Tag Archives: Mark D Hoover

Nanotechnology takes the big data dive

Duke University’s (North Carolina, US) Center for Environmental Implications of Nano Technology (CEINT) is back in the news. An August 18, 2015 news item on Nanotechnology Now  highlights two new projects intended to launch the field of nanoinformatics,

In two new studies, researchers from across the country spearheaded by Duke University faculty have begun to design the framework on which to build the emerging field of nanoinformatics.

An August 18, 2015 Duke University news release on EurekAlert, which originated the news item, describes the notion of nanoinformatics and how Duke is playing a key role in establishing this field,

Nanoinformatics is, as the name implies, the combination of nanoscale research and informatics. It attempts to determine which information is relevant to the field and then develop effective ways to collect, validate, store, share, analyze, model and apply that information — with the ultimate goal of helping scientists gain new insights into human health, the environment and more.

In the first paper, published on August 10, 2015, in the Beilstein Journal of Nanotechnology, researchers begin the conversation of how to standardize the way nanotechnology data are curated.

Because the field is young and yet extremely diverse, data are collected and reported in different ways in different studies, making it difficult to compare apples to apples. Silver nanoparticles in a Florida swamp could behave entirely differently if studied in the Amazon River. And even if two studies are both looking at their effects in humans, slight variations like body temperature, blood pH levels or nanoparticles only a few nanometers larger can give different results. For future studies to combine multiple datasets to explore more complex questions, researchers must agree on what they need to know when curating nanomaterial data.

“We chose curation as the focus of this first paper because there are so many disparate efforts that are all over the road in terms of their missions, and the only thing they all have in common is that somehow they have to enter data into their resources,” said Christine Hendren, a research scientist at Duke and executive director of the Center for the Environmental Implications of NanoTechnology (CEINT). “So we chose that as the kernel of this effort to be as broad as possible in defining a baseline for the nanoinformatics community.”

The paper is the first in a series of six that will explore what people mean — their vocabulary, definitions, assumptions, research environments, etc. — when they talk about gathering data on nanomaterials in digital form. And to get everyone on the same page, the researchers are seeking input from all stakeholders, including those conducting basic research, studying environmental implications, harnessing nanomaterial properties for applications, developing products and writing government regulations.

The daunting task is being undertaken by the Nanomaterial Data Curation Initiative (NDCI), a project of the National Cancer Informatics Nanotechnology Working Group (NCIP NanoWG) lead by a diverse team of nanomaterial data stakeholders. If successful, not only will these disparate interests be able to combine their data, the project will highlight what data are missing and help drive the research priorities of the field.

In the second paper, published on July 16, 2015, in Science of The Total Environment, Hendren and her colleagues at CEINT propose a new, standardized way of studying the properties of nanomaterials.

“If we’re going to move the field forward, we have to be able to agree on what measurements are going to be useful, which systems they should be measured in and what data gets reported, so that we can make comparisons,” said Hendren.

The proposed strategy uses functional assays — relatively simple tests carried out in standardized, well-described environments — to measure nanomaterial behavior in actual systems.

For some time, the nanomaterial research community has been trying to use measured nanomaterial properties to predict outcomes. For example, what size and composition of a nanoparticle is most likely to cause cancer? The problem, argues Mark Wiesner, director of CEINT, is that this question is far too complex to answer.

“Environmental researchers use a parameter called biological oxygen demand to predict how much oxygen a body of water needs to support its ecosystem,” explains Wiesner. “What we’re basically trying to do with nanomaterials is the equivalent of trying to predict the oxygen level in a lake by taking an inventory of every living organism, mathematically map all of their living mechanisms and interactions, add up all of the oxygen each would take, and use that number as an estimate. But that’s obviously ridiculous and impossible. So instead, you take a jar of water, shake it up, see how much oxygen is taken and extrapolate that. Our functional assay paper is saying do that for nanomaterials.”

