one of nano institutes in Cuba, Iran’s VP for Science and Technology Sorena Sattari said Tuesday [Nov. 15, 2016].

Sorena Sattari, Vice-President for Science and Technology, made the remark in a meeting with Fidel Castro Diaz-Balart, scientific adviser to the Cuban president, in Tehran on Tuesday [November 15, 2016], adding that Iran is also ready to present Cuba with a gifted package including educational services related to how to operate the equipment at the lab.

During the meeting, Sattari noted Iran’s various technological achievements including exports of biotechnological medicine to Russia, the extensive nanotechnology plans for high school and university students as well as companies, the presence of about 160 companies active in the field of nanotechnology and the country’s achievements in the field of water treatment.

“We have sealed good nano agreements with Cuba, and are ready to develop our technological cooperation with this country in the field of vaccines and recombinant drugs,” he said.

Sattari maintained that the biggest e-commerce company in the Middle East is situated in Iran, adding “the company which was only established six years ago now sales over $3.5 million in a day, and is even bigger than similar companies in Russia.”

The Cuban official, for his part, welcomed any kind of cooperation with Iran, and thanked the Islamic Republic for its generous proposal on establishing a nanotechnology laboratory in his country.

This coupling is not quite so unexpected as Iran has been cozying up to all kinds of countries in its drive to establish itself as a nanotechnology leader.

Sustainable nanotechnology systems: a conference

The Sustainable Nanotechnology Organization (SNO) is holding its 2016 conference from Nov. 10 – 12, 2016 according to Lynn L. Bergeson’s Oct. 17, 2016 posting on Nanotechnology Now,

The conference sessions will be organized around selected “systems,” and sessions will be populated with talks on applications, effects and implications, analytical methods, and lifecycle aspects of nanomaterials within each system. The aims are to identity where nanomaterials and nanotechnology can improve the sustainability of each system and to foster integration of knowledge between applications and implications within each system.

Here’s more from the 2016 SNO conference webpage,

In these systems of interest, we ask how we are helping reach sustainability through nanotechnology:

  1. Food/agricultural systems: Precision agriculture; pesticide delivery, nutrient delivery, improved food packaging and preservation; food fortification; stabilizing soil; human health and environmental implications.
  2. Energy systems: Energy storage; generation by solar and wind; energy transmission; CO2 capture and storage; plant efficiency improvements; system controls; air pollution control in fossil systems
  3. Air/Water systems: Drinking water treatment; air pollution controls, wastewater treatment; groundwater remediation; pollution prevention; disinfection; decreasing the energy footprint of water treatment; distribution systems; source water protection; lowering demand for water in industry and households, air filtration systems.
  4. Industry/Manufacturing (in general, not just nanomanufacturing) systems: Lowering process energy requirements; using more benign materials; safety of nanomaterials compared to alternatives; substitution for renewable resources; pollution prevention; monitoring systems for manufacturing; lifecycle releases of nanomaterials and models to predict exposure concentrations; economic sustainability of nanotechnology.
  5. Solid Waste (especially E-Waste) management: Recycling of nanomaterials; resource recovery from landfills; improved quality of recycled materials; advanced waste management
  6. Environmental/Biological systems: Ecotoxicity; ecosystem responses to nanomaterial releases; improved monitoring tools, exposure routes and exposure models for consumers and the environment; models for environmental fate and exposures of nanomaterials.
  7. Health/medical systems: Diagnostic tools for healthcare; nanomedicine and improved drug delivery; models for nanotoxicity prediction/reduction
  8. Urban systems: Improving construction materials; building more sustainable residences and commercial buildings; improving energy systems for heating and cooling; improving transportation systems (including increasing fuel efficiency; decreasing weight of vehicles; building better catalysts)
  9. Education systems: Curriculum development for sustainable nanotechnology, case studies, materials development, informal education networks
  10. Social systems and governance: Upcoming laws and regulations; systems of governance of nanomaterials; social justice concerns; education; calculating and communicating benefits (and risks) of nanotechnology

This conference is to bring together scientific experts from academia, industry, and government agencies from around the world to present and discuss current research findings on the theme. The SNO Conference emphasizes not only the environmental aspects of sustainability but also the societal and economic sustainability issues. The conference program will address the above topics from both a fundamental and applied viewpoint.

