Tag Archives: marine environment

Café Scientifique Vancouver (Canada) talk on August 28th 2018: Getting the message: What is gene expression and why does it matter?

Here’s more about the latest Café Scientifique talk from an August  22, 2018 announcement received via email,

Our next café will happen on TUESDAY, AUGUST 28TH at 7:30PM in the back
room at YAGGER'S DOWNTOWN (433 W Pender [St., Vancouver]). Our speaker for the
evening will be DR. KATIE MARSHALL from the Department of Zoology at
UBC [University of British Columbia]. Her topic will be:

GETTING THE MESSAGE: WHAT IS GENE EXPRESSION AND WHY DOES IT MATTER?

Many of us think that DNA is like a light switch; you have a particular
sequence of base pairs or a particular chromosome, and these directly
cause a large change in biological functioning. But the truth is that
any given gene can be up or downregulated through a dizzying array of
biochemical “dimmer switches” that finely control how much that
particular gene is expressed. Understanding how this works is key to
answering questions like “How does a sequence of base pairs in DNA
become a whole organism?” and “Why is it that every cell has the
same DNA sequence but different function?”. We’ll chat about the
advances in computing needed to answer these questions, the importance
of gene expression in disease, and how this science can help us
understand social issues better too.

I wasn’t able to find out too much more about Dr. Katie but there is this profile page on the UBC Zoology Department website,

The long-term goal of my research is to understand how abiotic stress filters through physiology to shape species abundance and distribution. While abiotic stressors such as temperature have been used very successfully to predict population growth, distribution, and diversity of insect species, integration of the mechanisms of how these stressors are experienced by individuals from alteration of physiology through to fitness impacts has lagged. Inclusion of these mechanisms is crucial for accurate modelling predictions of individual (and therefore population-level) responses. My research to date has focused on how the impact of frequency of stress (rather than the duration or intensity of stress) is a superior predictor of both survival and reproductive success , and used insect cold tolerance as a model system.

At UBC I’ll be focusing on the cold tolerance and cryobiology of invertebrates in the intertidal. These organisms face freezing stress through the winter, yet remarkably little is known about how they do so. I’ll also be investigating plasticity in cold tolerance by looking for interactive effects of ocean acidification and community composition on thermal tolerance.

Enjoy!

What is the effect of nanoscale plastic on marine life?

A Nov.27, 2015 news item on Nanowerk announces a new UK (United Kingdom) research project designed to answer the question: what impact could nanoscale plastic particles  have on the marine environment?,

As England brings in pricing on plastic carrier bags, and Scotland reveals that similar changes a little over a year ago have reduced the use of such bags by 80%, new research led by Heriot-Watt University in conjunction with Plymouth University will look at the effect which even the most microscopic plastic particles can have on the marine environment.

While images of large ‘islands’ of plastic rubbish or of large marine animals killed or injured by the effects of such discards have brought home some of the obvious negative effects of plastics in the marine environment, it is known that there is more discarded plastic out there than we can account for, and much of it will have degraded into small or even microscopic particles.

It is the effect of these latter, known as nano-plastics, which will be studied under a £1.1m research project, largely funded by NERC [UK Natural Environment Research Council] and run by Heriot-Watt and Plymouth Universities.

A Nov. 25, 2015 Herriot-Watt University press release, which originated the news item, provides more details,

The project, RealRiskNano, will look at the risks these tiny plastic particles pose to the food web including filter-feeding organisms like mussels, clams and sediment dwelling organisms. It will focus on providing information to improve environmental risk assessment for nanoplastics, based on real-world exposure scenarios replicated in the laboratory.

Team leader Dr Theodore Henry, Associate Professor of Toxicology at Heriot-Watt’s School of Life Sciences, said that the study will build on previous research on nano-material toxicology, but will provide information which the earlier studies did not include.

“Pieces of plastic of all sizes have been found in even the most remote marine environments. It’s relatively easy to see some of the results: turtles killed by easting plastic bags which they take for jelly fish, or large marine mammals drowned when caught in discarded ropes and netting.

“But when plastics fragment into microscopic particles, what then? It’s easy to imagine that they simply disappear, but we know that nano-particles pose their own distinct threats purely because of their size. They’re small enough to be transported throughout the environment with unknown effects on organisms including toxicity and interference with processes of the digestive system.

An important component of the project, to be investigated by Dr Tony Gutierrez at Heriot-Watt, will be the study of interactions between microorganisms and the nanoplastics to reveal how these interactions affect their fate and toxicology.

The aim, said Dr Henry, is to provide the information which is needed to effect real change.“We simply don’t know what effects these nano-plastic particles may pose to the marine environment, to filter-feeders and on to fish, and through the RealRiskNano project we aim to provide this urgently needed information to the people whose job it is to assess risk to the marine ecosystem and decide what steps need to be taken to mitigate it.”

You can find the RealRiskNano website here.