The paper makes suggestions as to what nanomaterials’ “jar of water” should be. It identifies what parameters should be noted when studying a specific environmental system, like digestive fluids or wastewater, so that they can be compared down the road.

It also suggests two meaningful processes for nanoparticles that should be measured by functional assays: attachment efficiency (does it stick to surfaces or not) and dissolution rate (does it release ions).

In describing how a nanoinformatics approach informs the implementation of a functional assay testing strategy, Hendren said “We’re trying to anticipate what we want to ask the data down the road. If we’re banking all of this comparable data while doing our near-term research projects, we should eventually be able to support more mechanistic investigations to make predictions about how untested nanomaterials will behave in a given scenario.”

Here are links to and citations for the papers,

The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field by Christine Ogilvie Hendren, Christina M. Powers, Mark D. Hoover, and Stacey L. Harper.  Beilstein J. Nanotechnol. 2015, 6, 1752–1762. doi:10.3762/bjnano.6.179 Published 18 Aug 2015

A functional assay-based strategy for nanomaterial risk forecasting by Christine Ogilvie Hendren, Gregory V. Lowry, Jason M. Unrine, and Mark R. Wiesner. Science of The Total Environment Available online 16 July 2015 In Press, Corrected Proof  DOI: 10.1016/j.scitotenv.2015.06.100.

The first paper listed in open access while the second paper is behind a paywall.

I’m (mostly) giving the final comments to Dexter Johnson who in an August 20, 2015 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) had this to say (Note: Links have been removed),

It can take days for a supercomputer to unravel all the data contained in a single human genome. So it wasn’t long after mapping the first human genome that researchers coined the umbrella term “bioinformatics” in which a variety of methods and computer technologies are used for organizing and analyzing all that data.

Now teams of researchers led by scientists at Duke University believe that the field of nanotechnology has reached a critical mass of data and that a new field needs to be established, dubbed “nanoinformatics.

While being able to better organize and analyze data to study the impact of nanomaterials on the environment should benefit the field, what seems to remain a more pressing concern is having the tools for measuring nanomaterials outside of a vacuum and in water and air environments.”

I gather Christine Hendren has succeeded Mark Weisner as CEINT’s executive director.

A review of the nanotechnology in green technology

Michael Berger has written a Nov. 18, 2014 Nanowerk Spotlight article focusing on the ‘green’ in nanotechnology (Note: A link has been removed),

There is a general perception that nanotechnologies will have a significant impact on developing ‘green’ and ‘clean’ technologies with considerable environmental benefits. The associated concept of green nanotechnology aims to exploit nanotech-enabled innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable. These applications are expected to impact a large range of economic sectors, such as energy production and storage, clean up-technologies, as well as construction and related infrastructure industries.

A recent review article in Environmental Health (“Opportunities and challenges of nanotechnology in the green economy”) examines opportunities and practical challenges that nanotechnology applications pose in addressing the guiding principles for a green economy.

Here’s a link to and citation for the review article cited by Berger. It is more focused on occupational health and safety then the title suggests but not surprising when you realize all of the authors are employed by the US National Institute of Occupational Safety and Health (NIOSH),,

Opportunities and challenges of nanotechnology in the green economy by Ivo Iavicoli, Veruscka Leso, Walter Ricciard, Laura L Hodson, and Mark D Hoover. Environmental Health 2014, 13:78 doi:10.1186/1476-069X-13-78 Published:    7 October 2014

© 2014 Iavicoli et al.; licensee BioMed Central Ltd.

This is an open access article.

Here’s the background to the work (from the article; Note: Links have been removed),

The “green economy” concept has been driven into the mainstream of policy debate by global economic crisis, expected increase in global demand for energy by more than one third between 2010 to 2035, rising commodity prices as well as the urgent need for addressing global challenges in domains such as energy, environment and health [1-3].