The conference will also foster new collaborations between academic and industrial participants. This community of users, researchers and developers of engineered nanomaterials will provide a long-term, scientific assessment of where the science is for sustainable nano, where it should be heading, and what steps academics, government agencies and others can take now to reach targeted goals. In addition, the conference will serve as the platform for continued advancement of the research community and the Sustainable Nanotechnology Organization (SNO), a non-profit, international professional society dedicated to advancing sustainable nanotechnology through education, research, and promotion of responsible development of nanotechnology.

The conference is being held in Orlando, Florida.

Germany has released a review of their research strategy for nanomaterials

A Sept. 24, 2016 posting by Lynn L. Bergeson and Carla N. Hutton on The National Law Review blog features a new report from German authorities (Note: A link has been removed),

On September 19, 2016, the Federal Institute for Occupational Safety and Health (BAuA) published a report entitled Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility.  The report states that in a long-term research strategy, the higher federal authorities responsible for human and environmental safety — the German Environment Agency (UBA), the Federal Institute for Risk Assessment (BfR), BAuA, the Federal Institute for Materials Research and Testing (BAM), and the National Metrology Institute (PTB) — are accompanying the rapid pace of development of new materials from the points of view of occupational safety and health, consumer protection, and environmental protection.

Here’s a link to Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility (PDF) and excerpts from the foreword (Note: There are some differences in formatting between what you see here and what you’ll see in the report),

The research strategy builds on the outcomes so far of the joint research strategy of the higher federal authorities launched in 2008 and first evaluated in 2013, “Nanotechnology: Health and Environmental Risks of Nanomaterials”1, while additionally covering other advanced materials where these pose similar risks to humans and the environment or where such risks need to be studied. It also takes up the idea of application safety of chemical products 2 from the New Quality of Work (INQA) initiative of the Federal Ministry of Labour and Social Affairs (BMAS) and the concept of sustainable
chemistry 3 endorsed by the Federal  Ministry  for  the  Environment, Nature Conservation, Building  and Nuclear Safety (BMUB). Application safety and environmental compatibility are aimed for advanced materials and derived products in order to largely rule out unacceptable risks to humans and the environment. This can be achieved by:

Using safe materials without hazardous properties for humans and the environment (direct application safety); or

Product design for low emissions and environmental compatibility over the entire product lifecycle (integrated application safety); or

Product stewardship, where producers support users in taking technical, organizational, and personal safety measures for the safe use and disposal of products (supported application safety).

As a comprising part of the Federal Government’s Nanotechnology Action Plan 2020, the update of the joint research strategy aims to contribute to governmental research in the following main areas:

 characterising and assessing the human and environmental risks of advanced materials
 Supporting research institutions and business enterprises
 Science-based revision of legal requirements and recommendations
 Public acceptance

The research strategy is to be implemented in projects and other research-related activities. These  include  governmental  research,  tendering  and  extramural  research  funding, and participation in mostly publicly supported projects with third-party funding. Additional activities will take place as part of policy advice and the ongoing work of the sovereign tasks of agencies involved. Interdisciplinary and transdisciplinary approaches will be used to better connect risk and safety research with innovation research and material development. In keeping up with the rapid pace of development, the time horizon for the research strategy is up to 2020. The research objectives address the research approaches likely to be actionable in this period. The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020. tegy will be implemented in projects and other research-related activities, including governmental research, tendering and extramural research funding, and participation in mostly publicly supported projects with third-party funding.  Agencies will use interdisciplinary and transdisciplinary approaches to connect better risk and safety research with innovation research and material development. To keep up with the pace of development, the time horizon for the research strategy extends to 2020.  The research objectives in the report address the research approaches likely to be actionable in this period.  The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020.

It’s always interesting to find out what’s happening elsewhere.