The term “green economy”, chiefly relating to the principles of sustainable development, was first coined in a pioneering 1989 report for the Government of the United Kingdom by a group of leading environmental economists [1]. The most widely used and reliable definition of “green economy” comes from the United Nations Environment Programme which states that “a green economy is one that results in improved human well-being and social equity, while significantly reducing environmental risks and ecological scarcities. It is low carbon, resource efficient, and socially inclusive” [4].

The green economy concept can indeed play a very useful role in changing the way that society manages the interaction of the environmental and economic domains. In this context, nanotechnology, which is the manipulation of matter in the dimension of 1 to 100 nm, offers the opportunity to produce new structures, materials and devices with unique physico-chemical properties (i.e. small size, large surface area to mass ratio) to be employed in energy efficient as well as economically and environmentally sustainable green innovations [8-12].

Although expected to exert a great impact on a large range of industrial and economic sectors, the sustainability of green nano-solutions is currently not completely clear, and it should be carefully faced. In fact, the benefits of incorporating nanomaterials (NMs) in processes and products that contribute to outcomes of sustainability, might bring with them environmental, health and safety risks, ethical and social issues, market and consumer acceptance uncertainty as well as a strong competition with traditional technologies [13].

The present review examines opportunities and practical challenges that nano-applications pose in addressing the guiding principles for a green economy. Examples are provided of the potential for nano-applications to address social and environmental challenges, particularly in energy production and storage thus reducing pressure on raw materials, clean-up technologies as well as in fostering sustainable manufactured products. Moreover, the review aims to critically assess the impact that green nanotechnology may have on the health and safety of workers involved in this innovative sector and proposes action strategies for the management of emerging occupational risks.

The potential nanotechnology impact on green innovations

Green nanotechnology is expected to play a fundamental role in bringing a key functionality across the whole value chain of a product, both through the beneficial properties of NMs included as a small percentage in a final device, as well as through nano-enabled processes and applications without final products containing any NMs [13,14]. However, most of the potential green nano-solutions are still in the lab/start-up phase and very few products have reached the market to date. Further studies are necessary to assess the applicability, efficiency and sustainability of nanotechnologies under more realistic conditions, as well as to validate NM enabled systems in comparison to existing technologies. The following paragraphs will describe the potential fields of application for green nanotechnology innovations.

Intriguingly, there’s no mention (that I could find) of soil remediation (clean-up) although there is reference to water remediation.  As for occupational health and safety and nanotechnology, the authors have this to say (Note: Links have been removed),

In this context according to the proposed principles for green economy, it is important that society, scientific community and industry take advantage of opportunities of nanotechnology while overcoming its practical challenges. However, not all revolutionary changes are sustainable per se and a cautious assessment of the benefits addressing economic, social and environmental implications, as well as the occupational health and safety impact is essential [95,96]. This latter aspect, in particular, should be carefully addressed, in consideration of the expected widespread use of nanotechnology and the consequent increasing likelihood of NM exposure in both living and occupational environments. Moreover, difficulties in nano-manufacturing and handling; uncertainty concerning stability of nano-innovations under aggressive or long-term operation (i.e. in the case of supercapacitors with nano-structured electrode materials or nano-enabled construction products); the lack of information regarding the release and fate of NMs in the environment (i.e. NMs released from water and wastewater treatment devices) as well as the limited knowledge concerning the NM toxicological profile, even further support the need for a careful consideration of the health and safety risks derived from NM exposure.Importantly, as shown in Figure 1, a number of potentially hazardous exposure conditions can be expected for workers involved in nanotechnology activities. In fact, NMs may have significant, still unknown, hazards that can pose risks for a wide range of workers: researchers, laboratory technicians, cleaners, production workers, transportation, storage and retail workers, employees in disposal and waste facilities and potentially, emergency responders who deal with spills and disasters of NMs who may be differently exposed to these potential, innovative xenobiotics.

The review article is quite interesting, albeit its precaution-heavy approach, but if you don’t have time, Berger summarizes the article. He also provides links to related articles he has written on the subjects of energy storage, evaluating ‘green’ nanotechnology in a full life cycle assessment, and more.